Index

ABT Method, 128–9
accessibility, 105
acid rain pollution, 29
across use adaptation, 4
adaptation and different land uses, 13–14
adaptation and value, 30–31, 32
adaptation, costs, 31–2
adaptation, definition, 3–4
adaptation, significance of, 4–10
adaptation, terminology, 3–4
adaptive reuse, 95, 99, 187, 253
adaptive reuse projects, 109–17
AdaptSTAR case study, 261–5
Andelo Hotel Lodz, Poland, 264
Arsenal de Metz, Metz France, 262
The Candy Factory Lofts, Toronto Canada, 263
Carso Karkin Prague Czech Republic, 262
John Knox Church Melbourne Australia, 265
Peranakan Musuem City Hall Singapore, 261–2
The Powerhouse, Long Island City, USA, 265
Punita Della Dogana, Contemporary Art Centre Venice, 263–4
Sugar Warehouse Loft, Amsterdam Netherlands, 264
AdaptSTAR case study 1881 Heritage Hong Kong SAR (PRC), 261
AdaptSTAR framework, 254–9
AdaptSTAR model, 259–68
aesthetics, 85
affordable housing, 26
Agenda 21 and Sustainable Construction, 209
agricultural zone, 14
alterations adaptations, 55–6
amenity, 31
architects, 11
architectural and aesthetic value, 167, 170
architectural value, 127–8
ARP Case Study GPO Building Melbourne, 197–201
ARP definition, 187
ARP Model, 188–91, 202–5
asbestos, 23
assessing adaptation potential, 42
assessing adaptation using PAAM, 42–58
assessing economic value of heritage, 163–6
assessment of built environment sustainable development, 209–10
attachment to other buildings, 88
Australian Greenhouse Office (AGO), 5, 27
Australian Heritage Council, 161
barriers for adaptation, 18, 25, 26
benefit cost ratio, 208
BEPAC, 209
biophysical sustainability, 5
BREEAM, 27–8, 61, 209
Bristol Maritime Quarter, 25
Bruntland Commission, 5, 131
building adaptation attributes, 23, 46
building adaptation attributes, legal, 37–8
building adaptation attributes, location and land use, 35–7, 105, 108, 117, 158
building adaptation attributes, physical, 34–6, 104
building adaptation theory and sustainability, 21–2
Building age, 83–4
building classification, 38
Building Code of Australia, 28
building codes, 23
building condition, 33
building condition theory, 18–20
building cost, 131
building height, 34
building life cycle, 18–20, 67, 75, 79, 82, 84, 90
building lifespan and obsolescence, 100–104, 132
building location, 84–5, 108–9
building management systems (BMS), 61, 64, 66, 70, 73, 80
building obsolescence, 6, 70, 83, 90
building obsolescence and reuse, 95–120
building performance evaluation, 20–21
building performance theory, 20–21
building regulation, 38
building related illness (BRI), 26
building services, 61, 82
1200 Buildings Programme, 59, 60, 82, 84, 86, 87, 89
building surveyors, 11
Burra Charter, 160
Cardiff Bay, 25
car parking, 29
city centre living, 95
commercial zone, 13
community views, 22
comparative analysis of sustainable adaptation, 82–9
conservation, 162
context for adaptation, 59–60
contingent valuation method, 165
contractors, 11
conversion, 4, 99
conversion, office to residential, 24
conversion opportunities, 150–152
conversion research worldwide, 97–100
conversion risks, 147–50
convertibility, 23
cost benefit analysis (CBA), 180, 209
cost planá, 216
cost planning, 216á
cultural capital, 161
cultural values, 22, 161
cyclical process of building, 100
decision-making criteria, 122–3
decision making factors, 22, 63, 68, 90
decision making factors, economic, 30–33
decision making factors, environmental, 27–30
decision making factors, social, 22–6
decision making in building adaptation, 10–12, 22, 224
decision making PAAM, 43
decision options and levels of building adaptation, 11–13
decisions-based on financial arguments, 129–31
defining adaptation, 1–17
Delphi survey, 104
depreciation, 103
designing for future adaptive reuse, 260–272
developer profit, 22
developers, 10, 11
drivers and barriers for adaptation, 18
drivers for adaptation, 18, 96
durability and sustainability, 130–131
Dutch conversion projects (Office to Residential), 136–47
Billiton in den Haag, 143
Churchill Towers in Rotterdam, 145
Eendrakhtskade in Groningen, 143
Enka in Arnhem, 138–9
Gramina in Eindhoven, 141
Hof der Haag in den Haag, 144
LodewijkStaete in Appingedam, 137–8
Puntergale in Rotterdam, 145
Residentie de Deel, Emmeloord, 141–2
Schuttersveld in Delft, 139
Stadhouder in Alphen aan den Rijn, 137
Twente, Enschede, 142–3
Westerlaan Tower in Rotterdam, 145
Westplantsoen in Delft, 139
Wilhelminastaete in Diemen, 140
Dutch Cultural Heritage Agency, 161
eco-development, 5
economic attributes, 23
economic decay, 96
economic lifespan, 101–2
economic sustainability, 82, 83
elasticity, 36
electrical engineers, 11
embodied carbon, 18, 22
embodied energy, 18, 22, 27
employment opportunity, 26
cost consumption, 60, 62, 66, 69, 78
Energy Performance Certificates (EPCs), 28
energy usage, 220
English Heritage, 161
ENVEST, 209
environmental sustainability, 82, 83, 90
environmental upgrade agreements (EUAs), 32
examples of successful adaptive reuse, 135–58
expenditure on adaptation, 6
experience value, 170
exploitation of natural resources, 5

