INDEX

ABS, see Acrylonitrile-butadiene-styrene polymer
Absorbed light measurement, 223–224
Accelerated vulcanization, 740–742
Acetal resin, 569, 748
Acetylene polymerization, 332, 451, 631–632, 684
Achirotopic, 622
Acidity function, 49
Acrylic fiber, 308
Acrylon, 308
Acrolein polymerization, 450
Acrylamide polymerization, 450–451
Acrylic polymer, 307–309
Acrylite, 308
Acrylonitrile-butadiene-styrene polymer, 530
Actinometry, 223–224
Activated monomer:
 acrylamide, 450–451
 N-carboxy-α-amino acid anhydride, 578–580
 cyclic ether, 558–559
 enzymatic polymerization, 182
 kinetics, 547–548
 lactam, 573–577
Activated polymerization, 576
Activation energy:
 anionic chain polymerization, 429–433
 cationic chain polymerization, 408–410
 composite, 273–275
 emulsion polymerization, 365
 radical chain polymerization, 271–274
 ring-opening polymerization, 565–566
 step polymerization, 88
 stereoselective polymerization, 637–639, 664, 680
Activation volume, 293
Activator, 740–742
Activity of initiator, 644
Acyclic diene metathesis polymerization, 592
Addition polymer, 1, 4–6
Addition mode:
 head-to-head, 144, 203–204
 head-to-tail, 144, 203–204, 235
 tail-to-tail, 144
 1,2- vs 2,1-, 646
Adjacent reentry model, 25–27
ADMET, see Acyclic diene metathesis polymerization
Aerogel, 171
Affinity chromatography, 770
Aflon, 310
Agostic interaction, 649
AIBN, see Azonitrile

Air-drying of alkyd, 120, 737–738
Alathon, 302
Aldehyde polymerization, see Carbonyl polymerization
Aldol group transfer polymerization, 422
Alfin initiator, 684
Alkathene, 302
Alkoxamine, 327–328
Alkyd polymer, 118–120, 737–738
Alkylation, 387
Alkyllithium initiator, 433–435
Alkyne polymerization, ionic, 631–632, 684
Allene polymerization, 532
Allenic polymerization, 263–264
Alternating copolymer, 136–137, 465–466. See also Chain copolymerization; Copolymers; Step copolymerization
Alternating intra-intermolecular polymerization, 525–527
Alternating tendency in copolymerization, 473–474. See also Chain copolymerization
Aluminosilicate glass, 169–170
Aluminoxane, 676–677
Amide mechanism, 528–530
Anionic coordination polymerization, see Stereoselective polymerization
Anionic ring-opening polymerization: N-carboxy-α-amino acid anhydride, 578–581
Amorphous polymer, see Crystalline-amorphous features
Amylose, 634–635
Anchimeric assistance, 735
Angle strain, 70–72
Anionic chain polymerization:
 aldol group transfer polymerization, 422
 acrylic acid, 449
 acrylamide, 450–451
 alkyne, 451
 allene, 449
 activation parameters, 429–433
 association phenomena, 433–435
 back-biting attack, 418
 block copolymer, 436–439, 441–443
 carbonyl monomers, 445–447
 commercial applications, 437
 comparison with radical polymerization, 199–202, 443–444
 1,3-dienes, 691–694
 effect of counterion, 426–433
 effect of solvent, 423–428
 electron transfer, 414–416
 free ions, 373
 group transfer polymerization, 420–422
 hydride elimination, 417
 initiation, 412–416
 intramolecular solvation, 435–436
 ion pairs, 373, 429–433
 isocyanate, 451
 isocyanide, 451
 ketone, 449–450
 ligated, 419
 living, 422–436
 kinetics, 422–423
 molecular weight, 428–429
 molecular weight distribution, 428–429
 nitriles, 451
 nontermination, 416
 rate constants, 424–433
 side reactions of polar monomers, 418–420
 spontaneous termination, 417–418
 temperature effect, 429–433
 termination, 416–420
 See also Chain initiation; Chain propagation;
 Chain termination; Chain transfer; Chain copolymerization; Stereoselective polymerization
Anion-radical, 414
Anisotropic, 157
Anisotropic metallogene, 666–668
Antepenultimate unit, 703
Anti addition, 654–655
Apparent rate constant, 394
Ardel, 141
Aramid, 99–101
INDEX 791

Arboral polymer, 177
Aregic, 203
Aromatic substitution:
 chain transfer, 387
 polystyrene, 750
AROP, see Anionic ring-opening polymerization
Arrhenius activation energy, 271. See also
 Activation energy
ATRP, see Atom transfer radical polymerization
Arylon, 141
Assisted polymerization, 576
Association phenomena, 433–435
Associative GTP, 733–734
A-stage, 117
Asymmetric center, 622
Asymmetric enantiomer-differentiating polymerization, 705–706
Asymmetric induction, 707
Asymmetric polymerization, 433–435
Asymmetric synthesis, 766
Atactic, 622
Atactic polymer, 622–624
Atom transfer radical polymerization, 316–325
Autoacceleration, 282–289
Autoinhibition, 263–264
Autoretardation, 733–734
Average functionality, 105–108
Azeotropic copolymerization, 474–475. See also
 Chain copolymerization
Aziridine polymerization, 586–587
Azomethine polymer, 167
Azonitrile, 211–212, 229–232, 235, 244–245
Backbiting attack:
 ionic chain polymerization, 387
 radical polymerization, 252–254
 ring-opening polymerization, 557–558
 step polymerization, 73–74
Backbiting transfer, 252–255
Backbone polymer, 752
Back-flip, 648
Back-skip, 648
Baekeland, 126
Bakelite, 126
Balata rubber, 634
Bead polymerization, 298
Bent metallocene, 668
Bernoullian model:
 copolymerization, 472–473
 stereochemistry, 708–709
Bifunctional monomer, 39–40, 44
Bifunctional polymer catalyst, 770
Biopol, 181
Bismaleimide polymer, 154–155
Bisnadimide, 155
Bisphenol A, 96, 128
Bite angle, 668
Blend, see Polymer blend
Block copolymer:
 ionic chain polymerization, 436–443
 metallocene polymerization, 702
 miscellaneous methods of synthesis, 759–760
 properties, 142–143, 475
 radical chain polymerization, 314, 322–324, 329
 ring-opening polymerization, 604–605
 step polymerization, 136–137, 139–140, 142–143
 See also Branched polymer; Chain copolymerization; Copolymer; Living polymerization; Polymer reaction
N-Blocking, 772
Blowing agent, 130–132
BMI polymer, see Bismaleimide polymer
Boc group, 773
Bootstrap effect, 489
Borosilicate glass, 169–170
BR, see Butyl rubber
Branched polymer, 17–18
 brush, 753
 comb, 753
 dendritic, 174–180
 dendrimer, 177–180
 gradient, 327, 437–438, 480
 hyperbranched, 175–177, 180
 star, 324–325, 327–328, 441–443
Branched polyethylene, see Low density polyethylene
Branching:
 cationic chain polymerization, 387
 graft polymerization, 137, 441–442, 466
 metallocene polymerization, 682
 post-metallocene polymerization, 687–688
 radical chain polymerization, 250–255
 ring-opening polymerization, 577
 step polymerization, 101–103
Branching coefficient, 108–111
Branching density, 252
Branch unit, 108
Brush polymer, 753
B-stage polymer, 117
Buildup period, 658–659
Bulk polymerization, 89, 297
Buna rubber, 529
Butyl rubber, 410–411, 738
INDEX

