Contents

About the Authors xi
Preface xiii

Part I Building Adaptation Sara J. Wilkinson

Chapter 1 Defining Adaptation
1.1 Introduction
1.2 Terminology
1.3 The Significance of Building Adaptation
1.4 Decision-Making Issues in Building Adaptation
1.5 Decision Options and Levels of Adaptation
1.6 Adaptation and Different Land Uses
1.7 Conclusion
References

Chapter 2 Drivers and Barriers for Adaptation
2.1 Introduction
2.2 Building Life Cycle Theory
2.3 Building Performance Theory
2.4 Building Adaptation Theory and Sustainability
 2.4.1 Social Factors
 2.4.2 Environmental Factors
 2.4.3 Cost and Economic Factors
2.5 Other Attributes Associated with Adaptation
 2.5.1 Physical Attributes
 2.5.2 Locational and Land Use Attributes
 2.5.3 Legal Attributes
2.6 Conclusion
References

Chapter 3 Assessing Adaptation Using PAAM
3.1 Introduction
3.2 Preliminary Assessment
3.3 Principal Component Analysis
3.4 Preliminary Adaptation Assessment Model
5.3 Building Lifespan and Obsolescence 100
 5.3.1 Technical Lifespan 100
 5.3.2 Functional Lifespan 101
 5.3.3 Economic Lifespan 101
5.4 Obsolescence and Vacancy 102
5.5 Quality and Obsolescence: User-Based Property Assessment 104
5.6 The Physical Characteristics of Structurally Vacant Office Buildings 106
 5.6.1 Structure and Floors 107
 5.6.2 Floor Layout, Building Length and Depth 107
 5.6.3 Façade 108
 5.6.4 Stairs and Elevators 108
 5.6.5 Location Characteristics 108
5.7 Selected Adaptive Reuse Projects 109
5.8 Conclusion 117
References 118

Chapter 6 Reuse versus Demolition 121
6.1 Introduction 121
6.2 Decision-Making Criteria 122
6.3 Tools, Scans and Instruments 123
 6.3.1 The Transformation Meter 124
 6.3.2 Programmatic Quick Scan 127
 6.3.3 Architectural Value 127
 6.3.4 The Architects’ Method 128
 6.3.5 The ABT Method: An Instrument Developed in Practice 128
6.4 Decisions-Based on Financial Arguments 129
6.5 Durability and Sustainability 131
6.6 Conclusion 132
References 133

Chapter 7 Examples of Successful Adaptive Reuse 135
7.1 Introduction 135
7.2 Dutch Conversion Projects (Office to Residential) 136
 7.2.1 ‘Stadhouder’ in Alphen aan den Rijn 137
 7.2.2 ‘Lodewijk Staete’ in Appingedam 137
 7.2.3 ‘Enka’ in Arnhem 138
 7.2.4 ‘Schuttersveld’ in Delft 139
 7.2.5 ‘Westplantsoen’ in Delft 139
 7.2.6 ‘Wilhelminastaete’ in Diemen 140
 7.2.7 ‘Granida’ in Eindhoven 141
 7.2.8 ‘Residentie de Deel’ in Emmeloord 141
 7.2.9 ‘Twentec’ in Enschede 142
 7.2.10 ‘Eendrachtskade’ in Groningen 143
 7.2.11 ‘Billiton’ in Den Haag 143
Chapter 8 Preserving Cultural and Heritage Value

8.1 Introduction
8.2 Historic Heritage
8.3 The Value of Heritage
8.3.1 The Value of Place
8.3.2 Cultural Capital
8.3.3 Benefits of Heritage Conservation
8.4 Assessing Economic Value of Heritage
8.4.1 The Market Value of Heritage
8.4.2 Direct Market Value
8.4.3 Indirect Value
8.4.4 Indirect Value of Heritage Tourism
8.4.5 Heritage as a Source of Skills and Competencies
8.4.6 Private/Public Value
8.5 Heritage Value and Adaptation
8.6 Architectonic and Aesthetic Value
8.7 Experience Value
8.7.1 Familiar Ugliness
8.7.2 Cultural-Historical Value
8.7.3 Symbolic Value
8.7.4 Traumatic Experience Value
8.7.5 Value in Use
8.7.6 Intrinsic Value (Highest and Best Use)
8.7.7 Heritage as a Source of Social Value
8.8 Conclusion

References
Part III Adaptation Decision-Making and Optimisation 183
Craig Langston

Chapter 9 Identifying Adaptive Reuse Potential 187
9.1 Introduction 187
9.2 ARP Model 188
9.3 Obsolescence Rates 191
 9.3.1 Physical Obsolescence 191
 9.3.2 Economic Obsolescence 192
 9.3.3 Functional Obsolescence 193
 9.3.4 Technological Obsolescence 194
 9.3.5 Social Obsolescence 194
 9.3.6 Legal Obsolescence 195
 9.3.7 Political Obsolescence 196
9.4 Case Study: GPO Building, Melbourne 197
9.5 Discussion 201
9.6 Conclusion 205
Note 206
References 206

Chapter 10 MCDA and Assessing Sustainability 208
10.1 Introduction 208
10.2 Background 209
10.3 A New Approach 211
 10.3.1 Conceptual Framework 211
 10.3.2 Value for Money 213
 10.3.3 Quality of Life 214
 10.3.4 Sustainability Risk 215
10.4 Life-Cost Planning 215
10.5 Case Study: Bond University Mirvac School of Sustainable Development (MSSD) Building, Gold Coast 217
 10.5.1 Method 217
 10.5.2 Return on Investment 218
 10.5.3 Energy Usage 220
 10.5.4 Functional Performance 220
 10.5.5 Loss of Habitat 221
 10.5.6 Sustainability Index 221
10.6 Discussion 223
10.7 Conclusion 227
Notes 227
References 228
Chapter 11 Modelling Building Performance Using *iconCUR*

11.1 Introduction 230
11.2 Visual MCDA 231
11.3 *iconCUR* Model 232
11.4 Case Study: 88 George Street, Sydney
 11.4.1 Overview 235
 11.4.2 Before Intervention 237
 11.4.3 After Intervention 239
11.5 Discussion 241
11.6 Conclusion 247
Notes 247
References 248

Chapter 12 Designing for Future Adaptive Reuse

12.1 Introduction 250
12.2 Rationale 251
12.3 *AdaptSTAR* Framework 254
12.4 International Case Studies 259
 12.4.1 1881 Heritage, Hong Kong SAR (PRC) 261
 12.4.2 Peranakan Museum, City Hall (Singapore) 261
 12.4.3 Corso Karlín, Prague (Czech Republic) 262
 12.4.4 Arsenal de Metz, Metz (France) 262
 12.4.5 The Candy Factory Lofts, Toronto (Canada) 263
 12.4.6 Punta Della Dogana Contemporary Art Centre, Venice (Italy) 263
 12.4.7 Andel’s Hotel, Lódz (Poland) 264
 12.4.8 Sugar Warehouse Loft, Amsterdam (The Netherlands) 264
 12.4.9 The Powerhouse, Long Island City (USA) 265
 12.4.10 John Knox Church, Melbourne (Australia) 265
12.5 Discussion 266
12.6 Conclusion 268
References 268

Index 273