Index

Page numbers in italic, e.g. 3, refer to figures. Page numbers in bold, e.g. 101, signify entries in tables.

ACE inhibitors
teratogenicity 101
achondroplasia 151
acrocentrics 35
adrenoleukodystrophy 3
Alagille syndrome 412
albinism 213, 396–7
α-fetoprotein (AFP) 117
Alstrom syndrome 54
amelia 125, 126
development 145–9
aminopterin
teratogenicity 101
androgens
teratogenicity 101
anencephaly 178
embryonic mechanisms 181–2
aneuploidy 33
mechanisms of maternal aneuploidy 39–40, 39
aniridia 13, 211
anophthalmia 208
Apert syndrome 471
apical ectodermal ridge 123, 128–9, 128
signalling molecules 130–2, 131, 132
apoptosis 110, 174, 390–1
arms see limbs
arrhinencephaly 175
Auerbach’s ganglia 264
Axenfeld–Rieger syndrome (ARS) 210

bacteriological artificial chromosome (BAC) 81
Bardet–Biedl syndrome 53, 471
BCL2 487–8

Beckwith–Wiedemann syndrome 20, 471
birth defects
causality 7
incidence 1
interaction between genotype and environment 7–8
Blaschko’s lines 389
blastema 141
blindness in children 204–5
Bloom’s syndrome 54
bone morphogenic proteins (BMPs) 131, 132,
134–5, 177, 283, 485–6
brachydactyly 126, 127
brachypodism 151
brain 167–8
see also central nervous system (CNS)
frequency of birth defects 168
neuronal migration disorders
brain lamination defects 186–7
regional disorders 182
chimeric analysis 184
divergence of neuronal and glial cell lineages 183–4
rostro-caudal patterning 182–3
branchial arches and pouches 312–14, 313
branchio-oto-renal (BOR) syndrome 244–5,
471
breast cancer 9
busulphan
teratogenicity 101

Caenorhabditis elegans
functional homology 12
campomelic dysplasia 471
captopril
 teratogenicity 101
cataracts 212–13
central nervous system (CNS) 167
development 170
 cell proliferation in neural tube 171, 172
 formation of nerve connections 174
 neural crest migration 169–71
 neural induction 168
 neural tube closure 169
 neuronal and glial cytodifferentiation 171
 neuronal migration 173
 onset of function 174
 programmed cell death 174
 regional patterning 169
 regionalization of neuronal differentiation 171–3
 rostro-caudal progression 169
developmental defects 175
 fiber tract malformations 190–2
 holoprosencephaly 175–8, 176
 microcephaly and megalencephaly 188–9
 neural tube defects 178–82, 179
 neurocristopathies 184–5
 neuronal migration disorders 185–8, 185
 regional brain disorders 182–4
 frequency of birth defects 168
 future study directions 192
cerebral palsy
 frequency 168
 Charcot–Marie–Tooth disease 59
 CHARGE association 23
 chromosome engineering 94
 citrullinaemia 3
 cleft lip/palate 314, 319
 cellular and molecular mechanisms 323–6
 club foot 125
 cochlea 231, 232
 Coffin–Lowry syndrome 28
collagen 394–5
 collapsin-1 284
coloboma 209–10, 216
comparative genomic hybridization (CGH) 42–3, 43, 55
congenital malformation syndromes
 animal models 64–7
 gene targeting and chromosomal abnormalities 67–9
 other disease-modelling approaches 69–70
 biological analysis of genes 59
 gene expression 60–1
 protein analysis 61–4, 63
 structural considerations 59–60
gene identification
 characterization 56
 chromosome analysis 53–5
 linkage analysis 52–3
 mapping disease loci 51
 mutation screening 57–9
 rare syndromes 70–1
 connexins 394, 396
cornea 202, 203
cornified envelope (CE) 380
 precursor proteins 382
 coronary heart disease 3
 Corti, organ of 231–3, 232
cranial nerves 309
 craniophrontonasal dysplasia 318
 craniorachischisis 178, 179
 embryonic mechanisms 181
 craniosynostosis 320
 cellular and molecular mechanisms 326–30, 327, 330
cranium bifidum 321
 CRE–loxP system 85–8, 86, 92, 93
 chromosome engineering 94
cyclopamine
 teratogenicity 111–12
cyclophosphamide
 teratogenicity 101
cytochrome P450 enzymes 115
cytogenetics 33–4
 chromosomal abnormalities 36–7
 causes 44–5
 embryo survival 44
 errors during meiosis 37–8
 relative parental risks 45–6
 studies on human gametes 38–43
population cytogenetics 34–5
trisomies 34
structural abnormalities 35–6
cytotoxic agents
teratogenicity 101

