INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>abiogenic precipitation</td>
<td>2–3, 39, 60</td>
</tr>
<tr>
<td>carbonate factory</td>
<td>25–26, 28–30, 58, 60–66</td>
</tr>
<tr>
<td>dolomite and dolostone</td>
<td>371</td>
</tr>
<tr>
<td>geochemistry</td>
<td>298</td>
</tr>
<tr>
<td>geologic time</td>
<td>268</td>
</tr>
<tr>
<td>lacustrine carbonates</td>
<td>102</td>
</tr>
<tr>
<td>Precambrian carbonates</td>
<td>235, 239, 242–244</td>
</tr>
<tr>
<td>springs</td>
<td>116, 119</td>
</tr>
<tr>
<td>synsedimentary marine diagenetic environment</td>
<td>313</td>
</tr>
<tr>
<td>ACC see amorphous calcium carbonate</td>
<td>17</td>
</tr>
<tr>
<td>accommodation</td>
<td>221–222, 248–250, 252, 257–258</td>
</tr>
<tr>
<td>accretionary slopes</td>
<td>219–220</td>
</tr>
<tr>
<td>accumulation</td>
<td>11</td>
</tr>
<tr>
<td>ACD see aragonite compensation depth</td>
<td>acetate peels 290</td>
</tr>
<tr>
<td>Acropora spp.</td>
<td>22, 92, 181, 186, 331, 414</td>
</tr>
<tr>
<td>aeolites</td>
<td>11</td>
</tr>
<tr>
<td>carbonate rock formation</td>
<td>11</td>
</tr>
<tr>
<td>cool-water neritic realm</td>
<td>137–138, 144</td>
</tr>
<tr>
<td>depositional systems</td>
<td>97</td>
</tr>
<tr>
<td>warm-water neritic realm</td>
<td>128–129, 131</td>
</tr>
<tr>
<td>aggradation</td>
<td>248, 250–251</td>
</tr>
<tr>
<td>aggregate grains</td>
<td>25</td>
</tr>
<tr>
<td>Alexandra Reef Complex, Canada</td>
<td>194</td>
</tr>
<tr>
<td>algae</td>
<td></td>
</tr>
<tr>
<td>ancient reefs</td>
<td>194–195, 200–201, 203–204</td>
</tr>
<tr>
<td>calcareous algae</td>
<td>60–66</td>
</tr>
<tr>
<td>calcispheres</td>
<td>66</td>
</tr>
<tr>
<td>carbonate chemistry and</td>
<td></td>
</tr>
<tr>
<td>mineralogy</td>
<td>61</td>
</tr>
<tr>
<td>carbonate factory</td>
<td>25–26, 28–30, 58, 60–66</td>
</tr>
<tr>
<td>charophytes</td>
<td></td>
</tr>
<tr>
<td>coccoliths and coccospheres</td>
<td>65</td>
</tr>
<tr>
<td>cool-water neritic realm</td>
<td>137–138, 144</td>
</tr>
<tr>
<td>coralline and related algae</td>
<td>61–63, 137–138, 144, 185–189</td>
</tr>
<tr>
<td>geologic time</td>
<td>271</td>
</tr>
<tr>
<td>green algae</td>
<td>62–64, 188, 190, 201</td>
</tr>
<tr>
<td>marine carbonate factory</td>
<td>46–47</td>
</tr>
<tr>
<td>modern reefs</td>
<td>181–182, 185–190</td>
</tr>
<tr>
<td>muddy peritidal carbonates</td>
<td>155</td>
</tr>
<tr>
<td>peyssonellid red algae</td>
<td>62</td>
</tr>
<tr>
<td>phylloid algae</td>
<td>64–65</td>
</tr>
<tr>
<td>sedimentology overview</td>
<td>2</td>
</tr>
<tr>
<td>solenopora</td>
<td>62</td>
</tr>
<tr>
<td>springs</td>
<td>114</td>
</tr>
<tr>
<td>Alizirin Red S (ARS) stains</td>
<td>288–289</td>
</tr>
<tr>
<td>algal reef mounds</td>
<td>200–201</td>
</tr>
<tr>
<td>Alizirin Red S (ARS) stains</td>
<td>288–289</td>
</tr>
<tr>
<td>allochemical rocks</td>
<td>48–49</td>
</tr>
<tr>
<td>algallogenic cycles</td>
<td>162, 249</td>
</tr>
<tr>
<td>allomicrite</td>
<td>25–26</td>
</tr>
<tr>
<td>Alps, Europe</td>
<td>205</td>
</tr>
<tr>
<td>alteration</td>
<td></td>
</tr>
<tr>
<td>ancient reefs</td>
<td>195–196</td>
</tr>
<tr>
<td>carbonate rock formation</td>
<td>8</td>
</tr>
<tr>
<td>cool-water neritic realm</td>
<td>138–139</td>
</tr>
<tr>
<td>deep-water pelagic carbonates</td>
<td>229</td>
</tr>
<tr>
<td>diagenesis</td>
<td>281, 284</td>
</tr>
<tr>
<td>dolomite and dolostone</td>
<td>376–380</td>
</tr>
<tr>
<td>meteoric diagenesis</td>
<td>328–331, 335</td>
</tr>
<tr>
<td>modern reefs</td>
<td>182</td>
</tr>
<tr>
<td>synsedimentary marine diagenetic environment</td>
<td>315–316</td>
</tr>
<tr>
<td>warm-water neritic realm</td>
<td>124</td>
</tr>
<tr>
<td>Ambergris Cay, Bahamas</td>
<td>175</td>
</tr>
<tr>
<td>Ambergris Cay, Belize</td>
<td>55</td>
</tr>
<tr>
<td>ammonoids</td>
<td>75–76</td>
</tr>
<tr>
<td>amorphous calcium carbonate (ACC)</td>
<td>17</td>
</tr>
<tr>
<td>Amphipora spp.</td>
<td>209</td>
</tr>
<tr>
<td>Amphiroa spp.</td>
<td>61</td>
</tr>
<tr>
<td>Amphisteginas spp.</td>
<td>328</td>
</tr>
<tr>
<td>analytical methods</td>
<td>286–296</td>
</tr>
<tr>
<td>acetate peels</td>
<td>290</td>
</tr>
<tr>
<td>background considerations</td>
<td>287–288</td>
</tr>
<tr>
<td>cathodoluminescence microscopy</td>
<td>290–291</td>
</tr>
<tr>
<td>chemical analysis</td>
<td>294–296</td>
</tr>
<tr>
<td>concepts and definitions</td>
<td>287–288</td>
</tr>
<tr>
<td>core analysis</td>
<td>288</td>
</tr>
<tr>
<td>diagenesis</td>
<td>286–296</td>
</tr>
<tr>
<td>electron microprobe analysis</td>
<td>294–295</td>
</tr>
<tr>
<td>fluid inclusions</td>
<td>291</td>
</tr>
<tr>
<td>fluorescence microscopy</td>
<td>290–291</td>
</tr>
<tr>
<td>optical microscopy</td>
<td>286</td>
</tr>
<tr>
<td>petrography</td>
