Chapter 1

Biological Sampling Design and Related Topics

1.1 PROFILING METHODS AND UNDERWATER TECHNIQUES

1.1.1 Introduction

Because so many marine studies are conducted in the intertidal or littoral zone, a review of methods of profiling beaches is now given.

1.1.2 Profiling a Beach

Profiling a beach involves measurements of changes in elevation from the top of the beach to the water. These changes are then plotted as a figure, appearing as if you were looking at the slope of the beach from the side. This enables one to then record the zonation of species above mean lower low water so that you know at what tidal level a density study of a species occurred. There are often two high tides and two low tides each 24 h on the Pacific coast of North America. Thus there is a high low and a low low tide each day. The yearly average of the low low tides is the mean lower low reference point.

There are several methods of obtaining profiles on a beach. Some of these are easier than others; some are more accurate. The method chosen will depend on the availability of equipment and time. The Sight method: Stand at point A (facing the ocean) and ask someone to stand at point B (perpendicular to the shoreline and in line with point A), X m downslope from point A (Fig. 1-1). The distance between points A and B will depend on the slope. The steeper the slope, the shorter the distance. The individual at point B holds a calibrated rod (2–3 m long) in a vertical position with the lower end of the rod resting on the average basal level of the substratum (e.g., between rocks on a rocky shore). The individual at point A then sights the horizon at point B and reads the intercepted height value on the rod. The distance
from the average basal level at point A to the individual’s eye line is measured and this value is subtracted from the horizon height at point B, giving the change in elevation over a selected distance. A string or twine placed between points A and B (Fig. 1-1) and leveled with a carpenter’s level can be used as a substitute for the horizon in foggy weather.

Other methods include using a hand level (with internal bubble for leveling), a Brunton compass (Fig. 1-2), plastic tubing with water, a self-leveling Surveyor’s instrument, and a Geographic Positioning System (GPS) or an altimeter with a high degree of accuracy for elevations.

1.1.3 Underwater Profiles

The angle of slopes underwater can be measured with a homemade inclinometer. View the slope sideways, estimating the angle (Fig. 1-3). [An inclinometer can also be used to measure slopes as well as the height of trees on land.]

For oceanographic studies, underwater seafloor profiles are obtained with a precision depth recorder or with sidescan sonar (Fig. 1-4) coupled with the GPS. Sidescan sonar can cover vast areas of the seafloor with a single sweep (the system GLORIA has a two-mile swath).
1.1.4 Underwater Techniques

Figure 1-2. The Brunton compass is used extensively by field geologists. It is tricky to operate as you must peer through two metal holes to the waterline and simultaneously look into the mirror and rotate a knob on the back until the bubble is level, then read off the angle or grade. The advantages are that you can easily measure slopes over long distances with only one person. The distance \(d \) between where you are standing (point A) and the site (Point B or waterline) is measured. Trigonometric functions are applied. \(h = d \sin a \) where: \(h \) = change in elevation (m), \(d \) = distance measured (m) between two points, \(a \) = angle measured (degrees). Once \(h \) is calculated, the distance from your eye level to the average substratum needs to be subtracted from \(h \). The Brunton compass is accurate to about \(1/2 \)° for elevations. Example: \(d = 50 \text{ m} \quad a = 20^\circ \sin a = 0.0159 \) therefore \(50 \times 0.0159 = 0.8 \text{ m} \) change in the level of the substratum.

Figure 1-3a. The plastic clinometer is held up sideways underwater on a reef and the angle of the slope estimated by moving the rotating rod until it follows the average slope line.

1.1.4 Underwater Techniques

environments by habitat type. An excellent book on sampling techniques in the tropics is by English et al. (1997). Hallacher (2004) presents an interesting overview of underwater sampling techniques on coral reefs. See also Fager et al. (1966), UNESCO (1984), and especially Munro (2005). Divers can use a clipboard and waterproof paper (polypaper). The sheets are held down with two large rubber bands (Fig. 1-5). A pencil is tied to the clipboard and the clipboard attached to a brass link on the diver’s belt. Alternatively, small polypaper notebooks are available. A very useful tool for measuring distances [e.g., using the Point-Center Quarter (PCQ)
method] is the collapsible rule. This rule can also easily substitute as a 0.25 m² quadrat frame (Fig. 1-6). Underwater recording systems are available for divers but they are expensive. WetPC and SeaSlate are recently developed underwater recording systems (see p. 310 in Chapter 8).

1.2 SAMPLING POPULATIONS

1.2.1 Introduction

The procedure by which the sample of units is selected from a population is called the sampling design. Adequate sampling design requires that the correct questions are asked and the study is carried out in a logical, systematic manner. The activities or stages in the study should flow as follows: purpose → question → hypothesis → sampling design → data collection → statistical analysis → test of hypothesis → interpretation and presentation of the results. Reasons for sampling populations often involve the need for estimates of densities of organisms and their distribution.
patterns (e.g., random, clumped, even). These data can then be used to compare community structure or to conduct population studies.

Sampling populations can be accomplished by survey designs (e.g., quadrats, line intercepts) or by model-based inference (Buckland et al., 2001). In a design-based approach to survey sampling, the values of a variable of interest of the population are viewed as fixed quantities. In the model-based approach, the values of the variables of interest in the population are viewed as random variables (Thompson, 2002). Model–based methods use a statistical model of the distribution of organisms based on likelihood methods (e.g., maximum likelihood estimation, Bayes estimation). One area of sampling in which the model-based approach has received considerable attention is with ratio and regression estimation (Thompson, 2002). It has been prevalent in sampling for mining and geological studies. Here we emphasize the use of survey designs. The classical text on sample design is Cochran (1977). An informative book on sampling is Thompson (2002). Murray et al. (2006) recently authored a book on monitoring rocky shores, a valuable source of information on sampling techniques with marine algae and macroinvertebrates.

