Index

3T3-L1 cells, 173

AARS, see abnormal anti-Stokes Raman scattering
AB/BC type superlattices, 258–60
AB/CD type superlattices, 260–61
ABCM, see adiabatic bond charge model
Abert mode, 69

ab initio calculations, 298–306
 - dispersion relations of phonons, 299–300
 - molecular dynamic calculations, 302–6
 - Si nanowires, 301
 - Si/Ge superlattices, 300

abnormal anti-Stokes Raman scattering (AARS), 352–4

acoustic lattice wave, 207

adiabatic approximation, 201, 235, 298

adiabatic bond charge model (ABCM), 219–20
 - see also bond charge model

adiabatic status, 201

alginate films, 168

amorphous crystal model (ACM), 427

amorphous crystals
 - Boson peak, 244–26
 - lattice dynamics, 229–30
 - phonon density of state (PDOS), 229–30
 - Raman spectra of, 241–2
 - vibration density of state (VDOS), 242–44

amorphous features, 246, 427

 - and translation symmetry, 339, 427–8

amorphous silicon, 160, 230, 245–6

amorphous solids, 199

annealing, 252, 410–411, 413

 - and change of potential shape in superlattices, 409

anti-Stokes frequency, 9–10

anti-Stokes Raman spectra, 352–7

and universal characteristics of Raman scattering, 352

anti-Stokes scattering, 43–4

apertureless Raman spectrometers, 128–9

aperture probes, 60

archaeology applications, 177

art applications, 177

atomic light scattering, 8

 - classical theory of, 28, 31
 - quantum mechanical theory of, 42–43

backward detected CARS (Epi-CARS), 139

BCB, see brilliant cresyl blue

Benzene, 142, 154

biological cells, 144, 170

biomedical applications, 146–50, 166–75

 - organic molecules and tissues, 168–71
 - pharmacology, 174–175
 - sample preparation, 166–7

studies of dynamic processes, 171–4

biomolecules, 54

 - containing chromophores, 108
 - blazing grating, 68, 69
 - Bohr radius, 187, 188, 193
 - bond charge linear chain model, 262–64

 - bond charge model, 218–20

 - bond model, 217–18

bond polarizability model, 289, 290

Born, Max, 15

Born–Karman model, 208–9, 213, 214

Born–Oppenheimer approximation, 201, 298

Born–Oppenheimer energy surface, 299

Bose–Einstein distribution, 210, 240

Bose peak, see Boson peak

Boson peak, 244–6
brain metastases, 174
breast calcifications, 118
Breit–Wigner–Fano line shape, 336
Brewster angle, 86–7
brilliant cresyl blue (BCB), 132, 133
Brillouin, L., 19
Brillouin scattering, 8–9, 19
Brillouin scattering spectrometer, see Fabry-Perot coherent spectrometer
broadband CARS, 139, 141–2
Broglie wavelength, 187, 188
buckyballs, 271

