Contents

About the Author xi
Series Preface xiii
Preface to First Edition xv
Preface to Second Edition xix

1 Applications of Advanced Composites in Aircraft Structures 1
 References 7

2 Cost of Composites: a Qualitative Discussion 9
 2.1 Recurring Cost 10
 2.2 Nonrecurring Cost 18
 2.3 Technology Selection 20
 2.4 Summary and Conclusions 27
 Exercises 30
 References 31

3 Review of Classical Laminated Plate Theory 33
 3.1 Composite Materials: Definitions, Symbols and Terminology 33
 3.2 Constitutive Equations in Three Dimensions 35
 3.2.1 Tensor Transformations 38
 3.3 Constitutive Equations in Two Dimensions: Plane Stress 40
 Exercises 52
 References 53

4 Review of Laminate Strength and Failure Criteria 55
 4.1 Maximum Stress Failure Theory 57
 4.2 Maximum Strain Failure Theory 58
 4.3 Tsai–Hill Failure Theory 58
 4.4 Tsai–Wu Failure Theory 59
 4.5 Puck Failure Theory 59
 4.6 Other Failure Theories 61
 References 62
Contents

5 Composite Structural Components and Mathematical Formulation 65
5.1 Overview of Composite Airframe 65
5.1.1 The Structural Design Process: The Analyst’s Perspective 66
5.1.2 Basic Design Concept and Process/Material Considerations for Aircraft Parts 71
5.1.3 Sources of Uncertainty: Applied Loads, Usage and Material Scatter 74
5.1.3.1 Knowledge of Applied Loads 75
5.1.3.2 Variability in Usage 75
5.1.3.3 Material Scatter 75
5.1.4 Environmental Effects 77
5.1.5 Effect of Damage 78
5.1.6 Design Values and Allowables 80
5.1.7 Additional Considerations of the Design Process 83
5.2 Governing Equations 84
5.2.1 Equilibrium Equations 84
5.2.2 Stress–Strain Equations 86
5.2.3 Strain–Displacement Equations 87
5.2.4 von Karman Anisotropic Plate Equations for Large Deflections 88
5.3 Reductions of Governing Equations: Applications to Specific Problems 94
5.3.1 Composite Plate under Localized In-Plane Load 94
5.3.2 Composite Plate under Out-of-Plane Point Load 105
5.4 Energy Methods 108
5.4.1 Energy Expressions for Composite Plates 109
5.4.1.1 Internal Strain Energy U 110
5.4.1.2 External Work W 113
Exercises 115
References 122

6 Buckling of Composite Plates 125
6.1 Buckling of Rectangular Composite Plate under Biaxial Loading 125
6.2 Buckling of Rectangular Composite Plate under Uniaxial Compression 129
6.2.1 Uniaxial Compression, Three Sides Simply Supported, One Side Free 131
6.3 Buckling of Rectangular Composite Plate under Shear 133
6.4 Buckling of Long Rectangular Composite Plates under Shear 136
6.5 Buckling of Rectangular Composite Plates under Combined Loads 138
6.6 Design Equations for Different Boundary Conditions and Load Combinations 145
Exercises 145
References 152

7 Post-Buckling 153
7.1 Post-Buckling Analysis of Composite Panels under Compression 157
7.1.1 Application: Post-Buckled Panel under Compression 165
7.2 Post-Buckling Analysis of Composite Plates under Shear

7.2.1 Post-Buckling of Stiffened Composite Panels under Shear

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application: Post-Buckled Stiffened Fuselage Skin under Shear</td>
<td>177</td>
</tr>
</tbody>
</table>

7.2.2 Post-Buckling of Stiffened Composite Panels under Combined Uniaxial and Shear Loading

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>181</td>
</tr>
<tr>
<td>References</td>
<td>187</td>
</tr>
</tbody>
</table>

8 Design and Analysis of Composite Beams

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Cross-Section Definition Based on Design Guidelines</td>
<td>189</td>
</tr>
<tr>
<td>8.2 Cross-Sectional Properties</td>
<td>193</td>
</tr>
<tr>
<td>8.3 Column Buckling</td>
<td>199</td>
</tr>
<tr>
<td>8.4 Beam on an Elastic Foundation under Compression</td>
<td>200</td>
</tr>
<tr>
<td>8.5 Crippling</td>
<td>205</td>
</tr>
<tr>
<td>8.5.1 One-Edge-Free (OEF) Crippling</td>
<td>207</td>
</tr>
<tr>
<td>8.5.2 No-Edge-Free (NEF) Crippling</td>
<td>211</td>
</tr>
<tr>
<td>8.5.3 Crippling under Bending Loads</td>
<td>214</td>
</tr>
<tr>
<td>8.5.3.1 Application: Stiffener Design under Bending Loads</td>
<td>215</td>
</tr>
<tr>
<td>8.5.4 Crippling of Closed-Section Beams</td>
<td>219</td>
</tr>
<tr>
<td>8.6 Importance of Radius Regions at Flange Intersections</td>
<td>219</td>
</tr>
<tr>
<td>8.7 Inter-Rivet Buckling of Stiffener Flanges</td>
<td>222</td>
</tr>
<tr>
<td>8.8 Application: Analysis of Stiffeners in a Stiffened Panel under Compression</td>
<td>227</td>
</tr>
<tr>
<td>Exercises</td>
<td>230</td>
</tr>
<tr>
<td>References</td>
<td>235</td>
</tr>
</tbody>
</table>

