INDEX

AGC (automatic generation control), 4
Argentina. See CAMMESA (Compañía Administradora del Mercado Mayorista Eléctrico Sociedad Anónima de la Republica Argentina)
ATC (available transfer capability), 14, 27
Australia. See National Electricity Market (NEM), Australia; NEMMCO power system, Australia
Automatic generation control (AGC), 4
Available transfer capability (ATC), 14, 27
Barbier, C., xxi, 31–33, 310, 311
Barret, J.P., xxi, 31–33, 310, 311
Benchmarking
Dimo’s real-time stability assessment methodology, 335–349
fast steady-state stability application at Long Island Power Authority, 65–69
results of TSA model development, 146–147
BiH. See Independent System Operator (NOS) of Bosnia and Herzegovina (BiH)
Bosnia. See Independent System Operator (NOS) of Bosnia and Herzegovina (BiH)
Brazil. See Brazilian National System Operator (ONS); South-Southeast Brazilian System
Brazilian National System Operator (ONS), 155–181
Cambridge (southeastern United States), 26, 27
CAMMESA (Compañía Administradora del Mercado Mayorista Eléctrico Sociedad Anónima de la Republica Argentina), xxiv, 67, 320, 326, 327, 336, 349–350
Capacity benefit margin (CBM), 27
Cassano, Martin, 320, 329, 330, 331, 336
CBM (capacity benefit margin), 27
CCT (critical clearing time), 29, 30, 358, 361, 362–364, 365, 368
CIGRE (International Council on Large Electric Systems), 26, 37, 185, 249
Emergency SIME (single-machine equivalent)
advantages, 393
challenges, 393–394
control task, 387–388
features, 392
flowchart, 389
key predictions, 384
main tasks, 384–385
objectives, 384
overview, 382–385, 396
predictive assessment task, 385–387
South-Southeast Brazilian System example, 388–392
suggested improvements, 392
EMS (energy management system) functions
overview, 4–6
for power system simulation, 4–5
in SCADA systems, 4–6
in SCADA/EMS architecture, 8
Energy Consulting International, Inc. (ECI), 58, 61, 67. See also QuickStab
Energy management systems. See EMS (energy management system) functions
EPRI [36], 34–35
ETSO (European Association of Transmission System Operators), 101
EuroStag software, 124–125
Fast steady-state stability tool
Long Island Power Authority, 58, 61, 62–63, 65–70
NOS BiH implementation, 76, 77–89
Transelectrica, Romania, 107, 109, 113–120
FILTRA (filtering, ranking, and assessment) techniques, 362, 365, 366, 371
Frequency security, in NEMMCO security analysis overview, 223–224

General Electric
PSLF format, 53, 114
Generic Interface Definition (GID), 48, 50, 53
GID (Generic Interface Definition), 48, 50, 53

Greece. See Hellenic Interconnected System, Greece

Hellenic Interconnected System, Greece, 249–278
arming load-shedding protection, 264–271
description of online VSA results, 256–262
event-based system protection scheme, 267–271
HTSO implementation of voltage security assessment, 254–256
map, 252
online voltage security assessment, 253–271
overview, 251–253
quasi-steady-state (QSS) simulation approach, 254, 273–278
SCADA/EMS, 251–254
SPS design in Attica, 267–268
SPS design in the Peloponnese, 269–270
using VSA in study mode to assess transmission system upgrades, 262–264

Hellenic Transmission System Operator (HTSO). See Hellenic Interconnected System, Greece

Herzegovina. See Independent System Operator (NOS) of Bosnia and Herzegovina (BiH)

HTSO (Hellenic Transmission System Operator). See Hellenic Interconnected System, Greece

Independent System Operator (NOS) of Bosnia and Herzegovina (BiH), 73–89
final implementation of real-time stability monitoring, 83–89
interim implementation of real-time stability monitoring, 77–82
interim SCADA/EMS environment, 77–78, 79
map, 75
need for real-time stability monitoring, 74–76
new SCADA/EMS environment, 82–89
SCADA/EMS system diagrams, 83, 84
transmission system overview, 73–74