C₆₀, 272
characteristic Raman spectrum of, 330–331
cancer, 118, 149–50, 166, 170–1
carbon nanostructures, 271–9
see also carbon nanotubes (CNTs); graphene; fullerenes; nanocarbons
carbon nanotubes (CNTs), 271, 272
abnormal anti-Stokes Raman scattering in, 352–4
as defect structures, 357, 386
characteristic Raman spectra of, 332–5
disorder-induced mode (D mode), 336–7, 389–92, 414
enhancement of Raman scattering intensity, 365–6
graphite-like mode (G mode), 335–6, 389–92, 413
laser intensity effects, 382–92
mono-root, 375
multiple-phonon Raman spectra of, 343
polarized Raman spectra of, 375
purification by laser irradiation, 389–92
radial breathing mode, 334–5
Raman frequency variations, 368–73
resonant Raman spectra, 365–6, 368–9
see also multi-walled carbon nanotubes (MWCNTs); single-walled carbon nanotubes (SWCNTs)
CARS, see coherent anti-Stokes Raman scattering
CCD, see charge-coupled device
CCl₄, 94–7
first Raman spectrum, 13
polarized Raman spectra of, 96–7
structure and symmetry of, 95
vibration modes, 96–7
CdS
multiple phonon Raman spectra of, 110
phonon dispersion curves, 218
phonon frequencies, 270
CdSe
characteristic Raman spectra of, 340–3
crystallographic property and sizes, 341
Raman frequency variations, 371–2
simulation of Raman spectra, 426–27
CdSe/ZnTe superlattices, 317–18
CdS₄Se₁₋ₓ, 413
CE mechanism, see chemical enhancement (CE) mechanism
characteristic length, 187–8
charge-coupled device (CCD), 72–74, 85
chemical enhancement (CE) mechanism, 135–6
chemical samples, 86
chemical transfer (CT), 121
crystallographic property and sizes, 341
chemistry applications, 158–9, 179
chocolate, 106
cromatic resolution rate, 81
Clark, Robin, 177
CIC₄, 9
clusters, 190, 192
gold, 190
CNTs, see carbon nanotubes
coaxial cables, 190
coherent anti-Stokes Raman scattering (CARS), 138–44
backward detected (Epi-CARS), 139
broadband, 139, 141–2
dual-pump technique, 142
experimental techniques, 138–9
forward detected (F-CARS), 139
interferometric (iCARS), 140
lipid-containing specimens, 173
microscopy, 144–5
polarized (P-CARS), 140, 173
principle of, 137
spectra, 140–4
spectroscopic features and application, 138–40
time-resolved, 140
coherent Stokes Raman scattering (CSRS), 137, 144
collimator, 65
collision process, 21
colloids, 7, 135, 188
combination scattering, 12
Compton, A.H., 6
Compton scattering, 8, 12, 32
condensed matter, 158–65
defined, 158–65
low-dimensional structures, 164–5
microstructure and symmetry, 160
nanoscale structures, 164–5
phase transition, 160–62
physical parameters, 162–4
see also solids
confocal optical path, 63
converging lens, 65
CoSi electrode, 180
cosmic rays, 90, 91
crystal lattice, 199
see also lattice dynamics;
superlattices (SLs)
crystals
Raman scattering and symmetry, 232–4
Raman spectra of, 241–2
see also amorphous crystals; ionic crystals;
small crystals
CSRS, see coherent Stokes Raman scattering
CT, see chemical transfer
CVD, see chemical vapor deposition
Czerny–Turner mode, 69
dark current, 74
DCP, see dual circular polarization
Debye theory, 244, 246
deduction methods, 91–93
defects, 413
density functional theory, 298
dephasing length, 187
depolarization degree, 52–54, 97
diameter-selective Raman scattering
(DSRS), 369, 370
diamond, 93, 218, 219
microstructure and symmetry, 160
PDOS of, 297
phonon dispersion curves, 220–2
simulation of Raman spectra, 426
theoretical Raman spectra, 424, 425
see also nanodiamond
dielectric continuous model, 224–
for superlattices, 256–8
dielectric fluctuation correlation
function, 239–40
dielectric fluctuation correlation
model, 236
dielectric tensor, 236–9, 240, 241
differential scattering cross section, 23–4, 27,
28, 32
classical expression of, 24
and dielectric fluctuation correlation
function, 239–41
of light scattering of isolated atom, 29
quantum mechanics expression of, 24–6
and quantum transition probability,
39–40
and Raman frequency spectrum, 48
differential scattering probability, 21–22
diffraction limit rule, 123–4
dipole lattice model, 262
dispersion addition mode, 69–71
dispersion relation
ab initio calculation of, 298–9
defined, 155
in ionic crystals, 226–7
in micro-crystals, 292
of optical phonon in superlattices, 257
in single-walled carbon nanotubes,
277–9
dispersion subtraction mode, 69–71
dispersive effect, 75, 88
D mode, 336–7, 414
DNA, 167–9
SERS measurement, 166
double-quadrature spectral interferometry
(DQSI), 141
double resonant Raman scattering
(DRRS), 109–10
DQSI, see double-quadrature spectral
interferometry
DRRS, see double resonant Raman scattering
drugs, 174, 175, 179
DSRS, see diameter-selective Raman scattering
dual circular polarization (DCP), 54
Dynamical Theory of Crystal Lattices, 15
dynamic collision, 21
dynamic continuum model, –, 254–6, 311
dynamic scattering, 8, 21
electrical dipole moment, 26–8, 31
electrical dipole radiation, 26–7
electromagnetic (EM) mechanism, 134
electromagnetic wave scattering, see photon
scattering
electronic industry, 179–80
electron light scattering, 8
electron–phonon interactions
in nanostructures, 419–29
in solids, 210–13
see also Fröhlich interactions
electron scattering, 6
elementary excitations, 8, 199
Raman spectral features of, 155
EM mechanism, see electromagnetic (EM) mechanism
energy conservation law, 10
EPA, 149
Epi-CARS, see backward detected CARS excited state, 209
experimental apparatus, see Raman spectrometer extra-condition Raman spectroscopy, 114–15
see also high pressure Raman spectroscopy; high temperature Raman spectroscopy extreme conditions, see extra-condition Raman spectroscopy