Krebs (1999), in a leading text on ecological methodology, and Green (1979), in an excellent review of sampling design and statistical methods, each present 10 commandments for the field biologist. **They are combined here.** Italic or boldface fonts are explanations, additions, or emphases by the present author.

1. Find a problem and state concisely what question you are asking.
2. Not everything that can be measured should be. Use ecological insight to determine what are the important parameters to measure.
3. Conduct a preliminary survey to evaluate sampling design and statistical analysis options. **Preliminary surveys are critical for well-designed studies.**
4. Collect data that will achieve your objectives and make a statistician happy. Take replicate samples for each condition (time, space, etc.). See Hessler and Jumars (1974).
5. **Take an equal number of random replicate samples (at least two) for each condition.** Replicate samples often have 50–90% similarity. **Equal numbers of samples are required for many statistical tests.**
6. Verify that your sampling device or method is sampling the population with equal and adequate frequency over the entire range of sampling conditions to be encountered.
7. If the sampling area is large-scale, break it up into relatively homogenous subareas and sample them independently. Allocate samples proportional to the size of the subarea. If an estimate of total abundance is desired, allocate samples proportional to the number of animals in the subarea. **Optimal allotment is to allocate on the basis of within stratum variances** (Stuart Hurlbert, pers. comm.).
8. Adjust the sample unit size (i.e., number of samples needed) relative to sizes, densities, and spatial distribution of organisms to be sampled. Choose the optimal quadrat size (see Southwood, 1978 and p. 17 in this chapter). **Estimate the number of replicates needed to obtain the precision you want**
(Gonor and Kemp, 1978, Krebs, 1999, and see p. 10 in this chapter). Fractal methods (Chapter 3, p. 168), analysis of variance (Chapter 2, p. 88), and power analysis (Chapter 2, p. 100) can also be used to determine the required sample size.

(9) Test the data to determine whether the error variation is homogenous, normally distributed (i.e., has a bell-shaped curve), and independent of the mean. If not, as in most field data, (a) transform the data (Chapter 2, p. 66), (b) use nonparametric analysis (Chapter 2, p. 102), (c) use sequential sampling design (see p. 27 in this chapter and Krebs, 1999), or (d) test against simulated H0 (null hypothesis) data (Connor and Simberloff, 1986 and Chapter 3, p. 141).

(10) Stick with the result. Do not hunt for a better one.

(11) Some ecological questions are impossible to answer at the present time. For example, historical events that have helped establish future ecological patterns (e.g., asteroid impacts, rats).

(12) Decide on the number of significant figures needed in continuous data before an experiment is started.

(13) Never report an ecological estimate without some measure of its possible error.

(14) Always include controls (in experimental studies).

(15) Be skeptical about the results of statistical tests of significance. Cut-off points such as $P = 0.05$ (95% confidence level in your statistical answer) should be considered as shades of gray instead of absolute boundaries.

(16) Never confuse statistical significance with biological significance. Biological characteristics are often much more important than results from a statistical test.

(17) Code all your ecological data and enter it on a computer.

(18) Garbage in, garbage out. Poor data give poor results, no matter what kind of data analysis is used.

Two worthwhile books on terrestrial statistical ecology are those of Ludwig and Reynolds (1988) and Young and Young (1998). Dale (1999) and Fortin and Dale (2005) discuss spatial analysis. Sutherland (1996) discusses basic ecological census techniques then covers specific taxa (plants, invertebrates, fishes, amphibians, reptiles, birds, mammals) and environmental variables. For standard methods in freshwater biology see p. 353 in Chapter 8. See also Elliott (1977) and Gonor and Kemp (1978).

The most important thing one can do when planning a field study is to make a preliminary survey of the study site. This will indicate whether the organisms are present and provide some information on their density, distribution, and possibly their role in community structure. This preliminary step automatically biases the sampling procedure since further sampling will often take place where the organisms are relatively abundant, but it saves considerable time, effort, and costs for the definitive study.
Four major methods of obtaining population estimates include (1) sampling a unit of habitat and counting organisms in that unit, (2) distance or nearest neighbor techniques, (3) mark-recapture, and (4) removal trapping (Southwood and Henderson, 2000). Removal methods have poor precision and the potential for a large degree of bias (Buckland et al., 2001), thus will not be considered here. Frontier (1983) discusses sampling strategies in ecology.

1.2.2 Sampling Design

Sampling design varies considerably with habitat type and specific taxonomic groups. Kingsford and Battershill (1998) present sampling designs and data analysis based on specific marine habitats. Design analysis in benthic surveys is discussed by Underwood and Chapman (2005). Sampling design begins with a clear statement of the question(s) being asked. This may be the most difficult part of the procedure because the quality of the results is dependent on the nature of the original design. A preliminary survey of the proposed study area is essential as spatial and temporal patterns of selected species can be assessed. If the sampling is for densities of organisms then at least five replicate samples per sampling site are needed because many statistical tests require that minimal number. Better yet, consider 20 replicates per sampling site and in some cases 50 or more. If sample replicates are less than five then bootstrapping techniques can be used to analyze the data (see Chapter 2, p. 113). Some type of random sampling should be attempted (e.g., stratified random sampling) or a line intercept method used to estimate densities (e.g., Strong Method). Measurements of important physical–chemical variables should be made (e.g., temperature, salinity, sediment grain size, etc. – see Chapter 8). Field experiments need to be carried out with carefully designed controls (see Chapter 2, p. 97). The correct spatial scale needs to be considered when planning experiments (Stiling, 2002). Environmental impact assessments ideally attempt to compare before and after studies. For example, a coastline destined to have a new sewage outfall constructed could be studied in detail prior to its initial operation. This study then could be repeated two years after the outfall system begins operation. Because before and after studies are often not feasible, an alternative is to compare impacted areas with nearby unaffected (control) areas.