Industry standards
for data formats, 16–17, 48, 53
Industry standards (continued)
ISO 9000, 145
role in SCADA/EMS systems, 12–13
International Council on Large Electric Systems (CIGRE), 26, 37, 185, 249
Ionescu, S., 33

Kuwait power system, 191–200
National Control Center overview, 191–192
SCADA/EMS, 192, 193, 194–200
shunt reactors in, 192, 194
Siemens’ PSS product suite, 194–200
stability calculations, 194–200
user interface, 198–200

Long Island Power Authority (LIPA), United States, 45–72
benchmarking fast steady-state stability software, 65–70
calculating security margin, 70
CIM compliance, 47–55
overview, 45–47
PSS/ODMS-SCADA/EMS integration, 50–55
real-time stability assessment and monitoring, 58–65
SCADA/EMS overview, 47–48, 49
static security assessment capabilities, 55–58
substation distribution banks, 53, 54
transmission system geographic schematic, 46
Molina Mylius, Roberto D., 320, 329, 330, 331, 336

Morocco power system, 200–207
description, 200–201
growth of electricity demand, 201, 203
power grid, 200, 202
regional map, 200–201
SCADA/EMS, 201, 203, 204, 205, 207
user interface, 205–207

National Electricity Market (NEM), Australia, 219, 220, 221
NCC (National Control Center), Kuwait. See Kuwait power system
NEMMCO power system, Australia, 219–248
DSA architecture, 226–228
DSA performance issues, 238–239
DSA planned enhancements, 246–247
DSA reliability issues, 239–242
DSA server control program, 234–242
dynamic model robustness, 240–241
EMS model issues, 242
map of National Electricity Market, 220
node-to-bus network model conversion, 232–234
OPDMS application, 232–234, 238, 242
operational experience, 242–245
operational reliability requirements, 221
power system overview, 219–221
PSS/E simulation engine, 235, 241–242
relays and special protection system modeling, 245–246
SCADA/EMS application interface, 229–232
SCADA/EMS environment, 224–226
security analysis overview, 221–224
stability measure, 236–237
static security assessment, 221–222
transient security assessment, 222–223, 224–238
NERC (North American Electric Reliability Council), 14, 27, 29
NETOMAC. See Siemens
Network analysis (NA)
EMS functions, 4
Kuwait NCC subsystem, 192, 193, 194–195, 198
Moroccan ONE subsystem, 203, 204, 205
and real-time stability assessment functionality, 10–11
in SCADA/EMS functional architecture, 9
size issues, 175
New York. See Long Island Power Authority (LIPA), United States
Newton power flow, in Brazilian SDSA system, 164–165
Nordel integrated power system, Scandinavia defined, 279
deregulated electricity market, 285–286
map, 280
overall structure, 285, 286
NOS BiH. See Independent System Operator (NOS) of Bosnia and Herzegovina (BiH)
Off-line mode, compared with real-time mode and study mode, 15–16
OLEC (open-loop emergency control), 373–375, 376, 392, 396
One-machine infinite bus (OMIB) in oscillations damping assessment, 376–382
predicting structure, 385–387
representations of system dynamics, 364–365
and SIME fundamentals, 354–358, 361
ONS (Operador Nacional do Sistema Elétrico). See Brazilian National System Operator (ONS)
OPDMS (Operations and Planning Data Management System), NEMMCO, 232–234, 238, 242
Open-loop emergency control (OLEC), 373–375, 376, 392, 396
Operador Nacional do Sistema Elétrico (ONS). See Brazilian National System Operator (ONS)
Oscillations damping, 375–382
Pai, M.A., 31
Pavella, M., 29
Phadke, Arun, 6
Phasor measurements, 6–7, 385, 394
PI Historian (software), 48, 50, 51–52, 56, 232
Planning mode, compared with real-time mode and study mode, 15–16
Powertech Labs, Inc., 132, 148, 150, 151
Preventive SIME (single-machine equivalent)
CM illustrations of contingency stabilization, 368–369
CM illustrations of OLEC, 374–375
contingency stabilization, 366–370
illustrations of transient oscillations damping assessment and control functions, 377–382
near-optimal transient stability control, 365–373
open-loop emergency control, 373–375
oscillations damping assessment and control, 375–382
overview, 361, 395–396
as transient stability analysis and control approach, 395–396
transient stability analysis, 361–365