Cage effect, 228–232
Calibre, 97
Canal complex, 299
Carbene, 589–590
Carbenium ion, 375
Carbocation, 375
Carbocation polymerization, see Cationic chain polymerization
Carbon fiber, 751–752
Carbonion, 375
Carbonium ion, 375
Carbonyl polymerization:
 ceiling temperature, 444–445
copolymerization, 528–529
end-capping, 448–449
ionic chain reaction, 444–449
radical chain reaction, 447–448
stereochemistry, 626–627
N-Carboxy-γ-amino acid anhydride polymerization, 578–581
Carboxylated SBR, 529
Carbowax, 568
Cariflex, 437
Carina, 306
Carinex, 304
Carothers, 2–9, 101
Carothers equation, 105–111. See also Crosslinking
Carrier, 760–765
Cascade polymer, 177
Casting, 307
Catalyst, see Initiator
Catalyst site control, see Enantiomorphic site control
Catalytic chain transfer, 254–255
Catena, 595, 597
Cationic chain polymerization:
 acrolein, 449
 activation energy, 408–410
 applications, 410–412
 block copolymer, 436–439
carbonyl monomer, 447
chain transfer, 384–388, 398–399
commercial applications, 410–411
comparison with radical reaction, 199–202, 372–374, 397, 443–444
counterion effects, 403
1,3-dienes, 694–695
effect of temperature, 408–410
free ions, 373–374, 394–398
inhibition, 388
initiation, 374–382
ion pairs, 373–374, 394–398
isomerization, 382–384
 kinetics, 388–392, 405
 living, see Living cationic chain polymerization
 molecular weight, 389, 405
 molecular weight distribution, 391–392, 406
 photoinitiation, 379–380
 propagation, 382–384
 pseudocationic polymerization, 399–400
 rate constants, 392–399, 405–406
 retardation, 388
 solvent effects, 399–403
 steady-state, 391
termination, 384–388
See also Chain initiation; Chain propagation;
 Chain termination; Chain transfer;
 Stereoselective polymerization
Cationic coordination polymerization, see Stereoselective polymerization
Cationic ring-opening polymerization, see Stereoselective polymerization
copolymerization, 507–510
cyclic acetal, 559–562
cyclic amide (lactam), 570–573
cyclic amine (imine), 586–587
cyclic ester (lactone), 583–584
cyclic ether
 activated monomer, 558–559
 back-biting, 557–558
 chain transfer, 557
 commercial applications, 568–569
degree of polymerization, 565
energetics, 565–568
equilibrium polymerization, 562–565
initiation, 555–556
ion pairs, 564–565
kinetics, 562–564
propagation, 554–555
rate constants, 564–565
termination, 556–559
cyclic sulfide, 588
cyclosiloxane, 596–597
general characteristics, 545–548
lactam, 570–573
lactone, 583–584
nitrogen heterocyclics, 587–588
sulfur heterocyclics, 588–589
Cationogen, 375
Cation-radical, 381
Catalyst site control, see Enantiomorphic site control
Cauliflower polymer, 177
Cavitation, 227–228
CCT, see Catalytic chain transfer
Ceiling temperature, 279–281, 444–445
Celazole, 161
Celcon, 448, 569
Cellofoam, 304
Cellophane, 746. See also Regenerated cellulose

Cellulose:
crosslinking, 745
dissolution, 745–746
esterification, 747
eretherification, 747–748
sterechemistry, 634–635
structure, 2, 4

Ceramic:
new, 170
preceramic polymer, 171, 174
sol-gel technique, 171
traditional, 170

Chain breaking reaction, 238
Chain copolymerization:
anionic reaction, 510–512
applications, 465, 529–533
bootstrap effect, 489
carbonyl monomer, 528–529
cationic reaction, 507–510
complex participation, 487–500
coordination initiator, 684–685
crosslinking, 521–523
diene:
crosslinking, 521–523
cyclopolymerization, 524–527
interpenetrating network, 527–528
effect of conversion, 475–480
microstructure of copolymer, 481–485
monomer complex participation, 499, 518–521
monomer partitioning, 488
monomer reactivity ratio, 466–469, 480–481.

See also Monomer reactivity ratio
multicomponent copolymerization, 485–487
miscellaneous monomers, 528–529
monomer and radical reactivities, 490–496
patterns of reactivity, 503–505
pressure effect, 490
Q-e scheme, 500–502
rate, 505–506
radical reaction, 487–506
ring-opening reaction, 600–606
solvent effect, 487–489, 508–512
sequence-length distribution, 481–484
step polymerization, 135–144
temperature effect, 489–490
types of behavior
alternating, 473–475
azeotropic, 474–475

Bernoullian, 472
block, 475
complex participation, 499
consecutive homopolymerization, 475
depropagation, 515–518
first-order Markov model, 467–470
graft, 754
ideal, 471–473
penultimate model, 513–515
random, 472
second-order Markov model, 513–515
statistical, 465
stereoblock, 636
terminal model, 466–469
unsaturated polyester, 531–532
See also Copolymerization equation;
Copolymer; Monomer reactivity ratio; Step copolymerization

Chain end control, see Polymer chain end control

Chain extension, 140, 146

Chain initiation:
anionic polymerization
electron-transfer, 414–416
group transfer polymerization, 420–422
nucleophile, 412–414
miscellaneous methods, 416
See also Anionic ring-opening polymerization
cationic polymerization
effect of temperature, 408–410
by ionizing radiation, 381–382
Lewis acid, 375–379
miscellaneous methods, 379–382
by photoinitiation, 379–380
by protonic acid, 374–375
See also Cationic ring-opening polymerization
emulsion polymerization, 363
radical polymerization
activation energy, 273
cage effect, 228–232
definition, 198
effect of autoacceleration, 286
effect of pressure, 294
electroinitiation, 227–228
head and tail additions, 235
initiator efficiency, 228–235
ionizing radiation, 224–226
kinetics, 212
photochemical, 218–224
plasma, 227–228
purely thermal, 226–227
redox, 216–218
Chain initiation
(Continued)
thermal initiated, 209–212
See also Stereoselective polymerization

Chain-length distribution method, 245–250, 360–361

Chain polymerization, 1. See also Anionic chain polymerization; Cationic chain polymerization; Radical chain polymerization; Stereoselective polymerization

Chain propagation:
anionic polymerization, 423–434, 510–512
cationic polymerization, 382–384, 506–510
emulsion polymerization, 364
head-to-head, 144, 203–204
head-to-tail, 144, 203–204, 235
radical polymerization, 202–204, 271, 490–494
See also Ring-opening polymerization; Stereoselective polymerization

Chain reaction polymerization, 6
Chain segment, 108
Chain stopper, 75

Chain termination:
anionic polymerization, 416–420
cationic polymerization, 384–388
emulsion polymerization, 364
radical chain copolymerization, 505–506
radical chain polymerization, 205–206, 236–238, 270, 294
stereoselective polymerization, 659–661
See also Ring-opening polymerization