9 Skin–Stiffened Structure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Smearing of Stiffness Properties (Equivalent Stiffness)</td>
<td>237</td>
</tr>
<tr>
<td>9.1.1 Equivalent Membrane Stiffnesses</td>
<td>237</td>
</tr>
<tr>
<td>9.1.2 Equivalent Bending Stiffnesses</td>
<td>239</td>
</tr>
<tr>
<td>9.2 Failure Modes of a Stiffened Panel</td>
<td>241</td>
</tr>
<tr>
<td>9.2.1 Local Buckling (between Stiffeners) versus Overall Panel Buckling (the Panel Breaker Condition)</td>
<td>242</td>
</tr>
<tr>
<td>9.2.1.1 Global Buckling = Local Buckling (Compression Loading)</td>
<td>243</td>
</tr>
<tr>
<td>9.2.1.2 Stiffener Buckling = PB × Buckling of Skin between Stiffeners (Compression Loading)</td>
<td>246</td>
</tr>
<tr>
<td>9.2.1.3 Example</td>
<td>249</td>
</tr>
<tr>
<td>9.2.2 Skin–Stiffener Separation</td>
<td>250</td>
</tr>
<tr>
<td>9.3 Additional Considerations for Stiffened Panels</td>
<td>265</td>
</tr>
<tr>
<td>9.3.1 ‘Pinching’ of Skin</td>
<td>265</td>
</tr>
<tr>
<td>9.3.2 Co-curing versus Bonding versus Fastening</td>
<td>266</td>
</tr>
<tr>
<td>Exercises</td>
<td>267</td>
</tr>
<tr>
<td>References</td>
<td>272</td>
</tr>
</tbody>
</table>
Contents

10 Sandwich Structure
10.1 Sandwich Bending Stiffnesses 276
10.2 Buckling of Sandwich Structure 278
 10.2.1 Buckling of Sandwich under Compression 278
 10.2.2 Buckling of Sandwich under Shear 280
 10.2.3 Buckling of Sandwich under Combined Loading 281
10.3 Sandwich Wrinkling 281
 10.3.1 Sandwich Wrinkling under Compression 282
 10.3.2 Sandwich Wrinkling under Shear 293
 10.3.3 Sandwich Wrinkling under Combined Loads 293
10.4 Sandwich Crimping 295
 10.4.1 Sandwich Crimping under Compression 295
 10.4.2 Sandwich Crimping under Shear 295
10.5 Sandwich Intracellular Buckling (Dimpling) under Compression 296
10.6 Attaching Sandwich Structures 296
 10.6.1 Core Ramp-Down Regions 297
 10.6.2 Alternatives to Core Ramp-Down 299
Exercises 301
References 306

11 Composite Fittings
11.1 Challenges in Creating Cost- and Weight-Efficient Composite Fittings 309
11.2 Basic Fittings 311
 11.2.1 Clips 311
 11.2.1.1 Tension Clips 311
 11.2.1.2 Shear Clips 322
 11.2.2 Lugs 328
 11.2.2.1 Lug under Axial Loads 328
 11.2.2.2 Lug under Transverse Loads 333
 11.2.2.3 Lug under Oblique (Combined) Loads 337
11.3 Other Fittings 339
 11.3.1 Bathtub Fittings 339
 11.3.2 Root Fittings 340
Exercises 340
References 341

12 Good Design Practices and Design ‘Rules of Thumb’
12.1 Layup/Stacking Sequence-related 343
12.2 Loading and Performance-related 344
12.3 Guidelines Related to Environmental Sensitivity and Manufacturing Constraints 345
12.4 Configuration and Layout-related 347
 Exercises 348
References 349
Contents

13 Application – Design of a Composite Panel 351
13.1 Monolithic Laminate 351
13.2 Stiffened Panel Design 362
13.3 Sandwich Design 373
13.4 Cost Considerations 381
13.5 Comparison and Discussion 382
References 385

Index 387