Fabry-Perot coherent spectrometer, 101–102
Fano line-shape, 323
far-field spectrum, 5
F-CARS, see forward detected CARS
finite size effect, 192–6, 249, 296
first principles calculations, see ab initio calculations
fluid inclusions, 175
folded acoustic phonon modes, 310–13, 396, 410–11
food industry, 180–1
force constant model, 214–16, 215
forward detected CARS (F-CARS), 139
Fourier transform (FT) spectrometers, 97–101, 104
application for Raman spectroscopy, 101 characteristics of, 101 components of, 99–100
free spectral region, 69
frequency-mixing processes, 137
frequency spectrum, 5
Fröhlich interactions, 212, 314, 315, 422–3, 427
in SiC nanorods, 338, 366–7
Fröhlich model, 249
FT spectrometers, see Fourier transform (FT) spectrometers
fullerenes, 271–2
characteristic Raman spectra of, 331–7
see also carbon nanotubes (CNTs)
Ga$_{1-x}$Al$_x$As, 283
GaAs
phonon dispersion curves of, 221
quantum wire, 279
GaAs/AlAs superlattices
confined optical phonon mode, 313–15
crystallography of, 191
effect of annealing on potential shape, 410
effect of sample shape on optical phonons, 411–2
effect of sample size on polarization selection rule, 406–9
effect of sample size on Raman spectra, 396
folded acoustic phonon modes, 311
macroscopic interface modes, 258, 315–6
photon dispersion curves of, 250, 256, 260, 262–4
polarized Raman spectra of, 373
resonant Raman spectra of, 364
structure of, 251
GaAs/GaAlAs superlattices, 313–14, 368–9
gamma ray scattering, 7
GaN
phonon dispersion curves, 221
calculated spectra of, 425–26
GaN nanoparticles
characteristic Raman spectra of, 337–43
cosmic ray disturbance spectra, 91
crystallographic properties and sizes, 341
Raman frequency variations, 369–72
GaN nanorods, 383
Ge
effect of sample size on Raman spectra, 397
phonon density of state (PDOS), 114,
phonon dispersion curves, 220
simulation of Raman spectra, 426
two-phonon Raman spectrum, 114, 115
gold clusters, 190
graphene, 271–2
characteristic Raman spectra of, 330
graphite, 160–1, 271
laser intensity effects, 381
nanocrystalline, 327, 329
see also graphene; highly oriented pyrolytical graphite (HOPG)
graphite intercalation compounds (GICs), 336
grating equation, 66, 68, 69
gratings, 63–7
 blazing, 68, 69
defined, 69
dispersion rate of, 69
free spectral region of, 69
holographic, 68
number in spectrometers, 69–71
plane/curved surface, 68
reflecting, 68
types of, 68
 working wavelength of, 69
grating satellites, 66
grating spectrometers, 101
 see also Raman spectrometer
ground state, 209
H520 cells, 170, 171
handwriting identification, 181
harmonic approximation, 202
Hartree–Fock approximation, see mean field approximation
Helmholtz function, 243
highly oriented pyrolytical graphite (HOPG), 271
 abnormal anti-Stokes Raman scattering in, 353
 Au-doped, 355, 381, 386
 D mode in, 336–7
 laser intensity effects in, 381, 392, ,
 multiple-phonon Raman spectra of, 343
high order Raman spectroscopy, see multiple-phonon Raman spectroscopy (MPRS)
high pressure Raman spectroscopy, 117, 414–7
high temperature Raman spectroscopy, 417
 see also temperature
HL, see hot luminescence
holographic grating, 68
HOPG, see highly oriented pyrolytical graphite
hot luminescence (HL), 111–12
hot spots, 120
Huang, Kun, 15
Huang equation, 224–9, 257
Huang–Zhu model, 262
iCARS, see interferometric CARS
image spectrum, 5
impulsive stimulated Raman scattering (ISRS), 148
impurities, 413
disturbance spectra from, 89, 92
InAs/GaSb superlattices, 261
incident particles, 5–8
industrial applications, 178–81
 chemical and pharmaceutical industry, 179
 electronic and semiconductor industry, 179–80
 food industry, 180–81
inelastic collision, 21
inelastic scattering, 8–9, 21
infinite-size system, 427
InP/CdS nanoparticles, 416
InSb
 clusters, 302
 nanoparticles, 425, 428
 quantum dots, 420
intensity dispersion, 78, 90
interface phonon modes, 315–18
 effect of sample shape on, 411
 macro modes, 315–6
 micro modes, 283, 316–18, 344
 multiple-phonon Raman spectra of, 343
 of quantum well wires, 281–3
interference spectrometers, 97–104
interferometric CARS (iCARS), 140
ion crystal slab model, 253–4
ionic crystals, 224–7
 dispersion relation of longitudinal wave, 227–8
 dispersion relation of long optical wave, 226–7
 dispersion relation of transverse wave, 228–9
 electrostatic field, 224–5
 high frequency electric field, 225
 ionic polarizaton model, 225–7
isotropization, 78
ISRS, see impulsive stimulated Raman scattering
judicature, 181–2
KBr1–xIx, 249
KDP, 161
Keating model, 218,
Kerr effect, 137
KH2PO4 (KDP), 161
Krishnan, K.S., 16
Kroig–Penney model, 311
Kubo theory, 196
Index