Dandy–Walker syndrome frequency 168
databases of dysmorphology
advantages
coping with age effects 22–3
coping with variability in severity 21–2
coping with variability of features 21
key features 23
naming of syndromes 20
updating feature lists 21
currently available databases 25–6
disadvantages
familial resemblance 23–4
unusual features 24–5
operation
essential criteria 30
features or 'handles' 26–8
order of entry 29–30
role of pictures 30–1
search strategy 29
searches 28–9
syndromes 19–20
De Lange syndrome 23
degenerate oligonucleotide-primed
polymerase chain reaction (DOP-PCR) 43
dentine 519
Denys–Drash syndrome 471, 475
desmosomes 393–4
developmental toxicology 99
dichlorodiphenyltrichloroethane (DDT) 116
2,4-dichlorophenol-4'-nitrophenyl ether (nitrofen) 107–8
diethylnitrosobenz(a)anthracene 116
dioxin-responsive elements (DREs) 114
dioxins
teratogenicity 112–15, 114
diphenylhydrantoin teratogenicity 101
Doublecortin gene 186
double-outlet right ventricle (DORV) 358
double-replacement strategy 92, 93
Down’s syndrome 7, 68–9, 82–3
Robertsonian translocations 35–6, 36
Drosophila melanogaster
as a model system 8
ey gene 13–14, 14
genome 2
homeotic mutants 11–12
dysmorphogenesis 5–6
ear 231–3, 232
development of inner ear 234–6, 234, 235
mechanisms 249–50
mechanisms for sensory epithelia 251–3
development of outer and middle ear 233–4
mechanisms 248–9
endolymph homeostasis 253–4
future study directions 254–5
genes involved in human syndromic and
non-syndromic deafness 238–43
genomes involved in stereociliary bundle
maintenance 237
main classes of defects 236–44
abnormal endolymph homeostasis 247–8
inner ear 245–6, 246
neuroepithelial defects 246–7, 247
pinna and middle ear 244–4, 245
ectodermal dysplasias 398
ectodermal signalling 132, 133
ectodysplasin 528
EGF 484
Ehlers–Danlos syndrome 3
embryogenesis 41–2
embryonic stem (EC) cells, genetic
manipulation 88
chromosome engineering 94
conditional knock-outs 90–1, 91
knock-in strategies 92–4
knock-out 90
principles 88–90, 89
subtle mutations 91–2, 93
embryos
causes of high levels of chromosomal abnormalities 44–5
development 5
survival 44
EMG syndrome 20
enalapril
 teratogenicity 101
tenamel, of teeth 515, 519
encephalocele 178
endothelin converting enzyme (ECE-1) 274
endothelin-3 (ET-3) 273–4
crest migration 274–5
effect on differentiation 276
effect on migration 276–7
effect on proliferation 275
expression in enteric nervous system (ENS) 274
interaction with GDNF 277–9, 278
signalling overview 277
enteric nervous system (ENS) 263, 288
anatomy and function 263–5, 264
development
 lumbosacral neural crest cells 268–9
 precursors cells 269–70
 vagal neural crest cells 266–8, 267
molecular biology 270
 bone morphogenic proteins (BMPs) 283
 endothelin-3/endothelin receptor B 273–7
 GDNF/GFRα1/RET 270–2
hedgehog signalling system 281–2
interactions between GDFN and ET-3
 signalling pathways 277–9, 278
L1CAM 285–6
neural cell and axon guidance
 molecules 283–4
neuregulin/ErbB2 signalling 285
neurotrophins and growth factors 282–3
retinaldehyde dehydrogenase 2
 (RALDH2) 285
transcription factors 279–1
Entwicklungsmechanik 8
environmental factors, effect upon birth
defects 7–8, 7
epidermal growth factor (EGF) 113, 114
epidemic 373–4
 cellular and molecular mechanisms 376–9
 regulation and proliferation of epidermal keratinocytes 379–84, 380, 381
cornified envelope precursor proteins 382
genes involved in hair morphogenesis
 387–90, 389
hair follicle development 383
migration of epithelial and non-
 epithelial cells 384–5
epidermolysis bullosa (EB) 380, 394–5
epigenetic domain 5
epithelial cell orientation 13
epithelial somites
 axial identity 434–8
 differentiation 438–40
 formation 433–4
ErbB2 285
ethanol
 teratogenicity 101
ethylenenitrourea 108
N-ethyl-N-nitrosourea (ENU) 66–7
etretinate
 teratogenicity 101
eustacian tube 232
exencephaly 178
 embryonic mechanisms 181–2
EYA1 477
eye 199–200
 cellular and molecular mechanisms 213–14
 anterior segment development 218–20
 formation and development of lens 217–18
 growth, patterning and closure of optic cup 215–17
 neural retina development 220
 specification of eye field and optic vesicle morphogenesis 214–15
 congenital defects and paediatric
 blindness 204–5
development 200–4, 200, 203, 204
 timing of key events 201
 ectopically expressed in Drosophila
 13–14, 14
future study directions 220–2

