4.5.1 Extracting Term Symbols Using Russell–Saunders Coupling 100
4.5.2 Extracting Term Symbols Using jj Coupling 102
4.5.3 Correlation Between RS (LS) Coupling and jj Coupling 104
4.6 Shielding and Effective Nuclear Charge 105

Exercises 107

Bibliography 108

Chapter 5 | Periodic Properties of the Elements 109
5.1 The Modern Periodic Table 109
5.2 Radius 111
5.3 Ionization Energy 118
5.4 Electron Affinity 121
5.5 The Uniqueness Principle 122
5.6 Diagonal Properties 124
5.7 The Metal–Nonmetal Line 125
5.8 Standard Reduction Potentials 126
5.9 The Inert-Pair Effect 129
5.10 Relativistic Effects 130
5.11 Electronegativity 133

Exercises 136

Bibliography 137

Chapter 6 | An Introduction to Chemical Bonding 139
6.1 The Bonding in Molecular Hydrogen 139
6.2 Lewis Structures 140
6.3 Covalent Bond Lengths and Bond Dissociation Energies 144
6.4 Resonance 146
6.5 Polar Covalent Bonding 149

Exercises 153

Bibliography 154

Chapter 7 | Molecular Geometry 155
7.1 The VSEPR Model 155
7.2 The Ligand Close-Packing Model 170
7.3 A Comparison of the VSEPR and LCP Models 175

Exercises 176

Bibliography 177

Chapter 8 | Molecular Symmetry 179
8.1 Symmetry Elements and Symmetry Operations 179
8.1.1 Identity, E 180
8.1.2 Proper Rotation, C_n 181
8.1.3 Reflection, σ_v 182
8.1.4 Inversion, i 183
8.1.5 Improper Rotation, S_n 183
8.2 Symmetry Groups 186
8.3 Molecular Point Groups 191
8.4 Representations 195
8.5 Character Tables 202
8.6 Direct Products 209
8.7 Reducible Representations 214

Exercises 222

Bibliography 224
CONTENTS

Chapter 9 | Vibrational Spectroscopy
9.1 Overview of Vibrational Spectroscopy 227
9.2 Selection Rules for IR and Raman-Active Vibrational Modes 231
9.3 Determining the Symmetries of the Normal Modes of Vibration 235
9.4 Generating Symmetry Coordinates Using the Projection Operator Method 243
9.5 Resonance Raman Spectroscopy 252
Exercises 256
Bibliography 258

Chapter 10 | Covalent Bonding
10.1 Valence Bond Theory 259
10.2 Molecular Orbital Theory: Diatomics 278
10.3 Molecular Orbital Theory: Polyatomics 292
10.4 Molecular Orbital Theory: π Orbitals 305
10.5 Molecular Orbital Theory: More Complex Examples 317
10.6 Borane and Carborane Cluster Compounds 325
Exercises 334
Bibliography 336

Chapter 11 | Metallic Bonding
11.1 Crystalline Lattices 339
11.2 X-Ray Diffraction 345
11.3 Closest-Packed Structures 350
11.4 The Free Electron Model of Metallic Bonding 355
11.5 Band Theory of Solids 360
11.6 Conductivity in Solids 374
11.7 Connections Between Solids and Discrete Molecules 383
Exercises 384
Bibliography 388

Chapter 12 | Ionic Bonding
12.1 Common Types of Ionic Solids 391
12.2 Lattice Enthalpies and the Born–Haber Cycle 398
12.3 Ionic Radii and Pauling’s Rules 404
12.4 The Silicates 417
12.5 Zeolites 422
12.6 Defects in Crystals 423
Exercises 426
Bibliography 428

Chapter 13 | Structure and Bonding
13.1 A Reexamination of Crystalline Solids 431
13.2 Intermediate Types of Bonding in Solids 434
13.3 Quantum Theory of Atoms in Molecules (QTAIM) 443
Exercises 449
Bibliography 452