<td>288–291, 348</td>
</tr>
<tr>
<td>porosity and permeability</td>
<td>415–416</td>
</tr>
<tr>
<td>sample acquisition</td>
<td>288</td>
</tr>
<tr>
<td>scanning electron microscopy</td>
<td>287, 292–294</td>
</tr>
<tr>
<td>staining</td>
<td>288–290</td>
</tr>
<tr>
<td>white card technique</td>
<td>290</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>287, 291–293</td>
</tr>
</tbody>
</table>
ancient reefs 192–211
biorock constructions 198
boring and bioerosion 196
calcareous metazoans 193–194
carbonate factory 193–194
depositional systems 192–211
geonotography 202–206
internal cavities 195
lithification 195–196
microbes, calcimicrobes, and calcareous algae 192, 194–195, 199–205, 210
Pecambrian carbonates 242
reef mounds 199–202
rock classification 206–211
stratigraphic nomenclature 196–198
symbiont conundrum 194
types of reefs 198–199
zonation of heterotroph reef 194–195
Andros Island, Bahamas 152–155
anhydrite 157–158, 384–388, 394–396, 406
Anticosti Island, Canada 67, 95, 199
anti-estuarine circulation 46, 140
aragonite
analytical methods 292–293
ancient reefs 195
burial diagenesis 366
carbonate chemistry and mineralogy 17–21
carbonate factory 26, 29
cements and cementation 314–315, 321, 323
diagenetic processes and environments 273, 274, 277, 281–284
dolomite and dolostone 387, 393
geochemistry 298–302, 304
geonotography and diagenesis 406
geologic time 266–268, 270–271
laustrine carbonates 105–106
macrofossils 76–77
metageneic diagenesis 327–331, 333, 336–337
muddy peritidal carbonates 158
porosity and permeability 418
sedimentology overview 2
springs 111, 114–115, 121
synsedimentary marine diagenetic environment 312–316, 319–325
warm-water neritic realm 124
aragonite compensation depth
(ACD) 20–21, 225–226, 229
archaeocyaths 84–85
Archean 242–243, 262
Archeolithoporella spp. 204
arid peritidal environments 387
ARS stairs see Alizarin Red S
arthropods 77–78
articulate brachiopods 71
atolls 12, 180, 284
attached rimmed platforms 404–411
authigenic dolomite 386–390
autocemtenation 364
autochthonous reef rocks 48–49
autogenic cycles 160–162, 249
automicrite 26–28
Avicennia spp. 30
back-reef 185, 188
back-scattered electron microprobe analysis 294–295
backstepping 252–253
bacteria 52–54, 56–57, 114, 389–390
bafflestone 207
Bahamas see Great Bahama Bank
balanced-filled lake basins 108
banks see rimmed platforms and banks
barnacles 77–78
basinal burial domain 365–366, 368
basinal carbonate facies 224
Bathurst Inlet, Canada 355
beaches
cool-water neritic realm 141–143
depositional systems 97, 105
synsedimentary marine diagenetic environment 311, 320–322
warm-water neritic realm 128, 130
see also neritic tidal sand bodies
beachrock 105, 311, 320–322
Belize Barrier Reef 123, 127–128
benthic carbonate factory 23, 25, 46–47
benthic foraminifers 68–70
bivalves
ancient reefs 196
carbonate factory 26, 29–31
cool-water neritic realm 138
modern reefs 182
warm-water neritic realm 124
biogenic corrosion 343
biogenic ooze 229
bioherm
ancient reefs 196–199, 204
laustrine carbonates 103–108
Pecambrian carbonates 241, 244
biologically controlled
mineralization 19–20
biologically induced mineralization 19
biostrome
ancient reefs 196–197, 199–200
laustrine carbonates 106
Pecambrian carbonates 241, 244
slopes 213, 216, 219–222
Birling Gap, United Kingdom 223, 224, 231
bivalves
ancient reefs 205–206
carbonate rock formation 10
diagenesis 277
geochemistry 304
macrofossils 72–75
meteoric diagenesis 331
bladed-prismatic calcite 363
blocky calcite cements 315, 332
boring
ancient reefs 196
carbonate factory 29–30
porosity and permeability 420–421
synsedimentary marine diagenetic environment 315–318, 321
brachiopods
carbonate factory 67, 70, 71–72
carbonate rock formation 10
geochemistry 307–309
porosity and permeability 419
synsedimentary marine diagenetic environment 324–325
breccias 352–354, 419–420
brine reflux 394, 400
bryophytes 112–113, 116, 119
bryozoans
ancient reefs 203–204
attributes 87
carbonate factory 79, 85–89
carbonate rocks 7
cool-water neritic realm 136–138, 146–147
geochemistry 305
gymnolaemates 85–87, 89
sedimentology 88
sedimentology overview 1
stenoelaemates 85–87, 89
buckled beds 227
burial diagenesis 357–369
basinal burial domain 365–366, 368
bioturbation and cementation 362–366, 368–369
chemical compaction 358, 361–362
concepts and definitions 358
deep-burial lutic-diagenetic dolomites 396–400
diagenetic processes and environments 282, 284–285
extrinsic control 359
intrinsic control 358–359
models 365–368
paragenesis via cement stratigraphy 368–369
physical compaction 358, 359–361
porosity and permeability 424
processes and products 359–362
shallow-burial lutic-diagenetic dolomites 393–396, 400