PSS NETOMAC software, 187, 188, 195, 203, 205, 207
PSS SINCAL, 195, 196, 197, 200
P-V curves in Dimo’s approach to steady-state stability assessment, 332, 333, 344–345, 347
NOS BiH example, 80
producing in Hellenic system, 254, 256, 261–262, 263, 264, 265
Swedish Grid example, 286–287, 293, 295, 299, 300
Quasi-steady-state (QSS) simulation frequency handling, 274–275
numerical integration, 277–278
principle of approximation, 273–274
synchronous machine model, 275–277
synchronous machine regulations, 275–277
QuickStab and Dimo’s stability assessment algorithm, 320, 326, 327, 329, 331–333, 337
at Long Island Power Authority, 53, 58, 61, 71
in NOS BiH system, 76, 78, 79, 82, 85–89
at Transelectrica, Romania, 105, 115, 116
Reactive power steady-state stability criterion (d?Q/dV)
background, 317–318
calculation overview, 328–329
computer calculation, 331
defined, 36
manual calculation with Dimo’s formula, 329–330
manual calculation with exact formula, 330–331
mathematical proof, 41–44
physical interpretation, 344–349
Real-time mode compared with study mode, 3, 15–16
network analysis functions in, 4, 9
as power-system model, 15–16
SCADA functions as, 3
stability assessment as, 10–11
Reduced networks, 326–327, 328, 332–335
REI net, 309, 310, 311–312, 324–328. See also Dimo, Paul
Reliability
compared with security, 129–130
DSA system requirements, 135
in power-system operation, 129
software and hardware considerations, 141
RM (reserve monitoring), 4
Romanian National Electric System (SEN),
101, 102, 104. See also DEN
(National Dispatch Center), Romania;
Transelectrica S.A., Romania
Routh–Hurwitz criteria, 36, 307, 404
SAMI (Aperiodic Stability by Integration
Method) software, 121–124
Sauer, W.P., 31
SCADA (supervisory control and data
acquisition). See also SCADA/EMS systems
defined, 2
real-time versus study-mode processes, 3
typical system elements, 2–3
SCADA/EMS systems. See also software
architectural structure, 6, 8–13
availability requirement, 6
Brazilian SDSA system integration,
172–174
Brazilian system architecture, 158–159
context for stability assessment, 13–15
EMS functions, 4–5
functional architecture, 9–11
Hellenic Transmission System Operator,
251–254
implementation architecture, 11–13
infrastructure requirements, 5–6
integrating stability applications, 13–21
Kuwait power system, 192, 193, 194–200
Long Island Power Authority, 47–48, 49,
50–55
Morocco power system, 201, 203, 204,
205, 207
NEMMCO, Australia, 221–222, 224–226,
229, 230, 231, 232
at NOS BiH, 77–78, 79, 82–89
role of industry standards, 12–13
significance of open architecture, 12–13
software history, 11–12
stability assessment data issues, 15–19
stability assessment performance issues,
19–21
support functions, 5
Transelectrica, Romania, 104–107
Scandinavia. See Nordel integrated power
system, Scandinavia
SCS (security checked switching) mode, 192
SDSA (Steady-State and Dynamic Security
Assessment), Brazil
analytical methods, 164–171
architecture, 171–174
background, 155–159
contingency analysis, 160–161
ergy functions, 169–170
integration with SCADA/EMS systems,
172–174
numerical integration, 166–169
performance issues, 179–180
practical implementation aspects, 174–176
proxy analysis, 171
security criteria, 159–160
security functions, 160–164
security regions, 161–164, 172, 175, 176
single-machine equivalent methods, 169,
170
software layers, 172, 173
steady-state techniques, 164–166, 165–166
time-domain simulation, 166–169
user interface, 176–179
viewing results, 176–179
Security assessment. See also dynamic
security assessment (DSA)
NEMMCO, general description, 221–224
security, defined, 129
security compared with reliability,
129–130
steady-state vs. dynamic, 156–157
Security checked switching (SCS) mode, 192
Security margin
benchmarking, 65–66
defined, 65
heuristic for identifying, 69–70
for Long Island Power Authority, 70
overview, 37–38
as preventive control against voltage
instability, 250
and TSL/SSSL ratio, 92–94
SEN (Romanian National Electric System),
101, 102, 104. See also DEN
(National Dispatch Center), Romania;
Transelectrica S.A., Romania
Siemens