Chapter 14 | Structure and Reactivity
14.1 An Overview of Chemical Reactivity 453
14.2 Acid–Base Reactions 455
14.3 Frontier Molecular Orbital Theory 467
<table>
<thead>
<tr>
<th>Chapter 14</th>
<th>Oxidation–Reduction Reactions 473</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>A Generalized View of Molecular Reactivity 475</td>
</tr>
<tr>
<td>Exercises</td>
<td>480</td>
</tr>
<tr>
<td>Bibliography</td>
<td>481</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>An Introduction to Coordination Compounds 483</td>
</tr>
<tr>
<td>15.1</td>
<td>A Historical Overview of Coordination Chemistry 483</td>
</tr>
<tr>
<td>15.2</td>
<td>Types of Ligands and Nomenclature 487</td>
</tr>
<tr>
<td>15.3</td>
<td>Stability Constants 490</td>
</tr>
<tr>
<td>15.4</td>
<td>Coordination Numbers and Geometries 492</td>
</tr>
<tr>
<td>15.5</td>
<td>Isomerism 498</td>
</tr>
<tr>
<td>15.6</td>
<td>The Magnetic Properties of Coordination Compounds 501</td>
</tr>
<tr>
<td>Exercises</td>
<td>506</td>
</tr>
<tr>
<td>Bibliography</td>
<td>508</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Structure, Bonding, and Spectroscopy of Coordination Compounds 509</td>
</tr>
<tr>
<td>16.1</td>
<td>Valence Bond Model 509</td>
</tr>
<tr>
<td>16.2</td>
<td>Crystal Field Theory 512</td>
</tr>
<tr>
<td>16.3</td>
<td>Ligand Field Theory 525</td>
</tr>
<tr>
<td>16.4</td>
<td>The Angular Overlap Method 534</td>
</tr>
<tr>
<td>16.5</td>
<td>Molecular Term Symbols 541</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Scenario 1—All the Orbitals are Completely Occupied 546</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Scenario 2—There is a Single Unpaired Electron in One of the Orbitals 546</td>
</tr>
<tr>
<td>16.5.3</td>
<td>Scenario 3—There are Two Unpaired Electrons in Two Different Orbitals 546</td>
</tr>
<tr>
<td>16.5.4</td>
<td>Scenario 4—A Degenerate Orbital is Lacking a Single Electron 547</td>
</tr>
<tr>
<td>16.5.5</td>
<td>Scenario 5—There are Two Electrons in a Degenerate Orbital 547</td>
</tr>
<tr>
<td>16.5.6</td>
<td>Scenario 6—There are Three Electrons in a Triply Degenerate Orbital 547</td>
</tr>
<tr>
<td>16.6</td>
<td>Tanabe–Sugano Diagrams 549</td>
</tr>
<tr>
<td>16.7</td>
<td>Electronic Spectroscopy of Coordination Compounds 554</td>
</tr>
<tr>
<td>16.8</td>
<td>The Jahn–Teller Effect 564</td>
</tr>
<tr>
<td>Exercises</td>
<td>566</td>
</tr>
<tr>
<td>Bibliography</td>
<td>570</td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Reactions of Coordination Compounds 573</td>
</tr>
<tr>
<td>17.1</td>
<td>Kinetics Overview 573</td>
</tr>
<tr>
<td>17.2</td>
<td>Octahedral Substitution Reactions 577</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Associative (A) Mechanism 578</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Interchange (I) Mechanism 579</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Dissociative (D) Mechanism 580</td>
</tr>
<tr>
<td>17.3</td>
<td>Square Planar Substitution Reactions 585</td>
</tr>
<tr>
<td>17.4</td>
<td>Electron Transfer Reactions 593</td>
</tr>
<tr>
<td>17.5</td>
<td>Inorganic Photochemistry 606</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Photochemistry of Chromium(III) Ammine Compounds 607</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Light-Induced Excited State Spin Trapping in Iron(II) Compounds 611</td>
</tr>
<tr>
<td>17.5.3</td>
<td>MLCT Photochemistry in Pentaammineruthenium(II) Compounds 615</td>
</tr>
<tr>
<td>17.5.4</td>
<td>Photochemistry and Photophysics of Ruthenium(II) Polypyridyl Compounds 617</td>
</tr>
<tr>
<td>Exercises</td>
<td>622</td>
</tr>
<tr>
<td>Bibliography</td>
<td>624</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>Structure and Bonding in Organometallic Compounds 627</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction to Organometallic Chemistry 627</td>
</tr>
<tr>
<td>18.2</td>
<td>Electron Counting and the 18-Electron Rule 628</td>
</tr>
</tbody>
</table>
Chapter 18: Ligands and Complexes

18.3 Carbonyl Ligands 631
18.4 Nitrosyl Ligands 635
18.5 Hydride and Dihydrogen Ligands 638
18.6 Phosphine Ligands 640
18.7 Ethylene and Related Ligands 641
18.8 Cyclopentadiene and Related Ligands 645
18.9 Carbenes, Carbynes, and Carbidos 648

Exercises 651
Bibliography 654

Chapter 19: Reactions of Organometallic Compounds

19.1 Some General Principles 655
19.2 Organometallic Reactions Involving Changes at the Metal 656
19.2.1 Ligand Substitution Reactions 656
19.2.2 Oxidative Addition and Reductive Elimination 658
19.3 Organometallic Reactions Involving Changes at the Ligand 664
19.3.1 Insertion and Elimination Reactions 664
19.3.2 Nucleophilic Attack on the Ligands 667
19.3.3 Electrophilic Attack on the Ligands 669
19.4 Metathesis Reactions 670
19.4.1 Π-Bond Metathesis 670
19.4.2 Ziegler–Natta Polymerization of Alkenes 671
19.4.3 Σ-Bond Metathesis 671
19.5 Commercial Catalytic Processes 674
19.5.1 Catalytic Hydrogenation 674
19.5.2 Hydroformylation 674
19.5.3 Wacker–Smidt Process 676
19.5.4 Monsanto Acetic Acid Process 677
19.6 Organometallic Photochemistry 678
19.6.1 Photosubstitution of CO 678
19.6.2 Photoinduced Cleavage of Metal–Metal Bonds 680
19.6.3 Photochemistry of Metallocenes 682
19.7 The Isolobal Analogy and Metal–Metal Bonding in Organometallic Clusters 683

Exercises 689
Bibliography 691

Appendix: A Derivation of the Classical Wave Equation 693
Bibliography 694

Appendix: B Character Tables 695
Bibliography 708

Appendix: C Direct Product Tables 709
Bibliography 713

Appendix: D Correlation Tables 715
Bibliography 721

Appendix: E The 230 Space Groups 723
Bibliography 728

Index 729