gene mutations 205–8
 abnormal development of retinal
 neurons and optic nerve 213
 anophthalmia and holoprosencephaly
 208
 anterior segment dysgenesis 210–11
 cataracts 212–13
 coloboma 209–10, 216
 microphthalmia 208–9
 molecular and cellular basis 206–7

face and palate, development of 314–16, 314, 315
familial chloride diarrhoea 3
familial cholestasis 3
Fanconi anaemia 471
feedback effects 5
female gamete 38–9
 mechanisms of maternal aneuploidy
 39–40, 39
fertilization 41
fetal valproate syndrome 103
fibroblast growth factors (Fgfs) 130–1, 131,
 139, 177, 249–50
fluorescence in situ hybridization (FISH) 54
fluorescence resonance energy transfer
 (FRET) 62
folic acid antagonists
 teratogenicity 101
formins 131–2
Fraser syndrome 471
frontonasal dysplasia 317–18

galectin-3 490–1
gametes 38–9
gametogenesis 36–7
gastrulation 421–6, 422
gene mapping 2
 congenital malformations 3
gene trap databases 66
genes
 gene–teratogen interaction 106, 107
 information encoded 3–4
 number of 2
 regulation 5
 single gene model of dysmorphogenesis 6

genome 2
genome browsers 52, 56
geno-type and phenotype 1–8
causal relationship 4
homology 10–15
interplay between environmental and
 genetic factors 7
model systems 8–10
teratogens and phenocopies 106–8
 glial cell line-derived neurotrophic factor
 (GDNF) 271–3, 479–84
 interaction with ET-3 277–9, 278
glypican 491–2
Gorlin’s syndrome 399
green fluorescent protein (GFP) 61
gremlin 131–2
guanine nucleotide exchange factor
 (GEF) 62
haemochromotosis 3
hair follicles 374–6, 375
 development 383
 genes involved in hair morphogenesis
 387–90, 389
Hairyl gene 136
head 301–2
 cellular and molecular mechanisms 321
 clefts 323–6
 craniosynostosis 326–30, 327, 330
 neural crest-related defects 323
 ossification deficiency defects 331
 tissue interactions and craniofacial
 patterning 322–3
 classes of craniofacial defect 317
 clefts 319
 neural crest-related defects 317–19, 318
 ossification defects 319–21, 320, 321
 developmental anatomy 302–3
 branchial arches and pouches 312–14,
 313
 face and palate 314–16, 314, 315
 origin and migration of neural crest
 pharyngeal arches 310
 placodes 309–12, 311
 skull 316–17
 future study directions 332–3
heart