- DSA tools available on SCADA/EMS platform, 188–190
- implementation of CPF, 94–100
- load-flow program, 17, 50, 52, 53, 67–68, 76, 77
- overall approach to DSA, 186–188
- PSS NETOMAC, 187, 188, 195, 203, 205, 207
- PSS SINCAL, 195, 196, 197, 200
- PSS/E simulation engine in Australia, 235, 241–242
- PSS/ODMS, 50, 51–52, 56, 57, 61, 62, 65
- PTI PSS/E technology, 17, 51, 53, 67
- SINAUT Spectrum technology, 76, 192, 193, 203, 204
- STABSI, PSS NETOMAC submodule, 194–195, 196, 197, 198–199
- as system contractor for NOS BiH, 76, 82, 85

SIME (single-machine equivalent)
- in Brazilian SDSA system, 169, 170
- defined, 29
- emergency, 382–394, 396
- general methodology, 354–361
- implementation example, 169, 170
- overview, 354–357
- preventive, 361–382, 395–396
- salient parameters and properties, 357–361
- theoretical foundation, 353–400

SINAUT. See Siemens

SINCAL. See Siemens

Small-signal security, in NEMMCO security analysis overview, 223

Software. See also DSA Tools software suite;
- SCADA/EMS systems; Siemens; user interfaces
- DSA Manager, 148–150, 151, 153, 154
- EuroStag, 124–125
- fast steady-state stability tool at Long Island Power Authority, 58–69
- integrating stability applications with SCADA/EMS, 13–21
- online DSA specification at Southern Company, U.S., 141–144

overview of layers in SCADA/EMS functional architecture, 9
- PI Historian, 48, 50, 51–52, 56, 232
- SAMI, 121–124
- for voltage security assessment, 255–256
- Solved load-flow data formats, for state estimation results, 17–18

Southern Company, United States, 129–154
- description, 130–131
- future development plans for online DSA system, 150–151
- map, 131
- need for online DSA, 130–132
- online DSA implementation, 132–145
- online DSA model development, 145–148
- online DSA system architecture, 148–150
- transient security assessment implementation, 145–151

South-Southeast Brazilian System control center map, 159

E-SIME example, 388–392

Special protection systems (SPS). See also
- system protection schemes (SPS)
 - and NEMMCO power system, Australia, 224

Spica. See also Swedish National Grid transmission capacity
- calculation limits, 297–299
- computational process, 292–294
- contingency calculations, 294
- defined, 288
- functions beyond voltage security enhancement, 303–304
- future enhancements, 304
- integrating with SCADA/EMS platform, 290–291
- load-flow solution technique, 294–297
- operational issues, 289–290
- overview, 288
- user interface, 297, 298, 299–300
- voltage security assessment function, 291–302

SSSL. See steady-state stability limit (SSSL)