shelf-platform burial domain 366–368
subsurface dolomitization 392–400
burrowing
carbonate factory 31
porosity and permeability 420–421
synsedimentary marine diagenetic environment 317–318
Caerwys, Wales 120
Caicos Platform, Bahamas 174–175, 178
calcareous ooze 229
calcispheres 66
calcite
analytical methods 288–290, 292–294
ancient reefs 199–200
burial diagenesis 362–366
carbonate chemistry and mineralogy 15, 17–21
carbonate factory 26
composition 6
diagenetic processes and environments 274–275, 280–281
dolomite and dolostone 376–379, 395
geochemistry 298–301, 304
geologic time 266–268
macrofossils 74
meteoric diagenesis 327, 333
Precambrian carbonates 240–241
sedimentology overview 2
springs 111–112, 114–121
synsedimentary marine diagenetic environment 312–315, 323–324
calcite compensation depth (CCD) 20–21
calcitization
diagenetic processes and environments 281
dolomite and dolostone 378–379
meteoric diagenesis 327, 329–331
calciturbidite 216
calcium carbonate monohydrate 17
calcrite facies 342, 346–349, 411
Callianassa spp. 31, 421
Cambrian
burial diagenesis 368–369
dolomite and dolostone 8, 375, 377, 390
see also Precambrian carbonates
Canning Basin, Australia 193
cap carbonates 241–242
carbonate chemistry and mineralogy 15–21
algae 61
burial diagenesis 358–359
diagenesis 16
dissolution–precipitation zones 20–21
dolomite and dolostone 371–372
evaporite precipitation 19–20
marine carbonate dissolution 20
mineralogy 17–18
oceanic precipitation and dissolution 19–21
organic influences 19–20
precipitation and dissolution of carbonate 16–17, 19–21
relative solubility 18–19
carbonate compensation depth (CCD) 223–226, 233
carbonate continuum 7–8
carbonate depositional systems see depositional systems
carbonate factory 22–37
ancient reefs 193–194
biogenic modification 29–31
carbonate mud 25–28
carbonate rock formation 9–11
carbonate sequence stratigraphy 249–250
component modification 28–36
cool-water neritic realm 136–139
cyclonic storms 32–33
deep-water pelagic carbonates 228–229
echinoderms and colonial invertebrates 79–93
ephemeral components 28
hummocky and swaley cross-stratification 33–34
karst and carbonate spring precipitates 36
marine carbonate factory 38–50, 228–229
microbes and algae 51–66
neritic tidal sand bodies 166
pelagic and benthic factories 23, 25
Precambrian carbonates 235–242
sedimentology overview 2–3
sediment particles 23–25, 27–28
sediment production 23–28
single-cell microfossils and macrofossils 67–78
storms 31–36
subaqueous storms 34–36
tempestites 33–34
terrestrial carbonate factory 2, 11
warm-water neritic realm 124–125
carbonate platforms 11–14
carbonate porosity see porosity and permeability
carbonate rocks 5–14
carbonate continuum 7–8
concepts and definitions 6
deposition 7–8
diagenesis 7–8, 14
formation 9–10
limestone classification schemes 48–50
marine carbonate factory 48–50
production and accumulation sites 10–11
research importance 6
scientific approach to studying 6, 14
tectonic settings and carbonate platforms 11–14
warm- and cool-water components and ancient counterparts 10
carbonate sediment partitioning 268–270
carbonate sequence stratigraphy 247–260
accommodation and sedimentation 248–250, 252, 257–258
concepts and definitions 248–250
depositional cycles 259
depositional sequence 248
depositional systems 97, 247–260
evaporites and siliciclastics 255–257
geohistory and diagenesis 405
heterozoan unrimmed platforms 255–257
parasequences 249, 258–259
photozoan rimmed platforms 252–255
ramps 257–258
shallow-water reefs 250–252
systems tracts 248–249, 251–258, 405–408, 410–412
transgression and regression 248
carbonate slopes see slopes
carbonate springs see springs
carbon dioxide
burial diagenesis 363–364
carbonate chemistry and mineralogy 16–17
geologic time 266, 271
water-controlled diagenesis 349–353
carbon isotopes 303–305, 307, 381
Caryophyllia spp. 92
Cat Cay, Bahamas 171, 173
catch-up reefs 250
cathodoluminescence (CL) 14, 290–291
cave pearls 352, 353
cavernous porosity 419
CCD see calcite compensation depth;
carbonate compensation depth; cements and cementation
burial diagenesis 362–366, 368–369
carbonate rock formation 8
cool-water neritic realm 138
diagenetic processes and environments 278–280
geohistory and diagenesis 406–411
grain size 333–334
meteoric diagenesis 327, 330–334
paragenesis via cement stratigraphy 368–369
synsedimentary marine diagenetic environment 312–317, 319–325
cementstone 210
Cenozoic
ancient reefs 206
carbonate platforms 12–13
deep-water pelagic carbonates 228, 229, 232
dolomite and dolostone 372, 395
geochemistry 299, 307–308
macrofossils 72
muddy peritidal carbonates 163
single-cell microfossils 69
cephalopodenkalk 227
cephalopods 75–76