- cardiovascular defects
- alignment defects 358–9
- interruption, stenosis and artesia 359–60, 360
- left–right patterning defects 356–7
- septation defects 359
- syndromes 360–2
- transposition of great vessels 357–8
- ventricular growth/specification 353–6
- development and specialization of chambers 353–5
- developmental anatomy 341–4, 342, 343, 344
- future study directions 362

left–right determination and cardiac looping 351–3, 352

- major cell populations 345–7, 345, 347
- molecular regulation of development 347
- cardiac cushion 353
- cardiac induction and formation of heart tube 347–51, 349

hedgehog gene family 130

hedgehog signalling system 281–2

- helix–loop–helix (HLH) proteins 113, 114
- hemidesmosome 380
- hepatocyte nuclear factor (HNF) 478–9
- heteroduplex analysis (HA) 57
- HGF 484

Hirschsprung’s disease 6, 53, 263, 265–6, 288

- current diagnosis and treatment 286
- future treatments based on stem cell therapy
 - CNS stem cells 287–8
 - stem cell transplantation 286
 - stem cells in post-natal gut 287
 - stem cells in pre-natal gut 286–7
- molecular biology 270
 - endothelin-3/endothelin receptor B 273–7
 - GDNF/GFRα1/RET 270–2
- hit-and-run strategy 92, 93
- holoprosencephaly 112, 175, 208
 - frequency 168
 - genes implicated 177
- neural induction and role of SHH 176–8
- spectrum characteristics and causes 175–6, 176

Holt–Oram syndrome
- ACTH deficiency 9
- homeobox-containing genes 11–12, 136
- homeosis 11–12
- homology 10–15
- HOX 477–8
- Hox genes 11–12, 136–7
- Hox11L1 280–1
- human artificial chromosomes (HACs) 69
- Human Genome Project

humans
 - embryo banks 10
 - genome 2
 - T-box gene family 9
- hydrocephaly
 - frequency 168
- hyperdontia 518–19
- hypertelorism 317–18, 318
- hypomorphic alleles 92
- hypoparathyroidism 471
- hypotelorism 175

ichthyoses 395–6

in vitro fertilization (IVF) 33, 41

- inherited identically by descent (IBD) 52
- integrins 489–90

- involutional osteoporosis 3
- iris 202, 203
- isotretinoin
 - teratogenicity 101
- jervine alkaloids
 - teratogenicity 111–12

KAL 491

- Kallmann’s syndrome 471
- karyotype analysis 53–4
- kepone 116
- kidney 463, 499
 - basic processes during nephrogenesis 472–3
 - molecular control 473
 - cell adhesion molecules 488–9
 - galectin-3 490–1
 - glypicans 491–2
 - integrins 489–90