Peterson et al. (2001) analyzed four major sampling designs in shoreline studies of the impacts of the Exxon Valdez oil spill in the Gulf of Alaska. Two studies employed stratified random sampling techniques and two had fixed (nonrandom) sites. For an explanation of these methods, see pp. 20 and 23 in this chapter. There were differences in sampling sites, sampling dates, effort, replication, taxonomic categories, and recovery data. That the studies came to different conclusions is no surprise (for a similar example of differing interpretations but with the same ecological data see Ferson et al., 1986). The results emphasize how important is sampling design. Gotelli and Ellison (2004) and Odum and Barrett (2005) have informative chapters on sampling design. Diserud and Aagaard (2002) present a method that tests for changes in community structure based on repeated sampling. This may be

1.2.3 Physical–Chemical Factors

Physical and chemical measurements (temperature, salinity, etc.) are frequently carried out when sampling organisms. Techniques for collecting physical–chemical data are discussed in Chapter 8 for marine biology and oceanography. Multivariate analysis of physical–chemical–biological data is discussed in Chapter 5.

1.2.4 Timing of Sampling

The timing of sampling varies with season, age, tides, sex, and other factors. For example, many nocturnal fishes are inactive during the day and seldom observed at that time (Bakus, 1969), thus sampling needs to be done at dawn, dusk, or during nighttime hours for these fishes. Some abundant tropical holothurians move from cryptic habitats and subtidal depths into shallower waters as they mature (Bakus, 1973). There are numerous others changes that occur among species over space and time. These behaviors need to be considered to optimize field studies.

1.2.5 Size of the Sampling Area

The size of the sampling area is highly variable. One must compromise between the overall size of the habitat and the distribution, size, and habits of the organisms, and the statistical measures to be employed before all data have been collected.

1.2.6 Scale

The effects of scale on the interpretation of data have become a very important issue in ecology. The scales commonly encountered in ecology include the individual, patch of individuals, community, and ecosystem (Stiling, 2002). Data based on different spatial scales can yield answers to different questions or even result in different conclusions. One of the earliest discussions on the effects of scale on the interpretation of data from the marine environment is that of Hatcher et al. (1987). For more recent developments see Podani et al. (1993), Schneider (1994), Peterson and Parker (1998), Scott et al. (2002), and Seuront and Strutton (2003). See Fig. 3-1 on p. 124 for examples of how changes in scale can result in different interpretations of the same data. Also see Mann and Lazier (2005).
1.2.7 Modus Operandi

The following sections describe quantitative techniques that give numbers of samples required or densities of organisms. Many of these techniques originated in terrestrial studies and were later employed in aquatic habitats. The examples described herein often center around shorelines or terrestrial sites because most people are familiar with these habitats. Moreover, relatively few students have had shipboard experience to relate to. Nevertheless, these quantitative techniques are often modified and used in seafloor and water column studies as well. For example, plankton sampling can be performed haphazardly, by systematic sampling, or by following a transect line. Infaunal sampling can be carried out with simple random sampling and coordinate lines, stratified random sampling, or line transects. A submersible can perform systematic sampling, belt or strip transects, line intercepts, and so forth. For information on benthic and water column sampling devices see Chapter 8. For information on seafloor sampling techniques see Holme and McIntyre (1984), Mudroch and MacKnight (1994), and Eleftheriou and McIntyre (2005). For information on water column sampling techniques see Hardy (1958), Strickland (1966), Harris et al. (2000), and Paul (2001).

Many of the sampling designs are relatively simple but some (e.g., sequential sampling, mark or tag and recover) can be complex and involve pages of equations and calculations. For those cases, the author refers the reader to references that provide details. A number of special sampling techniques (e.g., coral reef surveys, large scale sampling, etc.) are presented after the discussion of common plot and plotless methods. Collected data can be stored on Microsoft Excel spreadsheets for analysis.

1.2.8 Sample Size or Number of Sample Units Required

Density is the number of individuals per unit area or unit volume. The number of sample units required for a density study is dependent on the variation in population density and the degree of precision required. There are numerous methods for estimating the sample size (i.e., number of samples) needed in any study. The traditional methods have emphasized the variance to mean ratio, such as in the following example for a normal distribution (Cochran, 1977):

\[n = \frac{t^2 \, SD^2}{(E \, \bar{X})^2} \]

where

- \(n \) = number of sample units
- \(t \) = \(t \) value
- \(SD \) = standard deviation
- \(E \) = allowable error (e.g., 10% = 0.1)
- \(\bar{X} \) = mean
First conduct a preliminary sampling then calculate the sample mean and the sample variance (σ^2 – see Chapter 2, pp. 76 and 77). Look up the critical t value at $P = 0.05$ and the degrees of freedom (number of samples – 1). Enter the table t value in the equation and the allowable error, say 10% (use 0.1).

Example: The density of brown giant kelp ($Macrocystis pyrifera$) or trees per 100 m2 is: 17, 7, 8, 5, 3, 5.

The t value for 5 degrees of freedom at $P = 0.05$ is 2.6.
The mean = 7.5 and the variance = 24.7. With an allowable error of 0.1 (10% error):

$$\text{No. of samples units needed} = \frac{(2.6)^2 (24.7)}{(0.1 \times 7.5)^2} = 223$$

This large number is based on limited preliminary sampling. Taking more sample units during preliminary sampling could further reduce the number of sample units (decrease the variance) required for the definitive study. A preliminary survey is essential in obtaining precursory density estimates in order to use a preferred method to estimate how many sample units will be needed for a final or definitive study. If this is not possible then a survey of the literature of similar studies is essential.