cerebral stromatolites 58
chalk
burial diagenesis 364–365
deep-water pelagic carbonates 223, 229–233
meteoric diagenesis 333
INDEX

437

carbonate factory 32–33
muddy peritidal carbonates 158–160
neritic tidal carbonate sands 169–170, 175
cyclostomes 89
cystoporates 89

Daimaru Ryokan, Japan 121
Daniels Harbour, Canada 392
dasyclads 62
debrites 216–218
dedolomite 378–379
deep aquifer dolomite 394, 400
deep-burial late-diagenetic dolomites 396–400
Deep Lake, Australia 106
dek phreatic zone 283
deep-water pelagic carbonates 223–223
associated sediments 233
basinal carbonate facies 224
carbonate factory 23, 47, 228–229
carbonate facies 222, 229–233
depositional controls 225–226
depositional systems 97, 223–233
diagenesis 231–233
European chalk deposits 230–232
diagenesis 231–233
diagenesis 231–233
European chalk deposits 230–232
diagenesis 231–233
diagenesis 231–233
European chalk deposits 230–232

Deep-water reefs 180, 189–191

degradation 26
deltas 13–14, 168, 170–171, 173
demosponges 84
dendrite crystals 115–117
depositional systems 95–98
ancient reefs 192–211
carbonate factory 7–8, 11
carbonate sequence stratigraphy 97, 247–260
cool-water neritic realm 97, 135–149
depositional sequence 248
growth rate 261–272
depositional systems 97, 135–149
depositional sequence 248
growth rate 261–272
lacustrine carbonates 96, 99–109
marine systems 97
modern reefs 179–191
muddy peritidal carbonates 96–97, 128, 150–164
neritic tidal carbonate sands 165–178
Precambrian carbonates 97, 234–246
precipitation 97, 212–222
precipitation 96, 110–122
solid systems 96–97, 103

terrestrial systems 96
carbonate chemistry and mineralogy 16–17, 19–21
cool-water neritic realm 138–139
deep-water pelagic carbonate 225–226
diagenesis 278, 282
dolomite and dolostone 377–379
meteoric diagenesis 327–330, 335
porosity and permeability 417–425
synsedimentary marine diagenetic environment 312–313
warm-water neritic realm 125
water-controlled diagenesis 349–351, 353–354
dolines 345
dolomite and dolostone 370–382
analytical methods 288–295
authigenic dolomite 386–390
burial diagenesis 361, 364
carbonate activity 385
carbonate chemistry and mineralogy 15, 17–18, 371–372
carbonate rock formation 7–8, 14
concepts and definitions 273–276
deep-water pelagic carbonates 231–233
diagenesis–geohistory diagram 413
dissolution 278, 282
drivers of diagenetic change 274
dynamics of 275
eogenetic diagenesis 404–406, 422–423
geochemistry 274–275, 294–296, 297–310
geohistory 403–413
geologic time 266
limestone 275, 277, 284–285
mesogenetic diagenesis 404
meteoric diagenesis 266, 281–284, 300, 326–340, 404–413, 424
microbial-driven diagenesis 315–316
mineral–driven diagenesis 284, 315, 327
neomorphism 280–281
porosity and permeability 275, 414–426
post-eogenetic diagenesis 411–413
precipitation 278–281, 282–283
processes and environments 277–285
recrystallization 279–280
subsurface dolomitization and dolostone paragenesis 392–402
telogenetic diagenesis 404, 422–423
water-controlled diagenesis 284, 327, 341–356, 411
diatoms 103, 114
dilution of pelagic sediment 229
dimictic lakes 100
Diptoria spp. 92, 181
dissolution 26
modification of crystal shape 377–378
muddy peritidal carbonates 150, 157–158
muddy tidal flats 383, 386–390
organogenic marine dolomite 390
porosity and permeability 414–425
Precambrian carbonates 240, 243, 244–246
protodolomite 372, 378
reflux dolomitization 393–394, 400
saddle dolomite 374, 392, 397–398
scientific approach to study 371
sea-level-driven flow 396
sedimentology overview 2
shallow-burial early-diagenetic dolomites 393–396, 400
slopes 216
stable isotopes 381, 401–402
subsurface dolomitization 392–400
sulfate 385
synsedimentary marine diagenetic environment 383–391
textural classification 374–376
thermal convection 395–396, 400
types and origins 386
Dolomites, Italy 5
downwelling 45
drowning unconformities 255
druse calcite cements 280, 332
dunes, subaqueous 168, 171
Dunham’s classification 49
early highstand systems tract (EHST) 249, 251
eastern boundary currents 44
echinoderms 80–82
echinoids 80–81, 82, 305
EDX see energy-dispersive X-ray
EHST see early highstand systems tract
Ekman spiral 44–45
El Capitan, United States 125
electron microprobe analysis 294–295
Ellesmere Island, Canada 198
embayments 220
Embry and Klovan’s reef classification 206–207
energy-dispersive X-ray (EDX) analysis 294
enfacial junctions 280
Enothyphysalis spp. 56
Eocene 1, 68–69, 107–108, 270–271
eogenetic diagenesis 404–406, 422–423
epicritic seas 11–12, 263–265
epilimnion 100
Epiphyton spp. 59
epitaxial calcite cements 323, 332–333
EPS see extracellular polysaccharide
equant crystals 315
equatorial upwelling 45
equilibrium fractionation 301–302