KAL 491
INDEX

developmental anatomy 465, 466, 467, 468
differentiation of mesenchyme 469
differentiation of ureteric bud 468–9
mesonephros 466–7
metanephros 468
pronephros 466
timing 465
vascular development 469–70
future study directions
primary cilium–basal body complex 495–6
therapy for malformations 496–9
growth factors and receptors 479
BMPs 485–6
EGF 484
GDNF 479–84
HGF/Met 484
mutant and transgenic mice 480–3
TGF 484–5
WNT 488–7
non-genetic causes of renal malformations 492–3
teratogens/maternal diet 494–5
urinary tract obstruction 493–4
other molecules 492
renin–angiotensin system 492
renal malformations 470–2
syndromes 471
structure and function 464–5
survival/proliferation factors
BCL2 487–8
P57-KIP2 488
transcription factors 473, 476
EYA1 477
forkhead/winged helix 478
hepatocyte nuclear factor (HNF) 478–9
HOX 477–8
PAX2 473–5
WT1 475–7
Klinefelter syndrome 37
Klippel–Feil syndrome 412
Klippel–Trenaunay syndrome (KTS) 54
knock-in gene techniques 65
L1CAM 285–6
lacZ reporter gene 87–8
Laurence–Moon–Beidl (LMB) syndrome 21, 24
ld gene 131
Leber congenital amaurosis (LCA) 213
legs see limbs
lens of the eye 202, 203, 203
formation and development 217–18
limb buds
initiation 138–40
signalling molecules 135–6
limbs
abnormal development 145
amelia and meromelia 145–9
gene defects 144–8
proactyny 149–50
skeletal dysplasia 151
syndactyly 150–1
synostoses 150
development mechanisms 127–8
cell–cell interactions 128–30, 128
initiation of bud development 138–40
signalling molecules 130–8
developmental anatomy 123–5, 124
future study directions 151–2
main classes of defects 125–7
causation 126, 127
regeneration of limbs 140–1
differences between development and regeneration 143–5
patterning mechanisms 141–3
lissencephaly syndrome 3
lithium
teratogenicity 101
lumbosacral neural crest cells 268–9
precursors of enteric nervous system (ENS) 269–70
invasiveness 270
male gamete 38
mandibulofacial dysostosis 318
masculinization of females 117
Mash1 280
maternal diet, renal malformations 494–5
maxillofacial dysostosis 318
Mayer–Rokitansky–Kuster–Hauser syndrome 471
Meckel syndrome 472

INDEX
Meckel–Gruber syndrome 23
megalencephaly 188
 molecular regulation of cells 188–9
Meissner’s ganglia 264
melanocytes 396–7
meningocele 178
mercury
 teratogenicity 101
meromelia 125, 126
 causation 126
 development 145–9
mesenchyme 128–30
mesodermal cells
 paraxial segmentation 427–31, 429
 specification as paraxial 426–7
Met 484
methotrexate
 teratogenicity 101
microcephaly 188
 frequency 168
 molecular regulation of cells 188–9
microphthalmia 208–9
mirror hands 127
mitomycin C (MMC) 109
monosomy 33, 35
moonlighting proteins 60
mosaicism 397–8
Msx1 gene 136
mucopolysaccharidosis 3
Muir–Torre syndrome 398
myelomeningocele 178
myoclonus–dystonia syndrome 3

naevoid basal cell carcinoma syndrome
 (NBCCS) 399
nail–patella syndrome 471
nails 376, 377
netrins 283–4
neural tube defects 178, 179
 embryonic mechanisms 180–2
 environmental effects 180
 frequency 168
 genetic basis 179–80
neuregulin 285
neurocristopathies 184–5
neuronal migration disorders 185
 brain lamination defects 186–7