Landsberg, G. 12
Langrangian equation of motion, 300
lasers, 16
 basic features of, 56–9
coherecy, 57
directionality, 57
and disappearance of vibration modes, 388
Gaussian features of beam, 57–9
heating effect, 323–5, 380, 382–7
high-brightness, 57
high power density irradiation, 388–92
intensity effects, 378–92
low-intensity irradiation, 381–7
monochromaticity, 56–57
polarization, 57
power of/power density of, 379–80
purification of samples by, 389–92
sample damage by, 388
types of, 59
lattice dynamics, 200–213
 of amorphous matter, 229–30
 bond charge model, 218–20
 bond model, 217–18
 classical mechanics theory, 202–4
dielectric continuous model, 224–9
 elastic continuous model, 222–4
 electron–phonon interactions, 210–3
 force constant model, 214–16, 277
 macroscopic model of, 213, 222–9
 microscopic model of, 213–22
 of one-dimensional double atom chain, 204–9
 quantum mechanics theory, 209–10
 of semiconductor superlattices, 254–64
 shell model, 216–17
 simplifiation of motion equation, 200–202
 of three-dimensional crystals, 213–14
 see also superlattices (SLs)
lattice relaxation model, 111
lattice waves, 202–4
 acoustic, 207
 optical, 207
light scattering, 19–44
 of atoms, 28–9, 31, 41–2
 basic features of, 34–9
 classical theory of, 19, 31–9
 classification based on change in energy, 8–9
 frequency characteristics, 35–7
 intensity characteristics, 37
 macroscopic theory of, 19, 26–39
 microscopic theory of, 19, 39–44
 of molecules, 29–31, 42–43
 phase characteristics, 38
 polarization characteristics, 38
 quantum mechanical theory of, 19, 43
 scattering experiments, 6, 20–21
types of, 7–8
lightning rod effect, 134–6
 line dispersive rate, 80–1
 linear chain model, 258–61
 linear spectrum, 5
 lipids, 144, 149–50, 173
 liquid samples, 85–6
 lithium ion batteries, 191
 Littrow mode, 69
 Lorentzian line shape, 336
 low-dimensional structures, 164–5, 188
 see also nanostructures
 LTS relation, see Lyddano–Sachs–Teller (LTS) relation
 Lyddano–Sachs–Teller (LTS) relation, 227
Mach-Zehnder interferometer, 140
macro-polarization, 29–30, 236
magic numbers, 190
Mandelstam, L., 12
Maxwell equations, 237–8
MC model, see micro-crystal (MC) model
mean field approximation, 202
meat, 180
mesoscopic structures, 187
 see also nanostructures
Michelson interferometer, 97–9, 100, 101
microbes, 119
micro-crystal (MC) model, 283–96
 archetypes of, 283–85
 basic assumptions of, 285–6
 calculation of Raman spectra of Si NWs, 322–23
 dispersion relation, 291
 line width, 291
 presentation and applied extent of, 289–92
 simulation of Raman spectra by, 426–27
 successful application of, 285–6
 testing of applied conditions, 292–6
 weighting function, 291
micro-optical fluidic system, 167
micro-polarity model, 322
micro-polarization, 29
microscopic interface mode, 261, 344, 396
Mie, C. 7
Index 479