escarpment bypass slopes 219–220
estuarine circulation 45–46, 140
eutrophic environments 41–42
evaporative drawdown 394
evaporative pumping 387–388
evaporites
 carbonate chemistry and mineralogy 19–20
 carbonate sequence stratigraphy 252, 255–257
geohistory and diagenesis 409–410
lacustrine carbonates 107–108
porosity and permeability 419
evolutionary biology 225
extensional tectonics 12–14
extracellular polysaccharide (EPS) 52–53, 389
fabric-destructive dolostone 373–376
fabric-retentive dolostone 373–374, 376–377
fabric-selective porosity 416–421
fabric-specific dissolution 278
Fairmont Hot Springs, Canada 115, 119
falling stage systems tract (FSST) 249, 253–256, 258
fascicular optic calcite cement 324
Fe-calcite 288–289, 300
Fe-dolomite 381, 398–399
fenestral porosity 418
fenestral porosity 418
fens 131–135, 323–324, 362–363
Fiege’s solution 289
Fistuliporina spp. 89
fitted grainstone 210
floatstone 207
flooding 161, 176–177
Florida Keys, United States 187–188, 190
flow-parallel elongate bars 168–170, 175
flowstone 341, 352
flow-transverse linear bars 168–169
fluid inclusions 291
fluorescence microscopy 290–291
Folk’s classification 48–49
foraminifers
 carbonate factory 68–70
 geochemistry 302, 304–305, 307
 meteoric diagenesis 328
 modern reefs 189
foreland basins 13
foreset reef 187–188
fossil reefs see ancient reefs
fossils see macrofossils; single-cell microfossils
fracture porosity 418–419
framestone 206–207
freshwater-saltwater mixing zone see mixing zone
FSST see falling stage systems tract
Fungi spp. 92
galena 392
gastropods
 geochemistry 304
 macrofossils 72–73
 meteoric diagenesis 331
gastroclasts 239–240
biogenic carbonate precipitation 300
burial diagenesis 363
carbonate rock formation 14
carbonate sediments 305
carbon isotopes 303–305, 307, 381
chemical analysis 294–296
component mineralogies 298
concepts and definitions 298
cross-plots 304, 306
diagenesis 274–275, 294–296, 297–310
dolomite and dolostone 380–381, 388–390, 401–402
limestone 300
meteric diagenesis 337–339
modern biogenic carbonates 300, 304–305
oxygen isotopes 301–303, 304–307, 381
paleowater temperature 302
radiogenic isotopes 381
stontium isotopes 307–309
synsedimentary marine diagenetic environment 319–320, 324–325
trace elements and element ratios 294–296, 298–301, 337–339, 380–381
water 297–298
water-controlled diagenesis 355
gastroclasts
ancient reefs 202–206
biogenic calcification 268
carbonate rock formation 9–10
muddy peritidal carbonates 152–155
neritic tidal sand bodies 169–175, 177–178
slopes 212, 215, 219
stromatolites 55, 58
Great Barrier Reef, Australia 10, 127, 184–186
Great Basin, United States 261
great oxygenation event (GOE) 243
Great Salt Lake, United States 99
Great Slave Lake, Canada 234, 237–238, 244
green algae
 ancient reefs 201
 carbonate factory 62–64
 modern reefs 188, 190
greenhouse climatic mode 146–147, 265–266
griotte 227
growth framework porosity 418
Gulf of Suez, Egypt 373
Güney Falls, Turkey 113, 119
gymnolaemates 85–87, 89
Mississippian
 ancient reefs 200–203
 burial diagenesis 357, 360, 367
 carbonate sequence stratigraphy 247
 cool-water neritic realm 147–148
 deep-water pelagic carbonates 233
 echinoderms and colonial invertibrates 81, 87, 90
 karst 345–348
 meteoric diagenesis 336
 neritic tidal sand bodies 177–178
 single-cell microfossils and macrofossils 76
 synsedimentary marine diagenetic environment 319
 mixing zone
dolomite and dolostone 394–395, 400
geochemistry and diagenesis 406
 meteoric diagenesis 283, 335
 water-controlled diagenesis 343
 mixolimnion 100
 Mn-calcite 300
 Mn-dolomite 381
 modern reefs 179–191
 algae 181–182, 185–190
 alteration 182
 corals 179, 180–191
 deep-water reefs 180, 189–191
 depositional systems 179–191
 energy zonation 187
 growth window 182–184
 internal cavity systems 182
 microbes and algae 181–182
 nutrient-sediment zonation 187
 reef mosaic 180–182
 shallow-water reefs 180, 184–189
 zonation 184–187
 molar tooth structure 240–241
 moldic porosity 417–418
 mollusks
depth-water pelagic carbonates 230
 geochemistry 304
 macrofossils 72–73
 monimolimnion 100
 monomictic lakes 100
 Montastraea spp. 92, 186
 monoclinic ikaite 17
 Mono Lake, United States 112
 monomictic lakes 100
 Montastraea spp. 92
 moonmilk 352
 MS see mass spectrometry
 mud-dominated fabrics 422
 muddy carbonates
carbonate factory 25–28
 deep-water pelagic carbonates 226–227
 meteoric diagenesis 330
 Precambrian carbonates 239
 slopes 213–215
 muddy peritidal carbonates 150–164
 allogenic cycles 162
 Andros Island, The Bahamas 152–155
 autogenic cycles 160–162
 biota 153–155, 157–158, 162–163
 depositional cycles 259
 depositional systems 96–97, 128, 150–164
 intertidal zone 151–158