For population studies, the approximate number of sample units needed with a Poisson (random) Distribution is estimated by Krebs (1999:244) as follows:

$$n \approx \left(\frac{200}{r} \right)^2 \frac{1}{\bar{X}}$$

where

- $n =$ sample units required (e.g., number of quadrats or plots)
- $\equiv =$ approximately equal to
- $r =$ allowable error (%)
- $\bar{X} =$ mean

Example
For a mean of 10, a 10% allowable error, and $\alpha = 0.05$ (95% confidence level – see Chapter 2, p. 81):

$$n \approx \left(\frac{200}{10} \right)^2 \left(\frac{1}{10} \right)$$

$$n \approx (400)(0.1)$$

$$n \approx 40 \text{ samples (e.g., quadrats).}$$

Krebs (2000a) has a computer program for this – listed under “quadrat sampling.” See the Appendix.
The approximate number of sample units needed with a negative binomial (aggregated) distribution is estimated by Krebs (1999:245) as follows:

\[n \approx \frac{(100t_\alpha)^2}{r^2} \left(\frac{1}{\bar{X}} + \frac{1}{k} \right) \]

where

- \(n \) = sample units required (e.g., number of quadrats)
- \(\approx \) = approximately equal to
- \(t_\alpha \) = \(t \) value for \(n-1 \) degrees of freedom (= 2 for 95% confidence level)
- \(\bar{X} \) = mean
- \(k \) = estimated negative binomial exponent
- \(r \) = allowable error (%).

Approximate estimation of \(k = \frac{(\bar{X})^2}{(S)^2 - \bar{X}} \)

where

- \(\bar{X} \) = mean
- \(S \) = standard deviation.

Krebs (2000a) has a maximum likelihood estimation computer program for this - listed under “quadrat sampling.” This produces a more precise estimate of \(k \).

Example

For a mean of 4, error of 10%, and negative binomial exponent of 3.

\[n = \frac{(200)^2}{(10)^2} \left(\frac{1}{4} + \frac{1}{3} \right) \]

\[n = 400 \times (0.25 + 0.33) \]

\[n = 232 \text{ samples (e.g., quadrats).} \]

The major problem with many of these equations is that the precision level (i.e., 10% allowable error, an arbitrary value) results in too many sample units being required (i.e., often several hundred in the intertidal zone). Hayek and Buzas (1997) state that a precision level of 25–50% is all that is reasonably attainable in many field studies. The 10% sample error may often be met by terrestrial plant ecologists. They contend neither with the tides nor with slow underwater operations. I call this the 1:5:10 rule of thumb, that is, intertidal density studies may take about five times longer, and subtidal studies 10 times longer to obtain the same amount of density data (using plot sampling) as that of many terrestrial studies (e.g., tree densities). When temporal or spatial variation in a population is large, a small number of sample units provides imprecise estimates of population values, so that models derived from such data may be quite distorted (Houston, 1985).
The best sample unit number is the largest sample unit number (Green, 1979). It is better to sample the same total area or volume by taking many small sample units rather than few large ones, according to Green (1979) and Southwood and Henderson (2000). However, this does not consider edge effects, cost considerations, and so forth. Population density (and variance) is always fluctuating thus too much emphasis should not be placed on a precise determination of the optimum size of the sampling unit (Southwood and Henderson, 2000). See Krebs (1999) and Southwood and Henderson (2000) for a discussion of this topic and Krebs (2000a) for a computer program. If one wishes to sample community structure, another method of determining sample size is to use a species area curve (see Chapter 3, p. 145). A newer method of estimating required sample unit number is power analysis, discussed in Chapter 2, p. 100, regarding experimental methods. See also Green (1989).

A correction factor (fpc or finite population correction factor) is employed when sample unit sizes represent more than about 5% of the population. This can be used to reduce the sampling error or the sample unit size required. The equation is:

\[
fpc = \sqrt{\frac{N - n}{N - 1}}
\]

where

- \(fpc \) = finite population correction
- \(N \) = size of the population
- \(n \) = size of the sample

Assume \(N = 2000 \) and \(n = 200 \)

\(fpc = 0.901 \)

For example, if the estimated number of sample units needed is 162 and the \(fpc = 0.901 \), then the corrected number of sample units needed is:

\[
162 \times 0.901 = 146 \text{ samples}
\]

In sampling small populations, the fpc factor may have an appreciable effect in reducing the variance of the estimator (Thompson, 2002). For further information see the Internet for numerous examples.

For pollution studies, if you want to know how many sample units to take in order to determine if pollution standards have been exceeded, the following equation has been used:

\[
N = Y \frac{Zs^2}{D^2 \bar{X}^2}
\]
where

\[N = \text{no. of sample units required} \]
\[Y = \text{expected level of change (\% expressed as a decimal)} \]
\[s = \text{standard deviation} \]
\[D = \text{allowable error (10\% or 0.1)} \]
\[\bar{X} = \text{mean} \]
\[Z = \text{a function of the distance from the mean in standard deviation units.} \]

2-tailed test: \[Z (p = 0.05) = 1.96 \text{ (=95\% confidence level)} \]
\[Z (p = 0.01) = 2.58 \text{ (=99\% confidence level)} \]

Example

Assume a \(Z \) of 1.96 (95\% confidence level), 20\% change, allowable error of 10\%, mean of 10, and standard deviation of 4.

\[Y = 0.2 \frac{(1.96)(4)^2}{(0.01)(10)} \]
\[Y = 63 \text{ samples} \]

1.3 QUANTITATIVE SAMPLING METHODS

1.3.1 Introduction

Major methods of sampling marine benthic organisms for abundance can be conveniently categorized as plot and plotless. This section will give only a brief introduction as to how these sampling programs are carried out. The reader is referred to Southwood (1978), Seber (1982), Hayek and Buzas (1997), Krebs (1999), and Thompson (2002) for detailed information. Eleftheriou and McIntyre (2005) discuss methods for the study of marine benthos. The seasonal timing of sampling is determined by the life cycle (Southwood and Henderson, 2000). Plot methods incorporate the use of rigid boundaries, that is, squares (quad-rats), rectangles, or circles (circlelets, unfortunately also called quadrats by some investigators), and circumscribe a given area in which organisms are counted or collected. They are used to save time, instead of conducting total counts or a census of organisms, and to remove bias in sampling. Bias is a systematic, directional error (McCune et al., 2002).