Mie scattering, 8
mineralogy applications, 175–6
molecular bonds, 154–5
molecular dynamic calculations, 302–6
of phonon density of state, 302–6
molecular scattering, 7, 8
molecules
classical theory of light scattering, 29–31
quantum mechanical theory of light scattering, 42–43
three atom, 33
momentum conservation law, 49
and size-scale, 195
monochromators
adjustment of, 84–5
number of gratings in, 69–71
motion equation, 28–9, 200–2, 205, 208
Lagrangian, 302
see also Huang equation
mouse lens proteins, 171
mouse tissue, 171, 172
MP Raman spectra, see multiple-phonon (MP) Raman spectra
MPRS, see multiple-phonon Raman spectroscopy
multi-order spectrum, 5
multiple-phonon (MP) Raman spectra, 343–52
of carbon nanotubes, 348
of highly oriented pyrolytical graphite (HOPG), 350
of polar nanosemiconductors, 350–52
of porous silicon, 347–8
of superlattices, 344–7
multiple-phonon Raman spectroscopy (MPRS), 110–14
and hot luminescence, 111–12
and lattice relaxation model, 111
and polarizability model, 110–11
two-phonon Raman scattering, 114
see also multiple-phonon (MP) Raman spectra
multi-quantum wells (MQWs)
enhancement of Raman scattering intensity, 361–7
resonant Raman spectra, 361–7
multiple slits interference factor, 66
multi-walled carbon nanotubes
(MWCNTs), 272, 350
abnormal anti-Stokes Raman scattering, 352
laser intensity effects in, 381–6
multiple-phonon Raman spectra of, 348
MWCNTs, see multi-walled carbon nanotubes
nanocarbons, 325–37
see also carbon nanostructures; carbon nanotubes (CNTs); graphene; fullerenes
nanodiamond
characteristic Raman spectra of, 325–30
common features of characteristic Raman spectra, 329–30
prepared by CVD, 326–29
prepared by detonation, 325
nanomaterials (NMs), 264–83
artificial, 188–90
common Raman spectral features of, 264–6
natural, 188
nonpolar semiconductor small crystals, 267–8
polar semiconductor small crystals, 268–71
see also nanostructures
nanoparticles, 190
nanorods, 190
nanosemiconductors, 424–5
see also nonpolar nanosemiconductors; polar nanosemiconductors
nanosilicon
application of bulk phonon dispersion, 266
characteristic Raman spectra, 318–25
laser heating effect in, 323–5
origin of Raman spectra, 323–5
Raman frequency variations, 368–73, 397
slab model, 252
stress effect, 325
see also porous silicon (PS); silicon; silicon nanoparticles; silicon nanorods; silicon nanowires
nanostructures
abnormal Raman spectral features of, 309, 368–73, 419–20, 424
anti-Stokes Raman spectra, 352–7
characteristic length, 187–8
chemical properties of, 191
crystallography of, 191–2
defined, 187
dimension, 188
effects of changes in exciting laser intensity, 378–92
effects of changes in exciting laser polarization, 373–8
effects of changes in wavelength of light, 361–73
nanostructures (Continued)
effects of impurities on Raman spectra, 414
effects of sample composition on Raman spectra, 413–14
effects of sample micro-structure on Raman spectra, 413–7
effects of sample shape on Raman spectra, 279–83, 409–13
effects of sample size on Raman spectra, 382, 395–409
electron–phonon interactions in, 419–28
finite size effect, 192–95, 249, 296
history of study, 196
multiple-phonon Raman spectra of, 343–52
physical properties of, 190–91
specific surface effect, 192, 195
ways of studying, 196–7
see also nanomaterials (NMs)
nanotubes, 190
nanowires, 190
shape effect of samples, 279–83
national security, 181–2
NC-Si, 293–95
near-field (NF) optical microscope, 121, 126–30
near-field (NF) optics, 121–124
techniques of, 124–6
near-field (NF) Raman microscope, 126–30
near-field (NF) Raman spectrometer, 126–30
near-field (NF) scanning optical microscope (NSOM, SNOM), 122, 125–6
near-field Raman spectroscopy (NFRS), 121–30, 164
near-field spectrum, 5
neutron scattering, 6
Newton equation, 200, 204–8
of three-dimensional crystals, 213–14
NF optics, see near-field (NF) optics
NFRS, see near-field Raman spectroscopy
NiSi, 162
nitrogen, 141
NLO, see nonlinear optics
NRLS, see nonlinear Raman spectroscopy
noise spectra, 88, 89
reducing, 90–93
nonlinear optics (NLO), 136–7
nonlinear Raman spectroscopy (NLRS), 137–8
see also coherent anti-Stokes Raman scattering (CARS); stimulated Raman scattering (SRS)
nonlinear spectrum, 5
nonpolarized spectrum, 5
nonpolar nanodevices
effects of sample sizes on Raman spectra, 397
theoretical Raman spectra of, 424–6
nonpolar semiconductor slab model, 251–3
nonpolar semiconductor small crystals, 267–8
nonvisible excited Raman spectroscopy, 106
nonvisible spectrum, 5
NSOM, see near-field (NF) scanning optical microscope
nuclear/shell structures nanoparticles, 415
nucleotides, 167
Nyquist-theorem approach, 268
olivine, 175
omega-3 fatty acids, 149–50
one-dimensional double atom chain, 204–9
optical effects, 3–4
optical filters, 62
optical lattice wave, 209
optical path, 63
design of, 77–8
improvement of, 86–7
optical phonon modes, 279–81, 310, 313–5, 343, 396, 411–12
optical spectrum, see spectrum
organic molecules, 167–71
oxygen, 142
particle collision model, 21, 245
P-CARS, see polarized CARS
PDOS, see phonon density of state
pesticides, 179
pharmaceutical industry, 179
pharmacology, 174
phase transition, 161–2
phonon density of state (PDOS)
amorphous crystals, 229–30, 241–2, 297–8
molecular dynamic calculations of, 302–6
single walled carbon nanotubes, 278
and two-phonon Raman spectrum, 114
phonons, 8, 155, 199, 209–10
ab initio calculation of dispersion relation, 298–302
see also folded acoustic phonon modes;
interface phonon modes, optical phonon modes; electron–phonon interactions
photolithography, 189–90
photomultiplier tube (PMT), 72–74, 85
photon scattering, 7
piezoelectric effect, 211
plasma lines, 60
PMT, see photomultiplier tube
Pockels effect, 137
polarization, 10, 29–30, 38
macroscopic, 29–30, 236
microscopic, 29
polarization effects, 75–7, 78
polarization selection rule, 10, 51–52, 232, 378, 449–51
effect of sample size on, 406–9
polarized CARS (P-CARS), 140, 173
polarized Raman spectra, 49–52, 115–16
intensity expression of, 50
of carbon nanotubes, 375–8
of superlattices/quantum wells, 373–4
of ZnSe nanobelts, 375–8
polarized spectrum, 5
see also polarized Raman spectra
polar nanosemiconductors
characteristic Raman spectra of, 337–43
effects of sample sizes on Raman spectra, 396–401
multiple-phonon Raman spectra of, 343–52
quantum confinement effect in, 370, 396
Raman frequency variations, 371–373
theoretical Raman spectra of, 424–26
poly-2,5-bis(p-methoxybenzoyloxy) styrene, 158–8
polychromators, 71
polydiacetylene nanocrystal, 130
porous silicon (PS)
characteristic Raman spectra of, 318–20
corrected identification of Raman spectrum, 319–20
earliest Raman spectra of, 318
multiple-phonon Raman spectra of, 347–8
Raman frequency variations, 368
residual crystalline silicon in, 318, 320
potential well, 192–94
powder samples, 86
probes, 60, 132–133
PS, see porous silicon
pump-probe techniques, 117
pyridine, 119, 120
QCE, see quantum confinement effect
quantized field theory, 39
quantum confinement effect (QCE), 192–94, 196, 370, 396, 419–20
quantum confinement effect (QCE), 196
quantum dot, 189–90, 420, 422
quantum transition probability, 39–9
quantum wells (QWs), 189, 190–91
confined optical phonon mode, 313–15
polarized Raman spectra of, 373–4
see also multi-quantum wells (MQWs)
quantum well wires, 279–83
quantum wires, 189–90, 279–83
quartz, 175
quasi-particles, 8
QWs, see quantum wells
radial breathing mode (RBM), 279, 334
rainbow, 3
Raman, C.V., 10–13
Raman activity, 32–34, 232
Ramanathan, K.R., 12
Raman frequency, 9–10
Raman optical activity (ROA), 54, 116
Raman optical microscope, 62–63
Raman scattering, 8–9
discovery of, 10–13
Raman selection rule, 33, 232
Raman shift, see Raman frequency
Raman spectra
basic features of, 9–10
characteristic, 309
and energy of excitation sources, 48–9
first, 13
and momentum of incident and scattered light, 49
and polarization of incident and scattered light, 49–50
routine, 309
see also polarized Raman spectra
Raman spectral measurements, 47–55
technological problems, 54, 128
see also Raman spectrometer; spectral data processing
Raman spectrometer, 56–79
adjustment of, 83–5
amendment of spectral intensity, 78–9
angular dispersion, 69, 70, 80
apertureless, 128–9
apparatus control, 74
Raman spectrometer (Continued)