 Persian Gulf, United Arab Emirates 156–158
 pond and channel belt 154–155
 shallowing-upward peritidal cycle 158–160
 Shark Bay, Australia 155–156
 stratigraphy 158
 subtidal zone 152–153, 155, 157–158
 supratidal zone 152–153, 155–156, 158
 temporal variations in peritidal cycle 162–163
 warm-water neritic realm 128
 muddy tidal flats
dolomite and dolostone 383, 386–390
 geologic time 266
 synsedimentary marine diagenetic environment 322
 mud mounds 201–204
 mudstone
 burial diagenesis 360
 carbonate factory 35
 marine carbonate factory 49
 Precambrian carbonates 238–239
 slopes 214–215
 synsedimentary marine diagenetic environment 315–316
 Muleshoe Mound, United States 202
 nanofossils 228–230
 nautiloids 75–76
 neomorphism 280–281
 neritic tidal sand bodies 165–178
 ancient sand body geometries 178
 Bahamian platform sand bodies 169–175, 177–178
 biota 171–174, 177
 carbonate factory 166
 cross-stratification 165–166, 168, 176–178
 cyclonic storms 169–170, 175
 depositional environments 167
 depositional systems 97, 165–178
 flooded incised valleys 176–177
 geohistory 177–178
 hypersaline basins 177
 inter-island tidal deltas 168, 170–171, 173
 platform interior sand bodies 174–175
 ramps 175, 177–178
 sand bars or ridges 168–173, 175
 sand body structure 167
 small-scale tidal sedimentary structures 167–168
 straits and seaways 175–176
 subaqueous dunes 168, 171
porosity and permeability (cont’d)
synsedimentary marine diagenetic environment 312
types of porosity 416–421
Posidonia spp. 30
post-eogenetic diagenesis 411–413
Precambrian carbonates 234–246
carbonate factory 235–242
carbonate systems 235
depositional systems 97, 234–246
dolomite 240, 243, 244–246
familiar particles and structures 238–239
geologic time 267–268
microbial stromatolites 235–238
reef systems 242–246
rimmed platforms and ramps 235–236
unfamiliar components 239–242
precipitation
carbonate chemistry and mineralogy 16–17, 19–21
carbonate factory 25–26
diagenesis 278–281, 282–283
dolomite and dolostone 384
geochemistry 300
lacrustine carbonates 102, 108
porosity and permeability 422–425
springs 114–115
synsedimentary marine diagenetic environment 313–315
warm-water neritic realm 124
water-controlled diagenesis 346, 351–353
predation 182
pressure 359
primary depositional porosity 417
profundal zone 100
progradation 158–161, 251–253, 411
Proterozoic
ancient reefs 192, 195, 200
muddy peritidal carbonates 162–163
Precambrian carbonates 235–246
protodolomite 372, 378
protozoan factory 46
Pterotrignia spp. 277
pustular stromatolites 56
pynnocline 34–35, 42–43
radial fibrous calcite cement 324
radiogenic isotopes 381
radiolarians 71
rafts 121
ramps
carbonate rock formation 11–12
carbonate sequence stratigraphy 257–258
cool-water neritic realm 139–143
geochemistry and diagenesis 404–405, 407–408, 410–411
geologic time 265, 270
lacrustine carbonates 105
neritic tidal sand bodies 175, 177–178
Precambrian carbonates 235–236
synsedimentary marine diagenetic environment 319–320
warm-water neritic realm 125, 132–134
Raven springs, Canada 112
recumbents 74
reef mosaic 180–182
reef mounds 199–202
reef systems
ancient reefs 192–211
body geometry and internal structure 250–252
carbonate factory 22, 24
carbonate rock formation 6, 7–8, 12
carbonate sequence stratigraphy 250–252
deep-water reefs 180, 189–191
depositional systems 97
geochemistry 305
geologic time 271
modern reefs 179–191
nucleation 250
porosity and permeability 424–425
Precambrian carbonates 242–246
sea levels 250
shallow-water reefs 180, 184–189, 219–220, 250–252
slopes 213–216, 219–221
stratigraphic nomenclature 196–198
synsedimentary marine diagenetic environment 319
warm-water neritic realm 125–128
zonation 184–187, 194–195
see also corals
reflux dolomitization 393–394, 400
regression 248
relative solubility 18–19
relict grains 139
Renalcis spp. 59, 210
Retiophyllia spp. 205
retrogradation 248, 252
rhizoconcretions 348
rift basins 12
rim facies 126–127
rimmed platforms and banks 125–130
bounding surfaces 255
carbonate rock formation 11–13
carbonate sequence stratigraphy 252–255
depositional conditions 252
geochemistry and diagenesis 404–412
geologic time 270
Precambrian carbonates 235–236
synsedimentary marine diagenetic environment 319–320
rimstone pools 110–112, 115–117
Rocky Mountains, Canada 8, 220, 247
rock–water ratio 338–339
rudists 74–75, 205–206
rudstone 35, 207
rugose corals 89, 90–91
Sabbha 157–158
saddle dolomite 374–375, 392, 397–398
salinity
hypersalinity 177, 258, 394
marine carbonate factory 39–41, 47
modern reefs 183
salt diapirs 13
sand
carbonate factory 26–28
limestone classification schemes 48
sand bars or ridges 168–173, 175
see also beaches; neritic tidal sand bodies