Chain transfer:
anionic polymerization, 416–417
cationic polymerization, 384–388
defined, 239
emulsion polymerization, 360–361
radical polymerization, 238–255, 270
activation parameters, 270
applications, 249–250
backbiting, 252–254
branching, 250–254
catalytic chain transfer, 254–255
chain transfer agents, 245–250
chain transfer constants, 240–250
degradative transfer, 263–264
effect on molecular weight and rate, 249–250
initiator, 244–245
living, 328–329
monomer, 241–244
polar effect, 248–249
polymer, 250–255
pressure effect, 295
solvent, 238–239
structure and reactivity, 246–249
ring-opening polymerization, 553–554, 556–559, 561–562
stereoselective polymerization, 659–661
Chain transfer agent, 239
Chain transfer constant, 240–250
Chalcogenide glass, 170
Charge transfer complex, 499
Charge-transfer polymerization, 499–500
Chelate initiator, 685
Chiral center, 622
Chiral conformation, 704
Chirotopic, 622
Chitin, 748
Chlorinated polyethylene, 749
Chlorinated poly(vinyl chloride), 749
Chloromethylated polystyrene, 750, 761
Chloroprene, 310
Chlorosulfonated polyethylene, 750
Cis addition, 654–655
s-Cis conformation, 690
Cisoid, 690
Cis-trans isomerism, 621
Cis-polymer, 629–634. See also Stereoisomerism in polymers; Stereoselective polymerization
Classification of polymers, 1–6
Clathrate polymerization, 299
Clay, 170
CLD, see Chain-length distribution method
CLD plot, 246
Closed system, 67–69
Cloud point, 365
CMC, see Critical micelle concentration
Coagulative nucleation, 354
Coal tar resin, 412
Coil, 284
Cointiator, 375, 676–678
Colligative property, 20
Collision frequency factor, 271–275
Comb polymer, 324–325, 327–328, 441–443
Combination, 205–206, 386
Combined weight-fraction, 81–82
Commercial polymer:
chain copolymerization, 465, 529–533
ionic chain polymerization, 410–412, 437
polymer reactions, 737–751, 759
radical chain polymerization, 300–313, 350–351
ring-opening polymerization, 568–569, 581, 591, 595, 597
step polymerization, 92–101
Crosslinking (Continued)
cellulose, 745
epoxy resin, 128–130, 548–554
copolymerization, 521–523
elastomer, 738–742
halogen-containing polymer, 744
ionizing radiation, 742–744
oxygen, 737–738
peroxide, 742–744
phenolic, 738–742
1,4-poly-1,3-diene, 738–742
polyester, 118–120
polyolefin, 742–743
polysiloxane, 132–134, 743
polyurethane, 130–132
sulfur, 739–742
unsaturated polyester, 118–120, 531–532
radical chain copolymerization of diene, 521–523
step polymerization, 103–114
stress-strain properties, 34–35
See also Prepolymer
Crossover point, 475–476
Crossover reaction, 72, 467, 500
Cross-propagation, 467
Crown ether, 435
CRU, see Constitutional repeating unit
Cryptand, 435
Crystalline-amorphous features:
crystalline melting temperature, 29–32
crystallite, 24
determinants, 27–29
extended chain, 26
fibril, 26
folded-chain, 24
fringed-micelle, 24
glass transition temperature, 29–32
lamella, 24
nature, 24
semicrystalline, 24
significance, 30, 34
spherulite, 26
Crystalline melting temperature, 29–32. See also
Crystalline-amorphous features
Crystallite, 24
C-stage polymer, 117
Cumulative copolymer composition, 477–480
Cumulative weight fraction, 81–82
Cuprammonium process, 746
Curing, 133. See also Crosslinking
Cyclic acetal polymerization, 559–562, 565–568
Cyclic amide polymerization, 569–577
Cyclic amine polymerization, 586–588
Cyclic carbonate polymerization, 585–586
Cyclic ester polymerization, 585–586, 599–600
Cyclic ether polymerization, 548–569
Cyclic sulfide polymerization, 588–589
Cyclization:
vs crosslinking, 112, 524–526, 545–546
dienes, 524–527
1,3-dienes, 694–696
vs linear step polymerization, 69–74
diacyl, 751–752
Cycloaddition polymerization, 183–184
Cycloalkane polymerization, 594–595, 682–683
Cycloalkene polymerization, 589–592, 631–632
Cycloalkyne polymerization, 591
Cyclocopolymerization, 524–527
Cyclodextrin complexes, 299
Cyclooligoetherification, 524–527
Cyclosiloxane polymerization, 595–597
Cyclooligomerization, 451
Cyclooligosiloxane, 597–599
Dacron, 94
DADC, see Allyl resin
DADM, see Allyl resin
DAIP, see Allyl resin
DAP, see Allyl resin
Darvic, 306
Daughter polymer, 287
Deactivator, 316
Dead-end polymerization, 234–235
Dead polymer, 206
Deashing, 645
Degenerative transfer, 330
de Gennes dense packing, 176–177
Degradative chain transfer, 238, 263–264
Degree of branching, 176, 252
Degree of polymerization. See also Molecular weight
Delrin, 448
Dendrimer, 177–180
Dendritic polymer, 174–180
Depolymerization, see Depropagation
Depropagation:
copolymerization, 515–518
radical polymerization, 279–281
ring-opening polymerization, 562–563
step polymerization, 65–67
Desorption of radicals, 357–360
Diacetylene, 332
Dialkyne, 332
Diethylene glycol bis(allyl carbonate), see
Allyl resins
Diallyl (iso)phthalate, see Allyl resins
Diastereotopic, 666–667
Dicalite, 308
Diels-Alder dimer, 226–227
Diels-Alder reaction, 155, 183
Diene:
copolymerization
crosslinking, 521–523
cyclopolymerization, 524–527
crosslinking of polymer, 738–742. See also Crosslinking
polymerization, 310–311, 689–695
cyclopolymerization, 524–527
Diels-Alder reaction, 155, 183
Differential scanning calorimetry, 29–32
Diffusion clock method, 393–396
Diffusion-controlled termination:
radical copolymerization, 505–506
radical polymerization, 282–289
Diffusion in coordination polymerization,
658–659, 661–662
α-Diimine chelate initiator, 686–688
Diisotactic polymer, 624–626
Dilatometry, 209
N,N,N,N-Dimethyldiallylammonium chloride, see Allyl resin
Dimethylketene polymerization,
Diol prepolymer, 131
Dispersant, see Surfactant
Dispersion polymerization, 298
Disproportionation, 205–206, 239–240
Dissociative GTP, 421–422
Disyndiotactic polymer, 624–626
Ditacticity, 624
Divergent synthesis, 177–180
DMT process, 93
Dopant, 164
Double-brush polymer, 759
Double-strand polymer, see Ladder polymer
Drying, 120, 737–738
Drying oil, 109
DSC, see Thermal analysis
DT, see Degenerative transfer
Dual-side metallocene, 674
Durel, 141
Dyad, 635
Dyad tacticity, 635–637
Dylene, 304
Dynel, 308
EB, see electron beam technology
Ekonol, 159
Elastic elongation, 34
Elastomer,
crosslinking, 738–742
commercial, 35–36, 142–143, 698–699, 738
properties, 34–35
Electrochemical polymerization, see Electroinitiated polymerization
Electroinitiated polymerization, 165–166,
227–228, 380–381, 414–416
Electrolytic polymerization, see Electroinitiated polymerization
Electron beam technology, 226
Electron spin resonance spectroscopy, 234–235
Electron transfer, 414–416
Electrostatic effect, 733–735
Elongation, 34
Elvax, 530
Emeraldine salt, 165–166
Emulsifier, see Surfactant
Emulsion polymerization:
chain transfer, 361
compartmentalization, 357, 365–366
components, 351–353, 364
emulsifier, 328, 351, 363–364
energetics, 365
initiation, 363
intervals, 356
inverse emulsion system, 367
kinetics, 354–360
living, 368–369
mechanism, 353–356
micelle, 352
microemulsion, 367
miniemulsion, 367
miscellaneous components, 351–352, 364
molecular weight, 360–361
molecular weight distribution, 365–366
monomer droplet, 352–353
number of radicals per particle, 357–358
Ostwald ripening, 367
particle nucleation, 354
particle number, 354–356, 362–363
particle size distribution, 365–366
propagation, 364
radical absorption, 358
radical desorption, 357–359
rate, 354–360
Smith-Ewart behavior, 351, 358
surfactant, 328, 351, 363–364
surfactant-free system, 366–367
termination, 364
utility, 350–351
Enantiomer, 621
INDEX

Enantiomer-differentiating polymerization, 705–706
Enantioselective, 666–667
Enantiomorphic site control, 642–644
statistical model, 711–712
Enantiotopic, 643, 666–667
End-blocking, 448–449
End-capping, 448–449
End-group, 74
End unit, 467
Energetics of polymerization, see Activation energies; Thermodynamics of polymerization
Engineering plastic, 96
Enolate anion, 711–712
Enthalphy, 88, 275
Entropy, 275
Enzymatic polymerization, 180–182, 584–585
Enzyme, 180
EPDM rubber, see Ethylene-propylene-diene monomers polymer
Epichlorohydrin, 128–130
Epiclomer, 569
EPM rubber, see Ethylene-propylene monomers polymer
Episulfide, 588
Epoxide polymerization, see Anionic ring-opening polymerization; Cationic ring-opening polymerization; Stereoselective polymerization
Epoxy polymer, 128–130, 548–554
Equal reactivity of functional groups, 41–44, 54–57
Equilibrium monomer concentration, 280
Equilibrium polymerization, see Depropagation, Reversible polymerization
Erythro, 625–626, 632
Erythrodisostatic polymer, 625–626, 632
Erythrodishyndiotactic polymer, 625–626, 632
Estorene, 530
Estamid, 143
Estane, 142
Ethylene copolymer, 530–531
Ethylene-propylene diene monomer rubbers, 698, 738
Ethylene-propylene monomers rubber, 698
Ethylene-vinyl acetate copolymer, 530–531
Ethylene-vinyl alcohol copolymer, 530–531, 748
EVA, see Ethylene-vinyl acetate copolymer
EVOH, see Ethylene-vinyl alcohol copolymer
Exchange reaction, 83, 144
Expandable polystyrene, 304
Explicit penultimate model, 513–515
Extended chain crystallinity, 26–27
Extent of reaction, 46–47
External Lewis base, 658
Extinction coefficient, 222
Face, 642–643
Fertene, 302
Fiber, 34–36
Fibril, 26
Firing of ceramics, 170
First-order Markov model, see Markov model
First-order transition, 29
Fischer projection, 622–624
Flory, 80
Floor temperature, 282
Flory distribution, see Most probable distribution
Flory-Schulz distribution, see Most probable distribution
Fluon, 310
Fluorel, 533
Fluoropolymer, 309–310
Folded-chain lamella, 24–27
Formaldehyde polymer, see Carbonyl polymerization; Melamine-formaldehyde polymer; Phenol-formaldehyde polymer; Urea-formaldehyde polymer
Formalin, 121–124
Postarene, 304
Four-center polymerization, 183–184
Fraction of reaction, 46–47
Free ion, 373–374
Frequency factor, see Collision frequency factor
Fringed-micelle theory, 24–27
Functional group reactivity, 41–44. See also Polymer catalyst; Polymer reagent; Polymer substrate
Functionality of monomer, 101
Functional polymer, 140, 330–331, 439–440, 761–762. See also Polymer catalyst; Polymer reagent; Polymer substrate
Gegenion, see Counterion
See also Anionic chain polymerization; Cationic chain polymerization
Gel, 104. See also Crosslinking
Gelation, 104, 108–111. See also Crosslinking
Gel effect, 282–289, 356
Gel permeation chromatography, 23–24, 83, 245–246
Gel point, 104, 111–112. See also Crosslinking
Generation, 177
Geometrical isomerism, 621. see also Stereoisomerism in polymers; Stereoselective polymerization
INDEX 799