- chromatic resolution rate, 81
- collection of scattered light, 62
- collimator, 65
- confocal optical path, 63
- converging lens, 65
- design of, 77–9
- environments of measured samples, 63
- factors related to geometric optics, 74–5
- factors related to physical optics, 75–7
- gratings, 65–9, 87
- illumination of excitation light, 60–2
- improvement of optical path, 86–7
- intensity dispersion of, 78, 90
- layout of, 55–6
- light source part, 56–9
- line dispersive rate, 80–1
- near-field, 126–30
- performance parameters, 79–83
- reading, 82
- sample optics part, 59–63, 83–4, 86
- sample preparation, 85–6
- scanning parameters, 87–8
- slits, 64–5, 82, 88
- spectral acquisition part, 71–74
- spectral dispersion part, 63–71, 84–5
- spectral resolution rate, 80–82
- use of optical microscope with, 62–3
- see also spectral data processing

Raman spectroscope, 119

Raman spectroscopy, historical
- development, 13–16
- Rayleigh tensors, 116, 232
- Rayleigh criterion, 80
- Rayleigh scattering, 8–9, 31, 38, 44, 92
- Rayleigh’s Law, 7
- RBM, see radial breathing mode
- real spectra, 88
- reflecting grating, 68
- resonant Raman scattering (RRS), 106–110, 361–73
 - application, 107–8
 - in carbon nanotubes, 365–6
 - enhancement of Raman scattering
 - intensity, 361–7
 - incoming and outgoing resonances, 108
 - in multi-quantum wells, 362–5
 - and Raman frequency variations, 368–73
 - in SiC nanorods, 366–7
 - in superlattices, 362–5
- resonant size selection effect (RSSE), 369, 370–72, 395, 400
- resonant size-selection Raman scattering, 108
- RNA, 168
- ROA, see Raman optical activity
- RRS, see resonant Raman spectroscopy
- RSSE, see resonance size selection effect
- ruby crystal, 160
- Rutherford, E., 6
- RWL model, 283–6