Some traditionally plotless sampling techniques become plot techniques when boundaries are added for convenience (e.g., PCQ – see below), and coordinate lines in simple random sampling create sample points rather than fixed boundaries or plots. Establishing transect lines or cluster sampling can be followed by either plot or plotless sampling techniques. Thus plot and plotless are somewhat flexible terms yet are convenient to use.
The plot method of sampling generally consists of three major types: (1) simple random or random sampling without replacement, (2) stratified random, and (3) systematic (Cochran, 1977). Simple random sampling with replacement is inherently less efficient than simple random sampling without replacement (Thompson, 2002). It is important not to have to determine whether any unit in the data is included more than once. Simple random sampling consists of using a grid or a series of coordinate lines (transects) and a table of random numbers to select several plots (quadrats), the size depending on the dimensions and densities of the organisms present (Fig. 1-7 and see p. 19). The advantage of using these standardized sizes is that comparisons can be easily made between the densities of species in different regions and with data collected from the past. Some divers have used circular frames (e.g., using 3 lb. metal coffee cans [approximately 8 inches (20 cm) high by 6 inches (15 cm) in diameter] to core surface sediments in the shallow waters of the coastal Arctic Ocean because this is a convenient way to collect infauna in that region).

The basal area of trees or forest stands has more functional significance than most descriptors of forest structure. Density measurements are of relatively little value with plants unless applied to restricted size classes (McCune et al., 2002).

See Arvantis and Portier (2005) for information on natural resource sampling methodology.

1.3.2 Table of Random Numbers

In the past, few texts had tables of random numbers in columns of two digits, which gave numbers from 1 to 99, convenient for ecologists. The tables were typically columns of four digits. A random number generator starts with an initial number then uses a deterministic algorithm to create pseudorandom numbers (Michael Arbib, pers. comm.). A table of random numbers is shown in Table 1-1. Tables of random numbers are used to take samples randomly. Samples are taken randomly to remove bias.

![Figure 1-7](image_url)

Figure 1-7. Simple random sampling. Random numbers from a table of random numbers give 1,6,8 for the squares and 2-4, 2-6, 3-6 for the coordinate lines, indicating the areas or points to be sampled (e.g., to count animals).
16 Chapter 1 Biological Sampling Design and Related Topics

1.3.3 Quadrat Shape

Ecologists have used squares, rectangles, and circles (e.g., 3 lb. coffee cans to core sediments by hand; a 1 m long piece of twine tied to a stake and rotated in a circle as one counts benthic organisms; in songbird surveys). The most common shape for sampling benthic marine organisms is a square (67%), followed by circles (19%), and rectangles (14%) (Pringle, 1984). Rectangular frames with a size ratio of 2:1

Table 1-1. A table of random numbers.

| random numbers table range from 01 to 99 usable numbers, in a three-column random numbers table from 01 to 999, and in a four-column random numbers table from 01 to 9999. To use the table, one can proceed from top to bottom (e.g., 20 to 55). Begin with the first column and proceed to the bottom then go to the top of the second column and proceed to the bottom, and so forth. You can also start from a haphazard location in the table (Thompson, 2002). Note that some of these numbers are very close to one another (e.g., 32, 35, 33) by chance. This can skew the results of your survey if you are sampling by the simple random sampling method (see Figure 1-9). This is why ecologists use some type of stratified random sampling in plot techniques. If you need more numbers go to the computer and generate more.

| The numbers are arranged into columns of two digits, ideal for the field biologist. Other tables of random numbers may have columns of three or four digits. The digits in a two-column random numbers table range from 01 to 99 usable numbers, in a three-column random numbers table from 01 to 999, and in a four-column random numbers table from 01 to 9999. To use the table, one can proceed from top to bottom (e.g., 20 to 55). Begin with the first column and proceed to the bottom then go to the top of the second column and proceed to the bottom, and so forth. You can also start from a haphazard location in the table (Thompson, 2002). Note that some of these numbers are very close to one another (e.g., 32, 35, 33) by chance. This can skew the results of your survey if you are sampling by the simple random sampling method (see Figure 1-9). This is why ecologists use some type of stratified random sampling in plot techniques. If you need more numbers go to the computer and generate more.