Geon, 306
Glass, 169–170
Glass effect, 285–286
Glass transition temperature, 29–32. See also
Crystalline-amorphous features
Glide operation, 626
Global rate constant, 394
GPC, see Gel permeation chromatography
Gradient copolymer, 327, 437–438, 480
Graft copolymer, 137, 324–325, 327, 752–758
See also Chain copolymerization; Copolymer;
Graft polymerization; Polymer reaction
Graft polymerization, 137, 466
anionic, 757–758
cationic, 758
from, 753
onto, 752
radical, 324–325, 327, 753–757
step reaction, 137
through, 753
vinyl macromers, 753–754
See also Copolymer; Graft copolymer;
Polymer reaction
Granular polymerization, 298
Grex, 302
Grilamid, 143
Group transfer polymerization, 420–422, 438,
442
GRS rubber, 351, 529. See also SBR rubber
Grubbs initiator, 590–592
GTP, see Group transfer polymerization
Guayule rubber, 634
Gutta percha rubber, 634
Halar, 310
Half-life, 211–212
Halogenation of polymer, 748–750
Hammatt relationship, 505, 507–508
Hard block, 142, 437
HDPE, see high density polyethylene
Head addition in initiation, 235,
Head-to-head placement, 144, 203–204
Head-to-tail placement, 144, 203–204, 235
Heat of polymerization, see Thermodynamics of
polymerization
Heat-cured silicone, see Room temperature
vulcanization silicone
Heat-resistant polymer, see High temperature
polymer
Hemiisotactic, 626
Herclor, 569
Heteroarm polymer, 441–443
Heterogeneous particle nucleation, 354
Heterogeneous polymerization, 287, 297–298.
See also Emulsion polymerization
Heterotactic triad, 636
Hevea rubber, 634
Hexa, 125
H-H placement, see Head-to-head placement
High-density polyethylene, 301–302, 696–697
High impact polystyrene, 530
High-mileage initiator, 645
High-performance polymer, see High-temperature
polymer
High-temperature polymer:
ceramic, 170–171, 174
conjugated polymer, 163–167
coordination, 172
cycloaddition, 183–184
Diels-Alder reaction, 155–156, 183–184
inorganic polymer, 168–171
liquid crystalline polymer, 157–159
organometallic polymer, 172–174, 330
polyamide, 100–101
polybenzimidazole, 159–161
polybenzothiazole, 161–162
polybenzoxazole, 161–162
carbonate, 96–97
polyether, 146–150
polyimide, 151–155
poly(p-phenylene), 166
poly(p-phenylene vinylene), 166
polyphosphazene, 597–599
polyquinoxaline, 163–163
polyquinoxaline, 163
polysiloxane, 132–134, 595–597
polysulphone, 151
polysulfone, 149–150
poly(p-xylylene), 311–312
reactive telechelic oligomer, 155–156
requirements, 144–146
semi-inorganic polymer, 168–174, 330
silicate 168–169
spiro, 184
HIPS, see High impact polystyrene
Homogeneous particle nucleation., 354
Homolytic dissociation, 209–210
Homopolymer, 136
Homopolymerization, 465
Homopropagation, 467
Homotopic, 668
Hostaflon, 310
Hostaflon, 302
Hostalen, 304
H-T placement, see Head-to-tail placement
Hydridation, 387
Hydride elimination, 417
Hydride transfer, 387, 659–661
Hydriod, 569
Hydrocarbon resin, 411–412
Hydrogen transfer polymerization, 450–451. See also Acrylamide polymerization
Hydrolitic polymerization of lactam, 569, 572–573
Hydrophobic interaction, 735–736
Hydroisilation, 134
Hyperbranched polymer, 175–177, 180
Hytrel, 143
Ideal copolymerization, 471–473
Imine polymerization, 586–588
Immortal polymerization, 553
Impact polystyrene, see High impact polystyrene
Inclusion complex, 299
Indene, 412
Induced decomposition of initiator, 228
Induction period, 256
Infrared spectroscopy, see Spectroscopic analysis
Inherent viscosity, 63–65
Inhibition:
 ionic polymerization, 388
 radical polymerization
 autoinhibition in allyl monomer, 263–264
 kinetics, 256–259
 mechanism, 259–263
 oxygen, 261
 retardation, 255–256
 types of inhibitors, 259–263
Inhibition constant, 257–259
Inhibition period, 256
Inhibitor, 255
Initiation, see Chain initiation
Initiator, 198, 209, 576. See also Chain initiation;
 Ring-opening polymerization; Stereoselective polymerization
Initiator-coinitiator complex, 375
Initiator efficiency:
 definition, 228
 experimental determination, 232–235
 mechanism, 228–232
Initiator half-life, 211–212
Initiator radical, 205
Initiator site control, see Enantiomorph control
Inorganic polymer, 168–171
Interaction, 277
Interchange reaction, 83, 144
Interfacial polymerization, 90–92
Intermolecular cyclization, 524–527
Internal Lewis base, 658,
Interpenetrating polymer network, 143, 527–528
Intramolecular cyclization, 114, 524–527
Intramolecular solvation, 428, 435–436
Inverse emulsion polymerization, 367
Inverse miniemulsion polymerization, 367
Inverse suspension polymerization, 298
Ion pair, 373, 424–425, 429–433. See also
 Anionic chain polymerization; Cationic chain polymerization
Ion-exchange polymer, 750
Ionizing radiation, 224–226, 381–382, 755–756
Ionomer, 531
IPN, see Interpenetrating polymer network
IR, see Spectroscopic analysis
Isocyanate, 55–63, 131–132, 451
Isocyanide polymerization, 451
Isomerism, 144, 619–620
Isomerization polymerization, 382–384
Isoprene, 310
Isoregic, 203
Isoselective polymerization, 624, 641
Isotactic, 622
Isotactic dyad, 636
Isotactic index, 644
Isotactic placement, 637
Isotactic polymer, 622–624. See also Stereoisomerism in polymers; Stereoselective polymerization
Isotactic polymerization, see Isoselective polymerization
Isotactic triad, 636
Isotropic, 157
IUPAC nomenclature, 12–16
Jeffox, 568
Kapton, 152
Kcal, see Kilocalorie
Kelen-Tudos plot, 480–481
Kevlar, 100
Ketene, 449–450
Kevlar, 100
Kilocalorie, 88
Kilojoule, 88
KJ, see Kilojoule
Kinetic chain length, 236
Kinetic penultimate effect, see Chain copolymerization; Copolymerization equation
Kinetics:
 anionic chain polymerization, 422–436
cionic chain polymerization, 388–392
emulsion polymerization, 356–362
heterogeneous Ziegler-Natta polymerization, 658–664
living radical polymerization, 316–322
metallocene polymerization, 678–682
photopolymerization, 221–223
radical copolymerization, 505–506
reactants with non-equivalent functional groups, 57–63
reversible polymerization, 69, 72, 562–565
ring-opening polymerization, 550–551, 562–565
step polymerization, 44–54, 57–63, 69, 79
Koroseal, 306
Kraft point, 365
Kraton, 437
Kynar, 310
Lactam polymerization, 569–577
Lactone polymerization, 581–586
Ladder polymer, 12, 145–146
Lamella, 24–27
Langmuir-Hinschelwood model, 662
LAP, see Living anionic polymerization
LARC, 155
Laser polymerization, 267–269
Latex, 351
Lattice-controlled polymerization, see Topochemical polymerization
LCB, see Long chain branching
LCP, see Liquid crystal polymer; Living cationic polymerization
LDPE, see Low density polyethylene
Least nuclear motions, 648–652
Lewis acid, 375–379, 406–408, 550–551
Lexan, 97
Lifetime, 265
Ligated anionic polymerization, 419–420
Light scattering, 21–22
Linear low density polyethylene, 530, 696–697
Linear polyethylene, see High density polyethylene
Linear polymer, 17–18
Lipase, 181–182
Liquid crystal polymer, 100–101, 157–159
Liquid crystal solution, 100–101
Living anionic polymerization, 422–436
Living polymer, 314
Living polymerization, 313–314. See also Living chain polymerization; Living cationic polymerization; Living radical polymerization; Living ring-opening polymerization; Living stereoselective polymerization
Living cationic polymerization, 400–407
Living radical polymerization:
activator, 316
atom transfer radical polymerization, 316–325
normal, 320
reversal, 320
block copolymer, 322–324
controlling agent, 315
deactivator, 316
degenerative transfer, 330
different polymer architectures, 324–325
graft polymer, 324
mediating agent, 315
kinetics, 316–322
persistent radical effect, 315
radical addition fragmentation transfer, 328–329
reversible termination or transfer, 314
stable free radical polymerization, 325–328
star polymer, 324
TEMPO, 325
LLDPE, see Linear low density polyethylene
Locant, 13
Lomad, 143
Long chain branching, 250–252. See also Graft polymerization
Loose ion pair, 373–374. See also Ion pair
Low density polyethylene, 301–302, 530–531
LRP, see Living radical polymerization
Lucite, 308
Lustrex, 304
Lycra, 142
Lytotropic liquid crystal, 157–159
Macosko-Miller method, 83–87
Macrodiisocyanate, 139–140
Macrodol, 139–140
Macroglucol, 131
Macromer, see Macromonomer
Macromonomer, 255, 439–440, 682, 753, 759
Macroporous, 762
Macroreticular, 762
MAO, see Methylaluminoxane
Markov model:
copolymerization, 467–470, 513–515
stereochemistry, 708–713
INDEX