scanning near-field optical microscope (SNOM), see near-field (NF) scanning optical microscope (NSOM, SNOM)

scanning tunnel microscope (STM), 125

scattered circular polarization (SCP), 54

scattering, 5–7
- anti-Stokes, 43–4
- atomic light, 8
- Brillouin, 8–9, 19
- combination, 12
- Compton, 8, 12, 32
- elastic, 9, 21
- electron, 6, 8
- gamma ray, 7
- inelastic, 8–9, 21
- Mie, 8
- molecular, 7, 8
- neutron, 6
- photon, 6
- Raman, 8–9
- Rayleigh, 8–9, 31, 38, 43–4
- solid light, 8
- spin, 8
- Stokes, 43–4
- Thomson, 8, 32
- Tyndall, 7–8
- X-ray, 7
- see also light scattering; scattering experiments

scattering cross section, 22–24
- classical expression of, 24
- quantum physical expression of, 24–6

scattering experiments, 6, 20–21

scattering probability, 21–22

Schrödinger equation, 200, 201–2
- and ab initio calculations, 298, 299
- time-dependent, 40–41

SC model, see spatial correlation (SC) model

SCP, see scattered circular polarization
semiconductor industry, 179–180
SERS, see surface-enhanced Raman spectroscopy
shell model, 216–17
short-period-superlattice multiple-quantum wells (SPSL-MQWs), 406
SiC
PDOS of, 296
simulation of Raman spectra, 426–7
see also SiC nanorods; SiC nanowires
SiC nanorods, 92
characteristic Raman spectra of, 337–43
crystallographic property and sizes, 336
enhancement of Raman scattering intensity, 366–7
resonant Raman spectra, 366
SiC nanowires, 369–71
Si/Ge, 300, 311
silicon
amorphous, 160, 229, 241–2
crystalline, 160, 242, 243, 369
dispersion curves of, 155
NF Raman spectroscopy of, 130
PDOS of, 296
phonon dispersion curves, 220–22
simulation of Raman spectra, 417
stress measurement, 162–163
see also nanosilicon; porous silicon (PS);
silicon nanocrystals; silicon nanoparticles;
silicon nanowires
silicon nanocrystals, 320–22
silicon nanoparticles,
PDOS calculation, 302–3
in solar cells, 191
theoretical Raman spectra, 424, 425
silicon nanowires, 292
ab initio calculations, 299
characteristic Raman spectra of, 320–22
laser heating effect, 323–25
optical phonons in, 320
Raman frequency variations, 368
size and laser intensity effect, 381
theoretical calculation of Raman spectrum, 322–23
Si3N4, 162–4
single electron approximation, see mean field approximation
single electron theory, 202, 210
single-phonon Raman scattering, 111
single slit diffraction factor, 66, 68
single spectrum, 5
single-walled carbon nanotubes (SWCNTs), 190, 272–79
abnormal anti-Stokes Raman scattering in, 352–4
characteristic Raman spectra of, 333–6
high-pressure Raman spectra of, 414–7
laser intensity effects, 378, 379–81
NF Raman spectroscopy, 165
phonon dispersion relations, 276–9
purification by laser irradiation, 276–9
structure of, 273–75
TERS spectra, 165
types of, 276
size confinement effect, 279
see also finite size effect
slab model, 251–53
slits, 64–5, 82, 88
SLs, see superlattices
small crystals
nonpolar semiconductor, 267–8
polar semiconductor, 268–71
Smekal, A., 19
z-Sn, 220
SNOM, see near-field (NF) scanning optical microscope
solar cells, 191
solid light scattering, 8
solids, 199–246
amorphous, 199
conditions of occurrence of Raman scattering, 230–2
crystal symmetry, 232
crystalline, 199
dielectric fluctuation correlation model, 236–41
electron–phonon interactions, 210–13
lattice dynamics, 200–230
macroscopic model of lattice dynamics, 213, 222–29
microscopic model of lattice dynamics, 213–22
microstructure and symmetry, 160, 200
quantum mechanics theory of Raman scattering, 234–6
Raman scattering theories, 230–46
see also condensed matter
space-resolved Raman spectroscopy, 118–19
spatial correlation (SC) model, 285
specific surface effect, 192, 195
spectral data processing, 88–93
acquisition of spectral parameters, 93
correction of intensity dispersion, 90
deduction methods, 91–93
fitting, 90–1, 93
reduction of noise spectra, 90–93
smoothing, 90–1
spectra from environment, 89–90
spectra from sample, 89
spectra from spectrometer, 88–9