1.3.3 Quadrat Shape

Ecologists have used squares, rectangles, and circles (e.g., 3 lb. coffee cans to core sediments by hand; a 1 m long piece of twine tied to a stake and rotated in a circle as one counts benthic organisms; in songbird surveys). The most common shape for sampling benthic marine organisms is a square (67%), followed by circles (19%), and rectangles (14%) (Pringle, 1984). Rectangular frames with a size ratio of 2:1
1.3 Quantitative Sampling Methods

tend to give slightly better results with population estimates than do square frames in terrestrial studies (Krebs, 1999). Thompson (2002) compared nine types of plots and compared their detectability functions. **Long, thin rectangular plots are more efficient than square or round plots.** Various line transects, variable circular plots (radial transects), and plots with holes in them (i.e., torus or doughnuts) gave intermediate results. However, if there is a clinal gradient of some type, a rectangular quadrat can be aligned parallel or perpendicular to the cline and the variance in the density can be very different. Long quadrats cover more patches, whereas narrow rectangles (size ratios higher than 4:1) can create a severe edge effect, in which too many organisms may cross the boundary of the quadrat, resulting in more frequent counting errors. Typically, animals intercepting the top and left-hand boundaries are counted (Southwood and Henderson, 2000). Edge effects often produce a positive bias or a number greater than the true density (Krebs, 1999). Edge effects, in theory, are least with circles, intermediate with hexagons, and greatest with squares and rectangles because bias introduced by edge effects are proportional to the ratio between the boundary length and the area within the boundary (Southwood and Henderson, 2000). Circles are the poorest shape for estimation from aggregated distributions, resulting in high variances (McCune et al., 2002). Squares are also poor and rectangles better for aggregated distributions, especially narrow rectangles, but narrow rectangles may exhibit severe edge effects.

1.3.4 Optimal Quadrat Size

The optimal size for a quadrat depends on many factors. Changes in quadrat size (i.e., scale) can result in differences in the interpretation of field data, such as abundance, associations between species, and the degree of aggregation within a species (Fig. 3-1 on p. 124). One rule of thumb is to select a size of quadrat that will not give frequent yields of zero counts of individuals. **Use the smallest quadrat that is practical or easiest to use but will also sample organisms adequately.** The larger the species the larger the quadrat size. The optimal size for aggregated species is the smallest size relative to the size of the species (Green, 1979). For example, when counting small, numerous barnacles, you may use a 0.1 m² quadrat frame, but then subdivide the frame into 50 or 100 small squares. A smaller size often results in increased precision of estimates with aggregated distributions because the boundary is small, thus one would be less likely to either double-count or undercount individuals. Moreover, smaller sizes often result in a smaller variance around the mean but scaling factors may alter this (Greig-Smith, 1964). Pringle (1984) found that the 0.25 m² quadrat was the most efficient size for sampling benthic marine macrophytes. Dethier et al. (1993) concluded that 10 × 10 cm quadrats were effective for visual estimates of the abundance of sessile benthic marine organisms. A compromise in frame size must be made when more than one species is being studied and counted within the same quadrats. Interactions between adjacent organisms (e.g., production of allelochemicals) may result in the species growing only a certain distance from each other. These interactions should also be considered when determining quadrat size, especially on coral reefs (Wilfredo Licuanan, pers. comm.).
Techniques have been developed to determine the most appropriate group frame size (Southwood, 1978) but field experience seems to be the most efficient and effective determinant of frame size. Southwood (1978) suggests that the relative net precision of a unit of a given size is as follows:

$$RNP = \frac{1}{CuS^2u}$$

where

- RNP = relative net precision
- Cu = relative cost of taking a sample (usually time)
- S^2u = variance among unit totals.

Example

Cost (Cu) = 4 h
Variance = 25

$$RNP = \frac{1}{4 \times 25} = \frac{1}{100} = 0.01$$

The highest value of RNP is the best unit. For multiple species, sum the relative net precision values for each quadrat size over all species of interest and choose the unit with the highest sum. If certain species were more important than others (i.e., ecologically as numerical dominants or as keystone species), weighting of their relative precision values would be appropriate. Krebs (1999) recommends the Wiegart method (Wiegart, 1962) in which quadrat size (x-axis) is plotted against relative cost (i.e., time, y-axis) (Fig. 1-8). The size of quadrat with the lowest “cost” is preferred. Krebs (2000a) provides computer programs for determining optimal quadrat size. See the Appendix.

In practice, ecologists often use a range in the size of quadrats from 0.1 to 1.0 m2 (but also 0.01 m2 for small organisms such as barnacles and 100 m2 when sampling the distribution and abundance of trees) to cover all of the possibilities in

Figure 1-8. The Weigert method for determining the best quadrat size. It is 2 m2 in this example. Source: modified from Krebs (1999).
a standardized fashion (e.g., number of organisms per 1, 10, or 100 m2). However, one cannot always accurately extrapolate species richness or density in a small area (e.g., 0.1 m2) to species richness or density in a larger area (e.g., 1 m2) because the relationship between the two areal sizes is often nonlinear. Such extrapolations are done frequently for convenience, but must be interpreted carefully. See West (1985) for an interesting discussion on nonlinearity.

When counting organisms in a quadrat, one should examine each quadrat in a similar manner. For example, in looking down on a quadrat from above, you may wish to exclude animals in cracks and crevices (because including cracks and crevices creates numerous complications such as differences in crevice size, shape, depth, etc.). This standardizes the procedure and greatly simplifies the sampling process.

1.3.5 Simple Random Sampling

Simple random sampling consists of using a grid or a series of coordinate lines (transects) and a table of random numbers to select plots (e.g., squares, quadrats). The bottom right side of Fig. 1-9 shows the main pitfall of the simple random sampling technique, that is, that the random numbers may occur in such a fashion as to concentrate sampling effort mostly in one part of the study area, missing important parts of the study area. The other major criticism is that the simple random sampling method is unfeasible for large areas (for example, Marsden squares in the ocean or dense forests) since too much time is wasted in moving from one place to a distant site. Marsden squares represent areas on a Mercator chart of the world, each square measuring 10 degrees of latitude by 10 degrees of longitude.