Stability assessment
- data issues in SCADA/EMS systems, 15–19
- input-process-output requirements, 10
Stability assessment (continued)
integrating with SCADA/EMS systems, 13–21
as nonstandard capability of real-time
network analysis, 10–11
performance issues in SCADA/EMS
systems, 19–21
real-time application at Long Island Power
Authority, 58–65
real-time NOS BiH implementation, 77–89
software issues, 13–21
steady-state, 107–125, 156, 160, 161,
164–166, 307–352
types of instability, 26–27
types of solution techniques, 28–38
Stability limits
determining, 23–44
dynamic nature, 27–28
as online DSA application, 137
overview, 26–27
quantifying, 27–28
steady-state, 34–38, 69–70, 91–94,
314–317, 318–319, 320, 331, 332,
333, 335–344
transient, 28–30, 37, 91–94
types of instability, 26–27
voltage, 30–34
Stability-constrained transmission paths
algorithm, 406–410
detection and evaluation, 401–414
link detection, 411
overview, 401–402
in Romanian power system, 107, 108,
109–112
topological search for links, 410–411
user-defined links, 412
STABSI, PSS NETOMAC submodule,
194–195, 196, 197, 198–199
Standards
for data formats, 16–17, 48, 53
ISO 9000, 145
role in SCADA/EMS systems, 12–13
State estimation
compared with phasor measurements, 6–7
data issues, 17–18
defined, 4
impact of wide-area monitoring systems,
6–7
NEMMCO power system snapshots, 223,
244
as network analysis function, 4, 25
prerequisite for online DSA systems, 136
solved load-flow formats for, 17–18
Swedish National Grid example, 287, 288,
289
Static security assessment
compared with voltage security
assessment, 250
current and proposed Long Island Power
Authority capabilities, 55–57
limitations, 20, 183–184
and NEMMCO power system, Australia,
221–222
as network analysis function, 4, 9
and Transelectrica power transmission
system, 107
Steady-State and Dynamic Security
Assessment (SDSA). See SDSA
(Steady-State and Dynamic Security
Assessment), Brazil
Steady-state stability. See also voltage
stability
defined, 14, 26
overview, 26, 307–308, 403–405
reactive power criterion \(\frac{dQ}{dV} \), 36,
41–44, 317–318, 328–331, 344–349
Transelectrica’s analysis procedures,
107–112
Transelectrica’s off-line stability tools,
120–125
Transelectrica’s real-time assessment and
monitoring, 113–121
Steady-state stability assessment
and Brazilian power system, 156, 160, 161,
164–166
computing SSSL using Dimo’s approach,
320, 331, 335–344
Dimo’s approach, 308–319
independent testing of Dino’s algorithm
implementation, 320–335
in Romanian power transmission system,
107–125
validating Dimo’s methodology,
319–320
Steady-state stability limit (SSSL)
combining with case-worsening procedure,
318–319, 331, 332, 333
comparison with transient stability limit, 91–94
computing using Dimo’s methodology, 320, 331, 335–344
defined, 14, 34
generator modeling for computation, 314–317
maximum power transfer limit, 340–343
overview, 34–36
practical criteria, 36–37
relationship to transient stability limit, 37, 91–94
security margin percentage, 37–38, 69–70
Steady-state stability reserve
and Long Island Power Authority, 58, 60, 61, 65, 67, 69, 70
overview, 37, 38
and stability-constrained transmission paths, 405
and Transelectrica power transmission system, 108–109, 124
voltage vs. power indicators, 108–109
Study mode
compared with real-time mode, 3, 15–16
defined, 3
hourly load forecasting, 5
network analysis functions in, 4–5, 9
as power-system model, 15–16
unit commitment/hydro thermal scheduling, 5
voltage security assessment in, 262–264
Supervisory control and data acquisition. See SCADA (supervisory control and data acquisition)
SvK (Svenska Kraftnät). See Spica; Swedish National Grid transmission capacity
Sweden. See Swedish National Grid
Swedish National Grid transmission capacity, 279–305. See also Nordel integrated power system, Scandinavia; Spica application development, 286–291
current and future enhancements, 304
frequency control procedures, 283