INDEX

 genes implicated 185
 neuronal heterotopias 187–8
 nitrofen (2,4-dichlorophenol-4’-nitrophenyl ether) 107–8
 nonsense-mediated decay (NMD) 57
 NTD 9
 oestradiol-17β 116
 oligodontia 518, 518
 oligosyndactyly 125
 optic nerve 213
 oral–facial–digital syndrome type 1 471
 ossicles of the ear 231, 232
 osteogenesis imperfecta 3
 otoliths 233
 P57-KIP2 488
 parietal foramina 321
 patched gene 134
 PAX2 473–5
 Pax3 280
 PAX6 gene 13
 perturbation analysis 9–10
 Peters anomaly 210
 pharyngeal arches 310
 phenotype see genotype and phenotype
 Phox2b 279
 piebaldism 397
 pinna 231, 232
 placodes 309–12, 311
 polarizing region of the mesenchyme 129
 polychlorinated biphenyls (PCBs)
 teratogenicity 101, 116
 polydactyly 126, 126
 position effect 81
 pre-implantation genetic diagnosis (PGD) 41, 42
 primary cilium–basal body complex 495–6
 primary congenital glaucoma (PCG) 211
 proadactyly
 development 149–50
 progress zone for limb development 129
 protein truncation test (PTT) 58
 proteins
 genetic encoding 4–5, 4
reeler gene mutation 186
Refsum disease 3
regulatory genes 5
renal–coloboma syndrome 471
renin–angiotensin system 492
rescue experiments 82
RET (receptor tyrosine kinase gene) 6, 53
retina 202, 203, 204
abnormal development of retinal neurons
and optic nerve 213
neural retina development 220
retinaldehyde dehydrogenase 2 (RALDH2) 285
retinoic acid 132, 133, 248
retinoids
teratogenicity 101
Robertsonian translocations 35–6, 36
Robo 284
schizencephaly
frequency 168
Schlemm’s canal 202
sclerotomes 438–40
specification of subdomains 440–3
semaphorin3A 284
semicircular canals of the ear 232, 233
septo-optic dysphasia 213
Shh gene 134
short interfering RNA (siRNA) techniques 88
short tandem repeat polymorphisms
(STRPs) 52
signalling pathways 13
Simpson–Golabi–Behmel syndrome 413, 471
single nucleotide polymorphism (SNP) 52
databases 52
single-strand sequence polymorphism
(SSCP) 57
SIP1 281
situs inversus 81
skeletal dysplasia 126
development 151
skin 373
cellular and molecular mechanisms
epidermis 376–9
developmental anatomy
epidermis 373–4
hair follicles 374–6, 375
nails 376, 377
future study directions 400–1
main classes of skin defects 391
basement membrane and collagen
disorders 394–5
carcinogenesis disorders 398–9
cornification disorders 395–6
ectodermal dysplasias 398
growth and differentiation disorders 399–400
intercellular connection diseases 393–4
keratinocyte integrity disorders 391–3,
392
mosaicism 397–8
pigmentation disorders 396–7
regulation and proliferation of epidermal
keratinocytes 379–84, 383
genes involved in hair morphogenesis
387–90, 389
migration of epithelial and non-
epithelial cells 384–5
programmed cell death 390–1
regulation and proliferation of
epidermal keratinocytes 380, 381, 382
skull, development of 316–17
Slit 284
small patella syndrome 9
Smith–Lemli–Opitz syndrome 29, 471
sonic hedgehog (SHH) signalling pathway
176–8
sonic hedgehog (shh) gene 13, 132
Sox10 279–80
sperm 38
spina bifida 7–8, 411
valproic acid (VPA) teratogenicity 105–6
spina bifida, open 178
embryonic mechanisms 182
spinal cord 167–8
see also central nervous system (CNS)
frequency of birth defects 168
spontaneous abortion 10
streptomyein
teratogenicity 101
surface plasmon resonance 64
syndactyly 126, 127
development 150–1
INDEX

syndromes 19–20
 see also congenital malformation syndromes
 age effects 22–3
 key features 23
 naming 20
 unusual features 24–5
 variability in severity 21–2
 variability of features 21
synostoses 125, 126, 127
 causation 126
 development 150