1.3.6 Haphazard (Convenience, Accidental, Arbitrary) Sampling

Haphazard sampling is often carried out in the field to substitute for random sampling. It is sampling without the use of a classical sampling design. Bias is always a problem in haphazard sampling. A diving project in the Maldive Islands required random sampling. Random sampling would have taken an inordinate amount of time and time was limited, thus haphazard sampling was employed. A biologist had

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Figure 1-9. Problems with simple random sampling. Three numbers were chosen randomly from a set of number ranging between 1 and 9. By chance they all fell in the lower part of the sampling area. If this were an intertidal site, the study would give an incomplete picture of community structure as it would leave out the middle and upper intertidal zones.
Chapter 1 Biological Sampling Design and Related Topics

initially and casually swum through the potential site to finally select it as a suitable study area (i.e., it had living hard coral growth rather than continuous sand). He then swam across a flat coral reef area, dropping weights haphazardly every 30 sec, without looking at the seafloor. These weights then became corners of quadrats to be sampled. Some bias was thus removed without random sampling and the effort was highly time efficient. McCune et al. (2002:17) refer to this technique as “arbitrary but without preconceived bias.”

1.3.7 Stratified Random Sampling

The sampling design is called stratified random sampling if the design within each stratum (e.g., habitat or elevation) is simple random sampling (Cochran, 1977; Thompson, 2002). In some cases it may be desirable to classify the units of a sample into strata and to use a stratified estimate, even though the sample was selected by simple random sampling, rather than stratified random sampling. Stratified random sampling involves choosing subsamples with a table of random numbers from each of the major plots or quadrats which are arranged in strata in the study area (Fig. 1-10). This method is frequently used since the sampling is conducted throughout the study area. The advantage of using either simple random or stratified random sampling techniques is that standard statistical procedures can be applied. Stratified random sampling uses a table of random numbers and is often considered to be the most precise method of estimating population densities other than a direct total count or census, for two reasons. It covers the entire study area and samples randomly from each subdivision of the study area (Southwood and Henderson, 2000). Nevertheless, contrary to assumption, stratified random sampling is not necessarily the most accurate method of sampling the environment (because too few samples may be taken and because it may not be as accurate as some line intercept methods with highly aggregated organisms – see p. 43) and it is often labor intensive for divers and for surveys in dense forests when compared to some plotless methods.

Figure 1-10. Stratified random sampling. The study area is divided into nine large squares (in this example) and each large square into four smaller squares. A table of random numbers is used to select a number (i.e., the dots) between 1 and 4 in each of the larger squares. Thus all strata (3 from top to bottom) are sampled and each large square is sampled randomly.
1.3 Quantitative Sampling Methods

Stratified random sampling can be carried out in various ways. A grid can be constructed and subdivided into strata, each stratum being subdivided into smaller plots. A table of random numbers is then used to select one of the smaller plots from each of the larger subunits of the stratum (Fig. 1-10). Another method of accomplishing the same goal is to arrange transect lines or coordinates across a study area then mark off every 5 m along each line. A table of random numbers is used to select some of the designated points along each line for sampling (Fig. 1-11). A better alternative to this is to mark off the line at each 5 m interval then set up a grid at each point, selecting, for example, one subunit of each set of four subunits per grid using a table of random numbers. (Fig. 1-12). This method covers the entire study area and is sampled randomly.

Figure 1-11. Stratified random sampling. A series of transect lines (metric tapes) are lain across the beach. Clothespins are placed at 5 m intervals. A table of random numbers is consulted and one number from 1 to 6 is selected for each transect line. A 0.1 m² quadrat frame is placed in four positions at those random spots and numbered 1–4. A table of random numbers is used to select one number between 1 and 4 for each box on each transect line. The organisms in the selected subunits are then identified and counted, the clothespins removed when the counting is completed. A total of four counts are made in this example.

1.3.8 Systematic Sampling

Systematic sampling is used when a uniform coverage of the area is desired. It can be safely used for convenience when the ordering of the population is essentially random (Cochran, 1977). It is often used in marine studies where the primary interest is to map distributions or monitor sites with respect to environmental gradients or suspected sources of pollution (Southwood and Henderson, 2000; McDonald, 2004). Systematic sampling involves choosing a constant sampling pattern (for example, every other quadrat or every third quadrat, see Fig. 1-13). Note that the systematic pattern may conform with an environmental pattern (e.g., quadrats 3-5-7 in Fig. 1-13) and this biases the overall results. For example, the systematic pattern could follow a ridgeline of serpentine soils or an intrusive ribbon of intertidal rock of a different characteristic.
than the surroundings (Fig. 1-14). The sampler would thus collect more endemic plants that grow on serpentine soils or a different assemblage of marine invertebrates, thus biasing the overall picture. **Because there is no element of random sampling in this method, standard statistical tests cannot be used** (Southwood and Henderson, 2000). When statistical tests are applied to data from systematic studies, the probability (p) values are not accurate (McCune et al., 2002). One major advantage of the systematic method is that it often simplifies logistics involved in sampling and is useful in fields such as forestry (mensuration) or deep-sea sampling. It may also increase the probability of collecting uncommon species in species-rich areas. A higher density of clams was detected in Prince William Sound, Alaska, in systematically located sites than in preferred clam habitat (McDonald, 2004). One can combine methods, such as using systematic sampling to cover large areas with stratified random sampling within each of the systematic sampling plots. See Buckland et al. (2001), Hayek and Buzas (1996), and Thompson (2002) for general sampling techniques and Keith (1991) and Mueller et al. (1991) for environmental sampling.
1.3 Quantitative Sampling Methods

1.3.9 Fixed Quadrats

Fixed quadrats can be placed on the reef (e.g., depth 5 or 10 m on the reef flat and 20 or 30 m on the reef slope) to show changes over time. A convenient size is 2×2 m divided into four squares for photography. Each 2×2 m quadrat can be located some distance apart (e.g., 30 m) for variation in settled species on tropical coral reefs. For example, in temperate latitudes, the rocky intertidal marine biota parallel to the shore often does not change much over a distance of 30 m. However, a study in species-rich Fiji showed that the macrofauna (principally hard corals and soft corals) on two pinnacles (only 100 m apart and 5 m below the sea surface) differed in species composition by 95% (Bakus et al., 1989/1990). The quadrats can be visited during wet and dry seasons and photographed from year to year. Joe Connell (pers. comm.) has records on intertidal quadrats that extend over 50 years. For information on coral reefs see Wells (1988), English et al. (1997), ICLARM (2000), and Spalding et al. (2001). Similar techniques can be applied to temperate rocky reefs.