spectrum
classification based on optical effects, 3–4
classification based on spectral parameters, 4–5
defined, 3
far-field, 5
frequency, 5
image, 6
linear, 5
multi-order, 5
near-field, 6
nonlinear, 5
nonpolarized, 5
nonvisible, 5
polarized, 5
single, 5
spontaneous, 5
steady state, 5
stimulated, 5
transient (time resolved), 5
visible, 5
see also Raman spectra
spin scattering, 8
spontaneous spectrum, 5
SPSL-MQWs, see short-period-superlattice multiple-quantum wells
SRL microscope, see stimulated Raman Lose (SRL) microscope
SRS, see stimulated Raman scattering
standard spectral lines, 84–5
static electricity equation, 226, 257
steady state spectrum, 5
stimulated Raman Lose (SRL) microscope, 149–50
stimulated Raman scattering (SRS), 145–50
microscopy, 148–50
principle and features, 145–6
spectroscopy, 146–8
stimulated spectrum, 5

STM, see scanning tunnel microscope
Stokes frequency, 9–10
Stokes scattering, 43–4
stray light, 62, 83
stress
in nanosilicon, 325
measurement of, 162–163
substrate effect, 135
sunflower oil margarine, 180
superlattices (SLs), 189, 191–2, 250–64
AB/BC type, 258–9
AB/CD type, 260–1
bond charge linear chain model, 262–4
characteristic Raman spectra of, 310–18
dielectric continuous model, 256–8
effects of sample shapes on Raman spectra, 396, 409–13
effects of sample sizes on Raman spectra, 396
elastic continuum model, 254–265
enhancement of Raman scattering intensity, 361–7
folded acoustic phonon modes, 311–13, 396, 410–11
geometrical parameters of, 409–10
Huang–Zhu model, 262
interface phonon modes, 310, 315–18
ion crystal slab model, 253–4
lattice dynamic models, 254–64
linear chain model, 258–61
multiple-phonon Raman spectra of, 344–7
nonpolar semiconductor slab model, 251–3
optical phonon modes, 310, 313–15, 344–5, 396, 411–12
polarized Raman spectra of, 373–4
potential shapes of, 409
resonant Raman spectra, 362–5
surface-enhanced Raman spectroscopy (SERS), 86, 119–21
biological sample measurements, 166–8
DNA measurement, 166
enhancement mechanism of, 120–21, 134, 135
micro-optical fluidic system, 167
sample substrates in, 120
single nucleotide measurement, 167
surface vibration mode, 254
SWCNTs, see single-walled carbon nanotubes
symmetric operations, 95
symmetry, 33–4, 232
Synge, E.H. 125
TaC nanorods, 367
Taylor expansion, 30, 111, 202
temperature, 115, 379–81, 414
see also high temperature Raman spectroscopy; lasers, heating effect
TERS, see tip-enhanced Raman spectroscopy
Thomson scattering, 8, 32
three-dimensional crystals, 213–14
time-dependent perturbation theory, 41
time-dependent Schrodinger equation, 40–1
time-resolved CARS, 140
time resolved Raman spectroscopy (TRRS), 116–18
development and application of, 118
technology of, 116–18
TiO$_2$, 415
tip-enhanced Raman spectroscopy (TERS), 130–36
enhancement mechanism of, 134–6
instrument development, 132–134
studies of biological samples, 168
studies of DNA, 168
studies of single wall carbon nanotubes, 165
theoretical basis, 132–34
tobacco mosaic virus, 168, 170
transient spectrum, 6
translation symmetry, 194–195, 427–28
TRRS, see time resolved Raman spectroscopy
Tu686 cells, 170, 171
two-phonon continuous spectrum, 114
two-phonon line spectrum, 113–14
two-phonon Raman scattering, 112–13
and phonon density of state (PDOS), 114
Tyndall scattering, 7–8
uncertainty principle, 48, 285
and momentum diffusion, 195

valence force field model, 218
VDOS, see vibration density of state
Vibrational Spectra and Structure of Polyatomic Molecules, 14
vibration density of state (VDOS), 242–46
visible spectrum, 5
wave selection rule, 320
Wu, Ta-You, 14
X-ray scattering, 7, 48
YBaCu$_4$O$_{7-\delta}$, 215–16

ZnO
effect of different geometric configurations, 232, 233
effect of different pressure, 114, 115
simulation of Raman spectra, 426–27
see also ZnO crystals; ZnO nanoparticles
ZnO crystals, 51
ZnO nanoparticles, 92, 93, 190, 340
characteristic Raman spectra of, 340
crystallographic property and sizes, 340
multiple-phonon Raman spectra of, 348–50
PDOS calculation, 302
quantum confinement effect, 399–402
Raman frequency variations, 371–2
theoretical Raman spectra, 424–6
ZnSe nanobelts, 376
ZnSe nanowires, 362, 376, 378
zone folding method, 277
ZrO$_2$, 106, 115, 116