talpid gene 149
TAR syndrome 23
T-box genes 14–15
teeth
 causes of abnormal development
 abnormal development of other organs 525–6
 causative genes not predictable from phenotype 526–7
 defects in hard tissues 527–8, 528, 529
 deficient function of dental placodes and enamel knots 527
 cellular and molecular mechanisms
 communication between dental cells 520
 conserved signalling pathways 523–5, 524
 dental placodes and enamel knots 521–3, 522
 participating molecules 520–1
 regulation of ameloblast and odontoblast differentiation 525
 developmental anatomy 515–17, 516
 future study directions 529–31
 main classes of defects 517
 aberrations in number, shape and size of teeth 517–19, 518
 structure of dentine and enamel 519
 teratogens 99–100
 as clues 110
 dioxins 112–15, 114
 jervine alkaloids/cyclopamine 111–12
 retinoids 110–11
 xeno-oestrogens 115–17, 116
 as manipulative tools 108–10
 future directions 117
 general strategy 102, 103
 valproic acid (VPA) 102–6, 104
 gene–teratogen interaction 106, 107
 human malformations 100–2
 teratogens 101–2
 phenocopies 106–8
 renal malformations 494–5
 teratology of Fallot 358
 testosterone
 masculinization of females 117
 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) 112–15, 114
 tetracycline-controlled transactivator (tTA) 84–5, 85
 tetracyclines
 teratogenicity 101
 thalidomide
 teratogenicity 101, 109
 thrombophilia/haemorrhagic diathesis 3
 tissue grafting 8–9
 tobacco etch virus (TEV) 64
 Townes–Brockes syndrome 471
 transcription factors 5
 transforming growth factor (TGF) 113, 114, 134–5, 484–5
 transgenic techniques 79–80
 embryonic stem (EC) cells 88
 chromosome engineering 94
 conditional knock-outs 90–1, 91
 knock-in strategies 92–4
 knock-out 90
 principles 88–90, 89
 subtle mutations 91–2, 93
 future developments 95
 mice
 analysis of cis-regulatory elements 83–4
 applications 82
 ectopic expression studies 83
 inducible systems 84–5
 induction using CRE–loxP system 85–8, 86
 overexpression studies 82–3
 principles 80–1, 80
 siRNA techniques 88
INDEX

Treacher–Collins syndrome 58
trimethadione (TMD) 107
teratogenicity 101
trisomy 33, 34, 35, 37
tympanic membrane 231, 232
ulcerative colitis 3
ulnar–mammary syndrome 9
Urbach–Wiethe disease 57
urinary tract obstruction 493–4
Usher syndrome 253
3’-UTR mutations 59
5’-UTR mutations 59
vagal neural crest cells 266–8, 267
precursors of enteric nervous system
(ENS) 269–70
invasiveness 270
vaginal adenocarcinoma 115
valproic acid (VPA)
teratogenicity 102–6, 102, 104
VATER syndrome 21–2
ventricular septal defect (VSD) 107
vertebral column 411–14
congenital malformations 412–13
construction
axial identity of somites 434–8
cartilage differentiation and
osteogenesis 443–4
epithelial somite formation 433–4
formation and maintenance of
segmental boundaries 431–3
gastrulation 421–6, 422
mesodermal cells, paraxial
segmentation 427–31, 429
mesodermal cells, specification as
paraxial 426–7
sclerotomal subdomains 440–3
somite differentiation and
sclerotome formation 438–40
developmental anatomy 414–21, 420
mouse mutation affecting early
development 415–19
future study directions 444–5
vitamin A (retinol) 110–11
Vohwinkel syndrome 64
von Hippel Lindau disease 471
Waardenburg syndrome 413
warfarin
teratogenicity 102
Wiedemann–Beckwith syndrome 20
WNT 488–7
Wnt gene family 132, 135–6
Wolf–Hirschhorn syndrome (WHS) 412
wound epidermis 141
WT1 475–7
X monosomy 33, 35
xeno-oestrogens 115–17, 116
xeroderma pigmentosum (XP) 398
yeast artificial chromosome (YAC) 81
yeast two-hybrid (Y2H) screening
62, 63
zearalenone 116
Zellweger syndrome 3, 471
zone of polarizing activity (ZPA) 10–11

Index compiled by John Holmes