facilities manager, 11
Façade, 108, 158
fire codes, 23
fire engineers, 11
flexibility, 36
floor area, 86
floor layout, building length and depth, 107–8, 153
floor size, 34
floor strength, 35
floor-to-floor height, 35
functional lifespan, 101
functional performance, 220
fuzzy set theory, 210
global financial crisis, 9, 104
Government incentives, 22
Green Building Council of Australia, 28
Green Building Fund, 64, 75, 76, 82, 83
Greenhouse gas emissions (GHG), 27–9
green roof, 61, 64
Green Star Rating tool, 27–8, 53, 220, 236

health and safety issues, 23
hedonic pricing method, 165
heritage as a source of skills and competencies, 165
heritage as a source of social value, 176–80
heritage buildings, 24, 64, 66, 86, 87
heritage value and adaptation, 166
highest and best use, 8, 174–6
historic heritage, 159–60
historic listing, 24, 53, 55, 86–7
Holyman House Case Study PAAM, 54–6
hostile factors, 26
HVAC, 62, 63, 66, 69, 71, 73–75, 79, 81
iconCUR Case Study Sydney Australia, 235–47
iconCUR Model, 232–5

identifying Adaptive Reuse Potential, 187–209
indirect value of heritage tourism, 165
indoor environmental quality (IEQ), 23, 215
industrial zone, 14
INSURED, 209
internal air quality, 23
internal environmental quality, 23
intrinsic value, 171
investment return and risk, 104
investors, 10, 11

land use, 13–14, 85–6
Leadership in Energy and Environmental Design (LEED), 27, 209, 236
lease durations, 19
lease terms, 19
legal attributes, 23
legionnaire’s disease, 26
levels of adaptation, 11–12, 45, 46
life cost planning, 215–17
life cycle assessment (LCA), 209
location and land use attributes, 23
location of vertical services, 85
London Docklands, 25
loss of habitat, 221–2

major alterations, 13, 46
mandatory disclosure legislation, 28, 63, 90
marketeers, 10, 11
MCDA and Assessing Sustainability, 208–29
MCDA case study : Bond University Australia, 217
mechanical engineers, 11
minor alterations, 44, 46, 48
modelling building performance using iconCUR, 230–249
modernisation, 4
multiple criteria decision analysis (MCDA), 208, 232