generator reactive capacity, 287
integration and performance requirements, 290–291
interconnections with neighboring countries, 279–281
operational characteristics, 281–285
operational requirements, 288–290
planning procedures, 302–303
power system control, 282–285
state estimation, 287, 288, 289
supervisory control and data acquisition, 284–285
transfer limitations, 281–283
user interface, 288–290
voltage control procedures, 283
voltage security assessment, 288, 291–302
System protection schemes (SPS). See also special protection systems (SPS)
arming through online VSA, 270–271
as corrective control for transmission systems, 250, 251
design examples, 267–270
design in Attica, Greece, 267–268
design in the Peloponnese, 269–270
design requirements, 265–266
and Hellenic system, 267–271
and security assessment, 264–266
Time-domain simulation
and Brazilian SDSA system, 157, 166–169, 172, 179–180
instantaneous value mode (EMT mode), 188, 189, 190
and NEMMCO power system, Australia, 222, 223, 224, 233, 235
Siemens’ DSA tool for SCADA/EMS platform, 188–190
and Southern Company, U.S., 140, 146–147, 148, 153
stability mode (RMS mode), 188, 189, 190
and TSA tool, 148, 153
use by SIME, 354, 358, 388, 389
Total transfer capability (TTC), 14, 27
Transelectrica S.A., Romania, 101–127. See also DEN (National Dispatch Center), Romania
DEN electricity market diagram, 102, 103
role in Romanian electricity market, 102, 103
Romanian power system organization, 101–102
Romanian stability-constrained transmission corridors, 110–112
SCADA/EMS, 104–107
security assessment, 107–113
Transelectrica S.A. (continued)
steady-state stability assessment, 108–112
transmission system map, 102, 103
transmission system overview, 101–103
Transient security assessment
case studies in integrating DSA into
SCADA/EMS, 191–212
defined, 26
and Kuwait power system, 192, 194–196, 197, 198–200
and NEMMCO power system, Australia, 222–223, 224–238
overview, 28–29
Siemens’ DSA tool for SCADA/EMS
platform, 188–190, 203
solution times, 20
and Southern Company, U.S., 137, 143, 145–151, 148–149, 150
Transient stability limit (TSL), 28–30, 37, 91–94
Transient-oscillations damping, 375–382
Transmission reliability margin (TRM), 27
TSA. See transient stability analysis (TSA)
TSAT (Transient Security Assessment Tool), 132, 148–150, 151, 153–154
TSL (transient stability limit), 28–30, 37, 91–94
TTC (total transfer capability), 14, 27
UCTE (European Union for the Coordination and Transmission of Electricity)
planning study on dynamic security assessment, 191, 207–212
relationship to Moroccan power system, 200, 201
relationship to NOS BiH operation, 73
relationship to Transelectrica, Romania, 101, 102, 106
UIB (Utility Information Bus), 48
Ungureanu, B., 33
United States. See Long Island Power Authority (LIPA), United States;
Southern Company, United States
UNO-DEN. See DEN (National Dispatch Center), Romania
User interfaces
Brazilian SDSA, 176–179
Kuwait power system, 198–200
Morocco power system, 205–207
for stability assessment data, 18–19
Swedish National Grid, 288–290
Utility Information Bus (UIB), 48
Van Cutsem, T., 33
Venikov, V.A., 30, 31, 35–36, 329, 404, 408–409
Voltage security assessment
ASTRE software, 255–256
compared with static security assessment, 250
and Hellenic Interconnected System, 253–271
and Long Island Power Authority, 55–56
and NEMMCO power system, Australia, 222
stability after contingencies, 250–251
and Swedish National Grid, 291–302
using to arm load-shedding protection, 264–271
WPSTAB software, 256
Voltage stability. See also steady-state stability; voltage security assessment
causes of instability, 249–250
compared with voltage security assessment, 30, 249–250
controls against instability, 250
defined, 26, 249

generator representation, 30–33
limits, 30–34
load-flow modeling, 30–34
and Long Island Power Authority, 57–58
overview, 249–250
role in determining system security, 96–100
Vournas, C., 33
VSA. See voltage stability