Marlex, 302
Marvinol, 306
Mass polymerization, 89, 297
Mastication, 760
Matrix polymerization, 287
Mature polymer particle, 354
Mayo equation, 239–240, 249–250
MBS, 754
MCP, see Monomer complex participation
Mechanical properties: definition, 32–34
effect on uses of polymers, 34–36
molecular weight effect, 19
Mediated polymerization, see Living polymerization
Megapascal, 33
Melamine-formaldehyde polymer,
Melt polymerization, 94, 98
Membrane osmometry, 21
Merlon, 97
Merrifield synthesis of peptide, 774–777
Meso dyad, 635–637
Meso placement, 623
Mesogen, 158–159
Metallocene-initiated polymerization:
bent metallocene, 668
bite angle, 668
branching, 682
C₅, 667, 672–673
C₅, 667, 673–674
C₂, 667, 668–672
C₂ᵥ, 667
fluxional, 675
coinitiator, 676–678
kinetics, 678–681
meso-C₅, 667, 672–673
molecular weight and MWD, 680–681
oscillating, 675–676
supported, 681–682
Metallocenophane, 599
Metalloporphyrin, 419, 549
Methylaluminoxane, 676–677
Metathesis reaction, 589–592, 631–632, 683, 759
Methylaluminoxane, see Aluminoxane
Merlon, 591
Micellar particle nucleation, 354
Micelle, 352
Michael addition, 177–180
Microemulsion polymerization, 367
Microporous, 762
Microstructure, 481–485
Microsuspension polymerization, 298
Migratory insertion, 647–652
Miktoarm polymer, 441–443
Miktoarm polymer, 441–443
Mineral, 168–169
Miniemulsion polymerization, 367
Mirror glide plane, 626
Modacrylic fiber, 308
Modifier, 250
Modulus, 33–34
Molar mass, see Molecular weight
Mole fraction, 21, 80
Molecular weight:
anionic chain polymerization, 428–429
cationic chain polymerization, 389, 405
different averages, 20–22
distribution, 22–24. See also Molecular weight distribution
emulsion polymerization, 360–361
importance, 19
measurement, 20–24
number-average, 20–21
radical chain polymerization, 236–255, 274–275, 317, 329
stereoselective polymerization, 662, 680
step polymerization, 50–51, 65–68, 74–79
viscosity-average, 22
weight-average, 21–22
See also Ring-opening polymerization
Molecular weight distribution:
anionic polymerization, 428–429
bimodal, 400
cationic polymerization, 391–392, 406
definition, 22, 80–83
emulsion polymerization, 365–366
radical chain polymerization, 289–292, 318–319
step polymerization, 80–87, 102–103, 114–117
stereoselective polymerization, 663–664, 680–681
See also Ring-opening polymerization
Molecule-induced homolysis, 215
Monofunctional monomer, 75
Monomer, 1, 39
Monomer droplet, 352–353
Monomer complex participation, 497–500, 518–521
Monomer partitioning, 488–489
Monomer reactivity, see Monomer reactivity ratio
Monomer reactivity ratio, 468
anionic chain copolymerization, 510–512
cationic chain copolymerization, 506–510
determination, 480–481
effect of depropagation, 515–518
kinetic penultimate effect, 513–515
INDEX 803

radical chain copolymerization:
alternation tendency, 497–500
complex participation, 499
effect of pressure, 490
effect of reaction conditions, 487–489
effect of temperature, 489–490
Hammett equation, 505
monomer reactivities, 490–494
polar effects, 497–500
Q-e scheme, 500–502
patterns of reactivity, 503–505
radical reactivities, 490–496
resonance effects, 490–496
steric effects, 496–497
Taft equation, 505
stereoselective polymerization, 684–685
See also Ring-opening polymerization

Monomer unit, 50
MPa, see Megapascal
Monsanto fiber, 308
Morphology, see Crystalline-amorphous features
Most probable distribution, 80–87. See also Molecular weight; Molecular weight distribution
Multichain polymerization, 101–103. See Branching; Crosslinking; Step polymerization
Multicomponent copolymerization, 464, 485–487