NABERS energy, 27–8, 45, 47, 48, 53, 55
NABERS water, 28
net present value (NPV), 99
noise pollution, 26
number of storeys, 87

obsolescence and depreciation, 202
obsolescence and vacancy, 102–4
obsolescence and value, 202
obsolescence definition, 201
obsolescence economic, 192–3
obsolescence factors, 103
obsolescence functional, 193
obsolescence legal, 195–6
obsolescence physical, 191–2
obsolescence political, 196–7
obsolescence rates, 191–7
obsolescence social, 194–5
obsolescence technological, 194
occupants/users, 10, 11
occupational density, 31
operating costs, 33
operational carbon, 22
options for adaptation, 12
owner-occupied stock, 32
owners, 83
ozone depletion, 29

PAAM case study, 54–6
park / recreation zone, 14
photovoltaic (PV), 61, 69, 70
physical attributes, 23
The physical characteristics of structurally vacant office buildings, 106–7
planning density policy, 31
plot ratio, 30
policy makers, 11
population growth, 9
post-adaptation, 10
post occupancy evaluation (POE), 20, 104
preliminary Assessment, 42–7
Preliminary Assessment Adaptation Model (PAAM), 42, 48–53
preservation of natural resources, 5
prevention-cost method, 165
principal component analysis (PCA), 47–8
Producers, 11
programmatic Quick Scan, 127
Property Council of Australia, 33, 45, 47, 50, 51, 53, 55, 57, 87–8
property index, 19
property investment, 103

quality and obsolescence: user-based property assessment, 104–5
quality of life ratio, 214
quantity surveyors, 11
rebuild, 13
recovery costs, 165
refurbishment, 4, 11, 251
regulators, 10, 11, 22
rehabilitation, 4
re-lifing, 4
remodelling, 4
renovation, 4
residential zone, 14
restoration, 4
retrofitting, 4, 11
return on investment, 218, 220, 225
reuse versus demolition, 121–34
services core, 34
sick building syndrome (SBS), 26, 28
significance of building adaptation, 4–10
site access, 88–9
site contamination, 22
social cost–benefit analysis, 108
social decay, 96
social sustainability, 61, 64, 66, 82, 83, 89
stairs and elevators, 108, 154
stakeholders, 83, 239
stigma, 23
street frontage, 86
strong sustainability, 210
structural engineers, 11
structural vacancy, 97, 102, 104, 106, 118
structure and floors, 107, 152
sustainability definition, 5
sustainability index, 221–3
sustainability risk, 215
sustainable Melbourne Fund, 31–2
sustainable retrofit case studies Melbourne, 64–82
Alto Hotel Melbourne, 64–5
Batman Street Melbourne, 77–9
Bourke Street Melbourne, 79–81
Capel Street Melbourne, 75–7
406 Collins Street Melbourne, 73–5
500 Collins Street Melbourne, 70–73
530 Collins Street Melbourne, 81–2
Queen Street Melbourne, 62–4
Ross House Melbourne, 66–8
Spencer Street Melbourne, 68–70
symbolic value, 171

technical lifespan, 100–101
tenant goodwill, 31
tenants, 38
terminology, 6
T5 Lighting, 61, 64, 69, 71, 73, 79
tools and instruments, 123–4
traffic noise, 26
The transformation meter, 124–7
transport issues, 29
Index

traumatic experience value, 173
travel cost method, 165
triple bottom line (TBL) theory, 30, 212, 223
typical sustainability measures used in commercial adaptation, 60–62
typology, 152

UK Building Regulations, 28
UNESCO, 160
urban intensification, 95
urban planners, 13
urban regeneration, 24, 25
user-based property assessment, 104
US Heritage Foundation, 161

vacancy rates, 10, 32, 96, 102
value, cultural, 161, 170
value, direct, 164
value for money ratio, 213–14
value, indirect, 164
value in use, 170
value, market value of heritage, 163
value of place, 160–161
value, public private, 166
vertical and lateral extension, 36
Victorian Heritage Act 1995, 24
Victorian Heritage Register, 24
visual MCDA, 231–2
volatile organic compounds, 26

water consumption, reductions, 28
weak sustainability, 210
within-use adaptation, 4
World Commission on Economic Development (WCED), 5
zoning, 13