sandstone 415
scanning electron microscopy (SEM) 14, 287, 292–294
Schizothrix spp. 57–58
Schooner Cays, Bahamas 169, 171–172
scleractinian corals 89, 91–93, 205–208
SCS see swaley cross-stratification
seafloor
deep-water pelagic carbonates 226
depositional systems 97
Precambrian carbonates 239–240, 243
slopes 215, 222
seagrasses
carbonate factory 28, 30
cool-water neritic realm 141, 144
geologic time 270
sea levels
carbonate sequence stratigraphy 249, 250–259
deep-water pelagic carbonates 224–225, 233
dolomite and dolostone 396
geochemistry and diagenesis 404–412
geologic time 266
slopes 221–222
seawater circulation 43–46
seaway 139–141, 143–144, 175–176
secondary diagenetic porosity 417–418
Sectipten spp. 74
sediment drifts 217
sediment partitioning 268–270
seepage reflux 392, 393–394, 399
Sella Platform, Italy 370–371
SEM see scanning electron microscopy
sequence boundaries 248
sequence stratigraphy see carbonate sequence stratigraphy
serpulids 76–77
Seven Sisters, United Kingdom 223, 224, 231
shales
deep-water pelagic carbonates 224–227, 230
dolomite and dolostone 390
geologic time 261
shallow-burial early-diagenetic dolomites 393–396, 400
shallowing-upward cycle
carbonate sequence stratigraphy 259
muddy peritidal carbonates 158–160
Precambrian carbonates 240–241
shallow reef-rimmed slopes 219
shallow-water reefs 180, 184–189, 219–220, 250–252
Shark Bay, Australia 51, 54–58, 155–156, 177
shelf edge 97
shelf-platform burial domain 366–368
shells see macrofossils
shelter porosity 418
shoals
lacustrine carbonates 105
neritic tidal sand bodies 171, 172–173
warm-water neritic realm 125–126
shoreline facies 103–106
shrinkage porosity 421
siliciclastics
carbonate rock formation 9–14
carbonate sequence
stratigraphy 255–257
deep-water pelagic carbonates 229
formation 3
neritic tidal sand bodies 176
slopes 213, 217, 222
Silurian carbonate sand 27
Silurian limestone 67
single-cell microfossils
benthic foraminifers 68–70
carbonate factory 68–71
foraminifers 68–70
planktic foraminifers 69–70
radiolarians 71
sinkholes 345
sinter deposits 113
skeletal biofragments see invertebrate biofragments
skeletal-calcimicrobial reefs/
mounds 199–200, 202–204, 210
skeletal crystals 116
skeletal reefs 185, 194–195, 198–199
slope-derived clasts 216–217
slopes 212–222
coarse debris 216–217
countourites 217–219
depositional bathymetry 213
depositional systems 97, 212–222
deposit types and sediment dynamics 213–218
extrinsic controls 221–222
grainy carbonates 215–216
intrinsic controls 220–221
muddy carbonates 213–215
synsedimentary marine diagenetic environment 319
temporal and spatial variability 220–222
types of slope 219–220
warm-water neritic realm 130
smooth stromatolites 56–57
soda straws 352
soft corals 189–191
soil
carbonate rock formation 11
meteoric diagenesis 338–339
water-controlled diagenesis 342, 346–348
solenopora 62
Solenita spp. 57, 58–59
solution-collapse breccias 419
spargite 210
speleothems
carbonate rock formation 11, 16
diagenesis 284, 342, 345, 351–352
geochemistry 303–304
Spencer Gulf, Australia 55
spherulites 93, 116, 323
spinctozoan sponges 85
spiculate sponges 83–84
sporolithon spp. 63
springs 110–122
architecture of spring deposits 115–117
biota 112–113, 114, 116–121
calcareous spring carbonates facies 117–121
carbonate factory 36
carbonate precipitation 114–115
carbonate rock formation 11
coated grains 119–120
depositional systems 96, 110–122
diagenesis 283
spring systems 111–112
thermal classification 112–113
tufa, travertine, and sinter deposits 113, 118–121
Sr:Ca ratio 298–301
Sr-calcite 300
Sr-dolomite 381
Sr isotopes 307–309
stable isotopes 301–309
ancient marine cements 324–325
burial diagenesis 363
carbon isotopes 303–305, 307
clumped isotopes 302–303, 381
cross-plots 304, 306
dolomite and dolostone 381, 401–402
equilibrium and non-equilibrium
depositional processes 301–302
meteoric diagenesis 337–339
modern marine cements 319–320
oxygen isotopes 301–303, 304–307
paleowater temperature 302
strontium isotopes 307–309
utility in carbonates 308–309
values through geologic time 305–309
Stachyodes spp. 209–210
staining 288–290
stalactites 121, 297, 352
stalagmites 352
stenolaemates 85–87, 89
Stichopus spp. 80
straits 175–176
Straits of Florida, United States 190–191
stranded grains 139
stratification of lacustrine carbonates 100–101, 103
stratigraphic columnar stromatolites 237
Stromatolites 196, 199–200, 202, 319
stromatolites
ancient reefs 195
carbonate factory 51, 52–60
carbonate rock formation 7, 10
lacustrine carbonates 103–104
modern stromatolites 54–60
morphologies 52–54
neritic tidal sand bodies 177
Precambrian carbonates 234, 235–238, 240
springs 118
stromatoporoids 85–86