Mylar, 94

Nadic anhydride, 155
Nafion, 769
Nanostructure, 299
Natta initiator, see Coordination initiator; Stereoisomerism in polymers; Stereoselective polymerization
Natural rubber, see Polyisoprene
NBR rubber, see Nitrile rubber
NCA, see N-carboxy-α-amino acid anhydride
N cm⁻², see Newton cm⁻²
Nematic liquid crystal, 157–158
Neighboring group effect, 735
Neoprene rubber, 533, 699
Network polymer, 19,101–102. See also Crosslinked polymer; Crosslinking
Newton cm⁻², 33
Nipol, 306
Nipolon, 302
Nitrile polymerization, 451
Nitrile resin, 533
Nitrile rubber, 530, 533, 738
Nitroxide-mediated polymerization, 325–328, 368–369, 756–757
NMP, see Nitroxide-mediated polymerization
NMR, see Spectroscopic analysis
Nomenclature of polymers:
based on source, 10–11
based on structure (non-IUPAC), 11
constitutional repeating unit, 12
copolymer, 136, 466
IUPAC system, 11–16
locant, 13
nonname, 16
seniority, 12–14
stereoregular polymer, 624, 626, 629–630
structural repeating unit, 12
subunit, 12
trade name, 16
Nomex, 100
Nonadjacent-reentry model, 25–27
Nonassisted polymerization, 576
Norrish-Smith effect, 282–289
Norsorex, 591
Noryl, 147
Novodur, 530
Novalac polymer, 124–125
NR, see Natural rubber
Nuclear magnetic resonance spectroscopy, see Spectroscopic analysis
Nucleation, 338–339. See also Emulsion polymerization
Number-average degree of polymerization, 76. See also Molecular weight
Number-average molecular weight, 20–21. See also Molecular weight
Number-fraction, 21, 80
Nylon, 16, 97–101, 569. See also Polyamide
Nylon salt, 97
Occlusion polymerization, 287
Oil alkyd, 119
Oil-extended polymer, 529
Oil-in-water emulsion, 367
Oil-insoluble initiator, 353
Oil-soluble initiator, 298, 353–354
Olefin, 302
One-ended living anion, 423
One-pot sequential technique, 322–324
One-prepolymer technique, 139–140
Onium salt, 379–380
Open, driven system, 67–69
Opalon, 306
Optical activity in polymers, 704–707
Optical isomerism in polymers, see Stereo-isomerism in polymers; Stereoselective polymerization
Organometallic polymer, 172–174, 330, 595–599
Orlon, 308
Oscillating metallocene, 675–676
Ostwald ripening, 367
Oxidative coupling, 146–148, 165–166
Oxonium ion, 554–555
Oxycarbocation, 560
PAI, see Polyamideimide
Paired ion, 373–374
PAM resin, 775
PAN, see Polyacrylonitrile
Paracyclophane, 311
Parent polymer, 287–288
Parylene, 312
Particle nucleation, 354
Particle number, 354–356, 362–363
Particle size distribution, 365–366
Patterns of reactivity scheme, 503–505
PBI, see Polybenzimidazole
PBO, see Polybenzoxazole
PBT, see Poly(butylene terephthalate)
PC, see Polycarbonate
PCTFE, see Polychlorotrifluoroethylene
PDI, see Polydispersity index
PE, see Polyethylene
Pellet polymerization, 298
Philprene, 529
Phosphonitrilic chloride, 597
Phosphorus-containing cyclic ester, 599–600
Photobleaching, 220, 224
Photochemical reaction: cationic polymerization, 379–380
crosslinking, 569
graft polymerization, 756
radical polymerization, 218–224, 273
Photoinitiated polymerization, see Photochemical reaction
Photoresist, 219
Photosensitizer, 218–219
Thalocyanine polymer, 172–173
Physical crosslinking, 142, 437
PI, see Polyimide
Pickup mechanism, 288
Placement, 203
Plasma polymerization, 227
Plastic, 34–36
Plasticization, 305
Plasticizer, 306
Plexiglas, 308
PLP-SEC, 264–265, 267–269
PMMA, see Poly(methyl methacrylate)
Polar effect: radical copolymerization, 497–500
radical polymerization, 248–249, 261–263
Polycetaldehyde, 627
Polycetatal, 444–449
Polycyctene, 164, 684
Polyacrylamide, 308–309, 450–451
Polyacrylate, 307–308
Polyacrylic acid, 308–309
Polyacrylonitrile, 308, 751
Polyalkylsilyne, 174
Poly(amic acid), 151
Polyamide, 97–101
Polyaminoamine, 153–154
Polyamidoamine dendrimer, 177–180
Poly(6-aminocaproic acid), 569–577
Polyamline, 165
Polyaramide, 99–101
Polyarylate, 141–142
Polybenzimidazole, 159–161
Polybenzoxazole, 161–162
Polybenothiazole, 161–162
Polybutadiene, 310, 627, 633, 699
Polybutene, 410
Poly(1-butene), 698
Poly(butylene terephthalate), 96
Poly(c-caprolactam), 569–577
Poly(c-caprolactone), 548–569
Polycarbonate, 2, 96–97
Polycarbosilane, 174
Polychloroprene, 533, 699
Poly(chlorotrifluoroethylene), 309
Polycondensation, 9
Polycycloalkene, 589–591
Polycycloalkyne, 591
Poly(dichlorophosphazene), 597–598
Polydicyclopentadiene, 591
1,4-Poly-1,3-diene:
crosslinking, 738–744
cyclization, 695, 749
halogenation, 748–749
polymerization, 689–695
stereoisomerism, 627–631
Poly(2,6-dimethylphenylene oxide), see Poly(p-phenylene oxide)
Polydimethylsiloxane, see Polysiloxane
Polydiphenylsilylene, 174
Polydispersity index, 22–23. See also Molecular weight distribution
Poly(epichlorohydrin), 569
Polyesteramide, 154
Polyesterification, 49–53, 92–96, 118–120. See also Polyester; Step polymerization
Polyester:
alkyd, 118–120, 737–738
crosslinked, 118–120, 737–738, 531–532
linear, 2, 92–97
polycarbonate, 96–97
unsaturated, 118–120, 531–532
Polyesterimide, 154
Polyether, 146–150
Polyether glycol, 568
Polyetherimide, 153
Polyetherketone, 149–150
Polyetheretherketone, 149–150
Poly(ethylene glycol), 765–766
Polyethyleneimine, 586–587
Poly(ethylene 2,6-naphthalate), 96
Poly(ethylene oxide), 569
Poly(ethylene sulfide), 588
Poly(ethylene terephthalate), 93–96
Polyflon, 310
Polyformaldehyde, 444–445, 569
Polyfunctional monomer, 39, 54–63, 131–132
Polyglycol, 569
Poly(hexamethylene adipamide), see Polyamide
Poly(hexamethylene sebacamide), see Polyamide
Polimide, 151–156
Polysobutylene, 410–411
Polyisoprene:
crosslinking, 738–742
cyclization, 695, 749
halogenation, 748–749
polymerization, 689–695
properties, 633
stereoisomerism, 627–631
uses, 699
Polyketone, 149–150
Polymeg, 568
Polymer, 1
Polymerase, 181
Polymer blend, 143, 147
Polymer catalyst, 761–764, 768–770
Polymer chain end control, 638
Polymer coil, 730–731
Polymer drug, 767–768
Polymer particle, 354
Polymer phase transfer catalyst, 770
Polymer reaction:
aromatic substitution, 750
block copolymer, 759–760
cellulose, 745–748
chlorosulfonation, 749
crosslinking
alkyd, 118–120, 737–738
cellulosic, 745
elastomer, 738–742
fluoropolymer, 744–745
1,4-poly-1,3-diene, 738–742
polyolefin, 742–743
polysiloxane, 132–134, 743
unsaturated polyester, 118–120, 531–532
See also Crosslinking
cyclization, 751
graft polymerization, 752–759
halogenation, 748–749
hydrolysis, 748
poly(vinyl acetate), 748
principles of polymer reactivity, see Reactivity of polymers
Polymer reagent, 761–768
Polymer scavenger, 767
Polymer substrate, 761–764, 771–777
Polymer superacid, 769
Polymeric monomer reactant approach, 155
Polymerization, 1, 6–8
Polymetaphosphate, 169–170
Poly(methacrylate), 307–308
Poly(methacrylic acid), 308–309
1,4-Poly(methyl sorbate), 631
Polyethylene, 14
Poly(4-methyl-1-pentene), 698
Polyboronene, 738
Poly(oct-1-ene-1,8-diyl), 591–592
Polyol, 131, 568
Polyolefin, 302
Poly(1,4-oxybenzoyl), 159
Polyoxymethylene, 448–449, 569–570
Poly(2-pentene), 624–625
Poly(p-phenylene), 166–167
Poly(m-phenylene isophthalamide), 99–101
Poly(p-phenylene oxide), 151
Poly(p-phenylene vinylene), 167
Polyphenylquinoxaline, 163
Poly(1,4-poly-1,3-pentadiene), 631–633
Poly(2-pentene), 307–308
Poly(propylene oxide), 548–554, 568–570
Poly(propylene oxide), 548–554, 568
Poly(2-pentene), 624–625
Poly(p-phenylene), 166–167
Poly(m-phenylene isophthalamide), 99–101
Poly(p-phenylene oxide), 147–148
Poly(p-phenylene sulfide), 151
Poly(p-phenylene vinylene), 167
Polyphenylquinoxaline, 163
Polyphosphate, 599
Polysulfide rank, 134
Polysulfide, 134–135, 151
Poly(1,4-oxybenzoyl), 159
Polyoxymethylene, 448–449, 569–570
1,4-Poly(PMMA), 307–308
Poly(2-pentene), 624–625
Poly(p-phenylene), 166–167
Poly(1,4-oxybenzoyl), 159
Polyoxymethylene, 448–449, 569–570
Poly(2-pentene), 624–625
Poly(p-phenylene), 166–167
Poly(m-phenylene isophthalamide), 99–101
Poly(p-phenylene oxide), 151
Poly(p-phenylene vinylene), 167
Polyphenylquinoxaline, 163
Poly(propylene oxide), 548–554, 568–570
Poly(2-pentene), 624–625
Poly(p-phenylene), 166–167
Poly(m-phenylene isophthalamide), 99–101
Poly(p-phenylene oxide), 147–148
Poly(p-phenylene sulfide), 151
Poly(p-phenylene vinylene), 167
Polyphenylquinoxaline, 163
Polyphosphate, 599
Poly(phosphonitrilic chloride), 597–598
Polypropene, 263–264, 382, 697–698
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Polypyrrole, 165
Polyquinoline, 162–163
Poly(phosphonitrilic chloride), 597–598
Polypropene, 263–264, 382, 697–698
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Poly(2-pentene), 624–625
Poly(p-phenylene), 166–167
Poly(m-phenylene isophthalamide), 99–101
Poly(p-phenylene oxide), 147–148
Poly(p-phenylene sulfide), 151
Poly(p-phenylene vinylene), 167
Polyphenylquinoxaline, 163
Polyphosphate, 599
Poly(phosphonitrilic chloride), 597–598
Polypropene, 263–264, 382, 697–698
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Polypyrrole, 165
Polyquinoline, 162–163
Poly(phosphonitrilic chloride), 597–598
Polypropene, 263–264, 382, 697–698
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Poly(pyromellitimido-1,4-phenylene), 151
Poly(propylene oxide), 548–554, 568
Psi, see Pounds
Pseudoasymmetric center, 622
Pseudocationic polymerization, 399–401
Pseudochiral center, 622
Pseudoliving polymerization, 315
Pseudopolyrotoxanes, 184–185
Pseudo rate constant, 394
PTFE, see Polytetrafluoroethylene
Pulsed laser polymerization, 264–265, 267–269
PVA, see Poly(vinyl alcohol)
PVAc, see Poly(vinyl acetate)
PVC, see Poly(vinyl chloride)
PVCB, see Poly(N-vinylcarbazole)
PVDF, see Poly(vinylidene fluoride)
PVF, see Poly(vinyl fluoride)
PVP, see Poly(N-vinylpyrrolidone)
Pyrex, 169
Q-e scheme, 500–502
Quantum yield, 220–222
Quartz, 169
Quencher, 223–224, 388
Racemate-forming enantiomer-differentiating polymerization, 705–706
Racemic dyad, 635–637
Racemic placement, 623
Radiation, see Ionizing radiation
Radical absorption, 358
Radical addition-fragmentation transfer, 328–329
Radical-anion, 414
Radical-cation, 381
Radical chain polymerization: acrolein, 449
activation parameters, 271–274
autoacceleration, 282–289
autoinhibition, 263–264
carbonyl monomer, 447
catalytic chain transfer, 254–255
chain transfer, 238–255
comparison with ionlc polymerizations, 199–202, 372–374, 397, 443–444
comparison with step polymerization, 199
copolymerization, see Chain copolymerization;
Monomer reactivity ratio
definition, 204–206
degradative chain transfer, 263–264
depropagation, 279–281
1,3-diene, 310–311. See also Diene
effect of pressure, 292–296
effect of substituents, 199–202, 276–279
effect of temperature, 271–282
forces of stereoselection, 637–639
head-to-head placement, 203–204
head-to-tail placement, 203–204
inhibition, 255–264
initiation, 209–235
initiator efficiency, 228–234
kinetic chain length, 236
living, 313–330. See also Living radical polymerization
molecular weight, 236–237, 238–255,
274–275
molecular weight distribution, 289–292
non-steady-state kinetics, 264–269
polar effects, 248–249
process conditions, 296–299
propagation, 202–204
radical scavenger, 233–234, 255–264
rate constants, 264–271
retardation, 256–264
termination, 205–206, 214, 282–289
thermodynamics, 275–276, 296
utility, 300–313
See also Chain initiation; Chain propagation;
Chain termination; Chain transfer
Radical desorption, 357–359
Radical lifetime, 265–267
Radical polymerization, see Radical chain polymerization
Radical reactivity, 490–496. See also Monomer reactivity ratio
Radical scavenger, 223–234, 255–264
RAFT, see Reversible addition fragmentation transfer
Random copolymer, 136–137, 465–466. See also Chain copolymerization; Copolymer
R- configurations, 621, 624
Rate constant:
anionic chain polymerization, 424–425
cationic chain polymerization, 392–399,
405–406
emulsion polymerization, 364
radical chain polymerization, 264–271,
293–295
step polymerization, 42–43, 62–43
stereoselective polymerization, 658–659
See also Ring-opening polymerization
Rate of polymerization, 45–46, 207–208.
See also Kinetics
Rayon, see Regenerated cellulose
Reaction injection molding, 132
Reaction volume, 296
Reactions of polymers, see Polymer reaction
Reactivation chain polymerization, 165–166
Reactive center, 7–9
Reactive polymer, 760. See also Functional polymer; Polymer reagent; Polymer substrate
Reactive surfactant, 367
Reactive telechelic oligomer, 155
Reactivity: functional group, 41–44
monomer, see Monomer reactivity ratio
polymer
effect of crosslinking, 732
effect of crystallinity, 731
effect of solubility, 731–732
electrostatic effect, 733–735
hydrophobic interaction, 735–736
isolation of functional groups, 730
local concentration of functional group, 730–731
neighboring group effect, 735
other effects, 736–737
steric effect, 732–733
yield, 730
Reactivity ratio, see Monomer reactivity ratio
Recombinant DNA technology, 180–181
Redox polymerization, 216–221
Re face, 642–644
Refractive index, 209
Regenerated cellulose, 746
Regioselective reaction, 203, 646
Regulator, 250
Reinforcing agent, 96, 742
Repeat(ing) unit, 2, 50–51
Resist, 219, 744
Resole polymer, 120–124
Retardation, see Inhibition
Retarder, 256
Retro Diels-Alder, 155
Reverse addition fragmentation transfer, 320–321, 368–369
Reversible polymerization:
copolymerization, 515–518
radical chain polymerization, 279–281
ring-opening polymerization, 562–565
step polymerization, 65–69
Reversible termination, 314
Reversible transfer, 314
Rhoplex, 308
RIM, see Reaction injection molding
Ring-opening copolymerization, 600–606
Ring-opening metathesis polymerization, 589–592, 631–632, 683, 759
Ring-opening polymerization:
activated monomer, 547
block copolymer, 604–605
of N-carboxy-α-amino acid anhydride, 578–581
copolymerization, 600–606
cyclic acetal, 559–562
cyclic amide (lactam), 569–577
cyclic amine (imine), 586–587
cyclic carbonate,
cyclic ester (lactone), 548–569, 581–586
cyclic ether, 548–569
cycloalkane, 594
cycloalkene, 589–592
cycloalkyne, 591
cyclosiloxane, 595–597
epoxide, 548–569
general characteristics, 545–548
miscellaneous monomers, 594–595, 599–600
nitrogen heterocyclics, 586–588
oxygen heterocyclics, 592–594
phosphonitrillic chloride, 597–599
stereochemistry, 707–708
sulfur heterocyclics, 588–589
uses, 568–569, 581, 591, 597
zwitterion, 587–589, 605–606
See also Anionic ring-opening polymerization;
Cationic ring-opening polymerization;
Stereoselective polymerization
Ring polymer, 159–162, 525–527
Ring size, 70–72, 545–546
ROMP, see Ring-opening metathesis polymerization
Room temperature vulcanization silicone rubber, 133–134
ROP, see Ring-opening polymerization
Rotating sector method, 264–267
RTV, see Room temperature vulcanization silicone rubber
Rubber, see Elastomer
Rubber hydrochloride, 749
Ryton, 151
SAN, see Styrene-acrylonitrile copolymer
Saran wrap, 306
Saturated hydrocarbon rubber, 749–750
SBR rubber, see Styrene-1,3-butadiene rubber
Scavenger, 767
Schotten-Baumann reaction, 90–92
Schrock initiator, 590–592
S-conﬁguration, 621, 624
SCF, 183
SCVP, see Self-condensing vinyl polymerization
SEC, see Size exclusion chromatography; Gel permeation chromatography
Secondary insertion, 646
Second-order Markov model, see Markov model
Second-order transition, 29
Seed polymerization, 358–360
Segmental diffusion, 284–286
Segmental motion, 29–32
Segmented polyurethane, 143
Segregation, 357–360
Self-assembly, 299
Self-catalyzed polymerization, 46–51
Self-condensing vinyl polymerization, 324–325
Self-initiated polymerization, 226–227
Self-ionization, 376–379
Self-propagation, 467
Semicrystalline polymer, see Crystalline-amorphous features
Semi-inorganic polymer, see Inorganic polymer; Organometallic polymer
Semi-ladder polymer, 145–146
Seniority, 12–14
Sequence length distribution, 481–484
Sequential interpenetrating polymer network, 143
Sequential monomer addition, 436–439
Settling period, 658
SFRP, see Stable free radical polymerization
Short-stopping, 393
SHP, see Sterically-hindered pyridine
Si face, 642–643
Silanol, 133
Silicate, 168–169
Silicone, see Polysiloxane
Silk, 2
Simultaneous interpenetrating polymer network, 143
SIN, see Simultaneous interpenetrating polymer network
Single crystal, 24
Single-site initiator, 665–666
Single-strand polymer, 11–12
Sintering, 171
SIPN, see Sequential interpenetrating polymer network
Site epimerization, 648–652
Site of steric isomerism, 621
Size distribution, see Molecular weight distribution
Size exclusion chromatography, 23–24, 83, 245–246
SMA, see Styrene-maleic anhydride copolymer
Smectic liquid crystal, 157–159
Smith-Ewart behavior, 351, 358
Smith-Norrish effect, 282
Soap, see Surfactant
Soda-lime glass, 169–170
Soft block, 142, 437
Sol, 105
Sol-gel ceramic synthesis, 171
Solid-phase synthesis of peptide, 772–777
Solid-state polymerization, 311, 332.
Soloprene, 437
Solution polymerization, 89, 297
Solution viscosity, 22–23
Solvated electron, 416
Solvent-separated ion pair, 373. See also Ion pair
Sonication, 227–228
Space network, 19
Spandex, 142
Specific volume, 30
Spectroscopic analysis, 208–209, 635–637
Spherulite, 26–27
Spin trap, 233–235
Spiro monomer, 592–593
Spiro polymer, 184, 592–594
Spontaneous termination, 385–386, 417–418
Stable free radical polymerization, 325–328
Starch, 2
Star polymer, 324–325, 327–328, 441–443. See also Comb polymer
Starburst polymer, 177
Stationary conditions, see Steady-state conditions
Statistical approach to gelation, see Crosslinking
Statistical copolymer, 136–138, 141–142, 465–466. See also Chain copolymerization; Copolymerization equation