subsurface dolomitization 392–399
subtidal cycles 259
subtidal zone 152–153, 155, 157–158
sulfate 385
sulfate-reducing bacteria 53, 389–390
supratidal zone 152–153, 155–156, 158
suspended sediment 183–184
sutured seams see stylolites
swaley cross-stratification (SCS) 33–34
symbiont conundrum 194
syngenetic karst 343
synsedimentary marine diagenetic environment 281–282, 311–325
alteration 315–316
aragonite cements 314–315
deep-water realm 312–313, 315
dolomitization 312–313
dolomite and dolostone 383–391
geohistory 322–324, 404–411
hardgrounds 316–319
isotopic composition of ancient marine cements 324–325
lithification 182, 316, 319–320
INDEX

synsedimentary marine diagenetic environment (cont’d)
modern reefs 182
neritic realm 312, 313, 315
porosity and permeability 312
precipitation 313–315
reefs and mounds 319
seawater precipitates 313–315
spatial distribution of early lithification 319–320
stable isotopes of modern marine cements 319–320
strandline diagenesis 320–322
syntaxial calcite cements 332–333
systems tracts 248–249, 251–258, 405–408, 410–412
tabulate corals 89–90
tectonics
burial diagenesis 359
carbonate rock formation 11–14
carbonate sequence stratigraphy 249
depth-water pelagic carbonates 224
dolomite and dolostone 396–397, 398–399
geologic time 262–268
slopes 221
teepees
deep-water pelagic carbonates 227
muddy peritidal carbonates 156
Precambrian carbonates 239–241
synsedimentary marine diagenetic environment 322
teleost fish 26
telogenetic diagenesis 404, 422–423
temperature 359
see also water temperature
tempestites 33–34
Tengchong Geothermal Area, China 112, 115–116
tentaculitids 76
terrestrial carbonate factory 2, 11
tethyan pelagic carbonates 227–228
Thalassia spp. 30, 127
thermal convection 395–396, 400
thermal springs 111–113
thermocline 42–43, 147–148
thin-section petrography 288–291, 348, 415
thrombolites 52
tidal bar sand bodies 170, 171
tidal creeks 129, 153–154
tidal deltas 168, 170–171, 173
tidal prism 166
tides and tidal currents
deep-water pelagic carbonates 222, 226
good time 264
neritic tidal sand bodies 166, 169–170, 173, 175
time machine see geologic time
time–process diagram 411–413, 423–425
Tobacco Cay, Belize 187
Tongue of the Ocean, Bahamas 170, 171–172, 212, 215
tower karst 345–346
trace elements
analytical methods 294–296
dolomite and dolostone 380–381
geochemistry 298–301
meteoric diagenesis 337
transition zone see mixing zone
trevetone deposits 113, 118–121
trepostomes 89
Triassic carbonate rocks 5
Tridacna spp. 194
trilobites 78
triple junctions 280
TST see transgressive systems tract
Tubiphytes spp. 204–205
ufoteaean 62
Udotea spp. 62, 64
underfilled lake basins 108
upper slope biostrates 219, 220–222
upwelling 45
vadose zone 283, 330, 333–335, 349, 352
valerite 17
Victoria, Australia 61
volcanic pedestals 13
vuggy porosity 419, 422–423
wackestone 49, 361
Waikite Springs, New Zealand 119
warm springs 112–113
warm-temperate carbonates 136–137, 141–144
warm-water neritic realm 123–134
aeolidiater 128–129, 131
beach facies 128, 130
bionrom 124
biota 124
carbonate dissolution 125
carbonate factory 124–125
carbonate precipitation 124
carbonate sequence
stratigraphy 252–257
controls on sedimentation 124
depositional systems 97, 123–134
lagoonal facies 126–127, 129
muddy peritidal facies 128
open unrimmed platforms 125, 130–132, 255–257
Precambrian carbonates 235–236
ramps 125, 132–134
rim facies 126–127
rimmed platforms and banks 11–12, 125–130, 235–236, 252–255
slope facies 130
synsedimentary marine diagenetic environment 312, 313, 315
water circulation 43–46
water column precipitation 25–26
water-controlled diagenesis 341–356
burial diagenesis 264
calcft facies 342, 346–349, 411
concepts and definitions 284
confined and unconfined water flow 348
geochemistry 355
meteoric diagenesis 327, 342
phreatic zone 352–355
subsurface karst facies 341, 348–355
surface karst facies 342–346, 355
surficial processes and products 342, 343–346
vadose zone 349, 352
water table 349–352
water temperature
geochemistry 302
marine carbonate factory 42–43, 47
modern reefs 183
Waulsortian reefs 204
western boundary currents 44
white card technique 290
whitings 29
whole-core analysis 415, 416
widespread sand sheets 174–175
Wilson Cycle 262, 266–268
winds
carbonate factory 30, 31–36
marine carbonate factory 43–46
slopes 222
see also cyclonic storms
worm tubes 76–77
Wright’s holistic classification 207–210
X-ray diffraction (XRD) 287, 291–293
Yorke Peninsula, Australia 61
Yucatan Peninsula, Mexico 354
zoned dolomite crystals 372
zone of active dissolution 21
zone of dissolution and precipitation 21
zone of no carbonate 21
zone of precipitation 21
Zooxyls spp. 232
zooplankton 46–47, 71