Statistics of propagation, see Stereoselective polymerization
Steady-state condition, 207–208, 321–322, 391
Step copolymerization:
synthesis, 137–140
types, 135–137, 143
utility, 140–144
Step polymerization:
branched, 101–103, 175–180
characteristics, 6–9
copolymerization, 135–144
crosslinking, 103–114, 117–135. See also Crosslinking
Cyclization: Prepolymerization
Cyclization, 69–74
dendrimer, 177–180
Step polymerization (Continued)
dendritic polymer, 174–180
enzymatic polymerization, 180–182
equilibrium considerations, 65–69
functional group accessibility, 63–65
functional group reactivity, 40–44, 54–57
high-performance polymer, 144–167
hyperbranched polymer, 175–177
interfacial process, 90–92
inorganic polymer, 168–171
kinetic vs. thermodynamic control, 73–74
kinetics catalyzed, 51–54
effect of unequal functional group reactivity, 54–63
nonlinear, 48–50
nonstoichiometric polymerization, 79 reversible, 69
self-catalyzed, 46–51, 53–54
molecular weight distribution, 80–87, 102–103, 114–117
pseudorotaxane, 184–185
process conditions, 87–101
rate constants, 88–92
rate of polymerization, 45–63, 69, 79
rotoxane, 184–185
spiro polymer, 184
thermodynamics, 88
utility, 92–101
Stereoblock polymer, 636–637, 650
Stereocenter, 621–622
Stereoerror, 650–651
Steroeogenic center, 621–622
Stereoisomerism in polymers:
analysis, 635–637
carbonyl polymerization, 626–627
cyclopolymer, 632
1,3-diene, 627–631
disubstituted ethylene, 624–626
monosubstituted ethylene, 621–624
ring-opening polymerization, 626–627
significance, 633–635
step polymerization, 627
See also Coordination initiator; Stereoselective polymerization; Metallocene-initiated polymerization
Stereon, 437
Stereoregular polymer, 624, 633–637. See also Coordination initiator; Stereoisomerism in polymers; Stereoselective polymerization
Stereoselective polymerization:
alkene by coordination mechanism
activation energy, 637–639
bimetallic vs. monometallic mechanism, 647
crystal structure of initiator, 649–650, 656–657
direction of double bond opening, 654–655
heterogeneous initiator, 644–646, 656–658
historical development, 644
kinetics, 658–664, 678–681
mechanism of isotactic placement, 647–652
mechanism of syndiotactic placement, 652–654
metallocene initiator, 641, 665–682
molecular weight, 662, 680–681
molecular weight distribution, 663–664, 680–681
post-metallocene initiators, 685–689
primary vs. secondary insertion, 646
rate constants, 662–663
termination, 659–661
traditional Ziegler-Natta initiators, 640–665
transition-metal oxide initiators, 664
alkyne, 684
applications, 695–699
carbonyl monomer, 704
concentration effect, 672
copolymerization, 684–685
cycloalkene, 682–683
1,3-diene
anionic and coordination reaction, 691–694
cationic reaction, 694–695
radical reaction, 689–691
utility, 699
enantiomorphic site control, 642–644
epoxide, 626–627
ionic reaction, 640–641
living, 689
methyl methacrylate, 699–700
nonpolar vs. polar vinyl monomers, 699
optical activity in polymers, 704–705
polymer chain end control, 638
radical reaction, 637–639
ring-opening polymerization, 707–708
solvent effect, 639–640, 700–701
statistical models of propagation, 708–713
step polymerization, 627
styrene, 683–684
temperature effect, 638–640, 664, 673–674, 700–701
vinyl ether, 703
See also Coordination initiator; Stereospecificity in polymers
Stereospecific polymerization, see Stereoselective polymerization,
Steric effect:
 chain polymerization, 277–279
copolymerization, 496–497, 508, 511
hyperbranched polymer, 176–177
polymer reaction, 732–733
ring-opening polymerization, 545–546, 567, 577
Sterically-hindered pyridine, 376
Stoichiometric imbalance, 75–79
Stoichiometric ratio, 75–79
Stopped-flow method, 393–396
Stopper, 185
Strain, 34
Strength, 34
Stress-strain properties, see Mechanical properties
Structural isomerism, 144, 619–620
Structural repeating unit, 12
Structural unit, 50
Styrene-acrylonitrile copolymer, 529–530, 738
Styrene-1,3-butadiene rubber, 351–353, 529–530, 738
Styrene-maleic anhydride copolymer, 143, 530
Styrofoam, 304
Styron, 304
Substituted ethylene, 4–6
Subunit, 12
Sulfur, 600, 739–742
Sulfur heterocyclic polymerization, 588–589
Sulfur nitride polymerization, 600
Sulfur polymerization, 600
Sulfur vulcanization, 739–742
Super acid, 769
Super glue, 414
Superactive initiator, 645
Supercritical fluid, 183
Supercritical fluid, 183, 309
Support, 760–765
Supported initiator, 645, 664–665. See also Stereoselective polymerization
Surfactant, 298, 352–353, 363–364
Surlyn, 531
Suspension polymerization, 297–298
Suspension stabilizer, 298
Switchboard model, 25–27
Syn addition, 654–655
Syncatalyst, 375
Syndioregic, 203
Syndioselective polymerization, 624, 641, 652–654
Syndiotactic, 622
Syndiotactic dyad, 624
Syndiotactic placement, 637
Syndiotactic polymer, 622–624. See also Stereoisomerism in polymers; Stereoselective polymerization
Syndiotactic triad, 636
Tacticity, 622–624, 635–637
Taft equation, 505
Tail, 144
Tail addition in initiation, 235
Tail-to-tail structure, see Head-to-head structure
Tandem polymerization, 681
tapered copolymer, 437–438. See also Gradient copolymer
TA process, 93
Tecnoflon, 533
Tedlar, 310
Teflon, 310
Tefzel, 310
Telechelic polymer, 140, 155–156, 321, 439–440, 759
Telomer, 238–239
Template polymerization, 287–289, 299
TEMPO, 325–328
Tensile strength, 34
Terathane, 568
Terluran, 530
Terminal model:
copolymerization, 466–469, 505–506, 513–515
stereochemistry, 709–710
Termination, see Chain termination
Terpolymerization, 464, 485–487
Terylene, 94
Tetrad, 636
Texin, 142
Thermal analysis, 27
Thermal initiation, 220–221, 226–227, 273
Thermal transition, 29–32
Thermally stable polymer, see High-temperature polymer
Thermodynamics of polymerization:
carbonyl monomer, 444–445
chain copolymerization, 515–518
radical chain reaction, 275–281, 296
ring-opening reaction, 545–546, 566–567
step polymerization, 65–69, 73–74, 81
Thermoplastic, 105
Thermoplastic elastomer, 142–143
Thermoplastic polyurethane, 142–143
Thermoset polymer, 105, 117–118
Thermotropic liquid crystal, 157–159
Thietane polymerization, 588–589
Thirane polymerization, 588–589
Thiokol, 135
Three, 625–626, 632
Threodiisotactic polymer, 625–626, 632
Threodisyndiotactic polymer, 625–626, 632
Threshold pressure, 296
Tie molecule, 26–27
Tight ion pair, 373–374. See also Ion pair
Topochemical polymerization, 184. See also Solid-state polymerization; Transport polymerization
Torlon, 153
Torsional strain, 71
TPE, see Thermoplastic elastomer
TPU, see Thermoplastic polyurethane
Trade name, 16
Traditional Ziegler-Natta initiators, 640–665
Trans addition, 654–655
s-Trans conformation, 690–691
Transannular strain, 72
Transformation reaction, 324, 443
Transition probabilities, 469–470
Translational diffusion, 283–286
Transoid, 690–691
Trans-polymer, 629–634. See also Stereoisomerism in polymers; Stereoselective polymerization
Transport polymerization, 311–313
Triad, 636
Triad tacticity, 636–637
Trifunctional monomer, 56–63
Trioxane polymerization, 561–562
Triphase catalyst, 770
Triple-ion, 435–436
Trommsdorff effect, 214, 282–289, 364
Twaron, 100
Two-ended living anion, 423
Two-prepolymer technique, 139–140
Two-strand polymer, see Ladder polymer
Tybrene, 530
Ultim, 153
Ultimate elongation, 34
Ultimate strength, 34
Ultimate unit, 464
Ultrathene, 530
Ultraviolet-visible spectroscopy, see Spectroscopic analysis
Unequal functional group reactivity: effect on crosslinking, 112–115
effect on rate and molecular weight, 54–63
effect on molecular weight distribution, 86–87
Unpaired ion, 373–374
Unpaired ion, 373–374
Unsaturated polyester, 118–120, 531–532
Urea-formaldehyde polymer, 126–128
UV, see Spectroscopic analysis
Vapor pressure osmometry, 21
Vecta, 159
Verel, 308
Vespel, 152
Vestenamer, 591
Vinyl polymer, 304–306
Vinyl monomer, 4–6
Viscos rayon, 746
Viscosity, 22, 64
Viscosity-average molecular weight, 22. See also Molecular weight; Molecular weight distribution
Viscosity effect, 488–489
Viton, 533
Vitrification effect, 285–286
Volume of activation, 293–295
Vulcanizate, 742
Vulcanization of elastomers, 133, 738–742. See also Crosslinking
Vygen, 306
Water-in-oil emulsion, 367
Weight-average functionality, 110
Weight-average molecular weight, 21–24. See also Molecular weight; Molecular weight distribution
Weight-fraction, 21, 80–82
Wood, 745
Wool, 2
Wurtz coupling, 173–174
Xanthate, 330, 746
Xanthation, 745–746
Xerogel, 171
Xerography, 313
X-ray diffraction, 27
Xydar, 159
p-Xylylene, 311–313
Zero-order Markov model, 708–709
Ziegler or Ziegler-Natta initiator, see Coordination initiator; Stereoisomerism in polymers; Stereoselective polymerization
Zip polymerization, 289
Zirconocene, 670–671
Zwitterion polymerization, 587–589, 605–606