1.3.10 Point Contact (Percentage Cover)

When organisms are modular (e.g., coral colonies), too difficult to distinguish as individuals (e.g., crustose algae, rose bramble), or take too much time to count (e.g., dense population of small barnacles or grass blades), percentage cover is used in place of direct counts to save time and effort. A grid with small subdivisions (e.g., small squares measuring 0.01 m2) is placed over the organisms and the area occupied (as a percentage) is estimated. Another method would be to use 100 points to estimate the percentage cover of species of interest in photographs (see Fig. 1-15 and Rapid Sampling Methods on p. 27). However, Dethier et al. (1993) found that random-point quadrats (RPQ) using 100 points were more accurate and less variable than 50 points, but were still less accurate and much slower to carry out than visual estimates. The RPQ method often missed rare species, that is, those with $<2\%$ cover. Effective visual estimates of sessile benthic organisms were made with 10×10cm quadrats. The advantages of percentage cover estimation are that the
area covered by each taxon is tabulated, and rare or uncommon species are less frequently overlooked in comparison to point intercept methods (Hallacher, 2004).

Percentage cover is the most commonly used abundance measure for plants, often expressed as cover classes (McCune et al., 2002). Authors use different cut-off points for cover classes. Raw percentage data are often transformed to de-emphasize dominant species whereas percentage cover class data seldom have this problem.

1.3.11 Line and Belt (Strip) Transects

A line transect is characterized by a detectability function giving the probability that an animal or plant at a given location is detected (Thompson, 2002). The probability of detection usually decreases as distance from the transect line increases. Variance estimates based on several transects are preferred over estimates based on a single transect. Many surveyors prefer a systematic selection of transects to avoid the uneven coverage of the study region obtained with random sampling. Transect lines may also be selected with the probability proportional to length by selecting n points independently from a uniform distribution over the entire study area (Thompson, 2002).

Walk or swim along a transect line at a constant speed and record animals observed. This is the mobile analog of the nearest neighbor technique (Southwood, 1978). This technique has some difficulties, such as estimating the velocity of a swimming organism (see the Southwood equation on p. 51). Other estimators of populations with line transects (e.g., Fourier series estimator) are discussed by Krebs (1999). See a discussion of plotless methods below by Bouchon (1981), Heyer et all.
1.3 Quantitative Sampling Methods

If studying the densities of several to many species simultaneously then the belt or strip transect method (e.g., a strip 100 m long and 1 m wide) is preferable. It represents an expansion of the quadrat to a long, narrow belt or strip (Buckland et al., 2001). There may be some narrow strip along the line in which detectability is virtually perfect (Thompson, 2002). A wider belt may be needed for fishes and terrestrial plants. One can swim down the belt, recording the numbers of species observed (see below). This technique can also be used in counting small organisms, birds, and so forth. The belt or strip transect method is preferable over many other sampling techniques (e.g., PCQ, line intercept – see pp. 33 and 36 in this chapter) (Steve Buckland, pers. comm.).

Belt transect method for fish surveys: A transect line is lain on the substratum. The length of the line may vary depending on results from a preliminary survey. This may be followed by plotting a species area curve (see Chapter 3, p. 145) if the principal interest is in estimating the species richness of fishes. The line usually follows a depth contour (e.g., 15 m). Fishes are counted on both sides of the line (closer to the line with juvenile fish). The width of the belt transect depends on underwater visibility and the abundance of fishes. A 5-m width for adult fishes and a 1-m width for juvenile fishes work well in clear tropical waters. The diver swims and records counts along the transect. The time of the swim along the line is usually standardized, and replicate transects are traversed. Daily variation occurs in fish activity and underwater light intensity thus transect studies should be done between about 0900 and 1500. However, I have frequently noticed a marked change in coral reef fish faunas in the late afternoon (1600–1800), thus it may be worthwhile to check on this before proceeding to count fishes during this time period. Seasonal variation includes surveys during the wet and dry seasons in tropical regions. McCormick and Choat (1987) compared the precision, accuracy, and cost (time) of five strip-transects. A strip 20×5 m was selected as the best overall size for a single target fish species [the morwong *Cheilodactylus spectabilis* (Hutton)] but the optimal size is likely to be species specific. Problems resulting in sampling error included observer variability (e.g., laying of the tape), edge effect in counting fish, fish characteristics (i.e., crypticity of the fish), and environmental factors (e.g., turbidity).

1.3.12 Adaptive Sampling

Adaptive sampling is a sampling design in which the procedure for selecting sites or units to be included in the sample may depend on values of the variables of interest observed during the survey (Thompson, 2002). Adaptive sampling strategies used with aggregated population units of various locations and shapes may provide a method to increase dramatically the effectiveness of sampling effort. Adaptive sampling is also known as two-stage or even three-stage sampling. Adaptive sampling has been employed with simple random sampling,
systematic sampling, stratified sampling, strip sampling, and especially with cluster sampling. The simplest adaptive cluster designs are those in which the initial sample is selected by simple random sampling with or without replacement. Once the species of interest is located, further nonrandom sampling is carried out in the same area. Thompson (2002) gives an example of adaptive sampling with an initial sample size of 200. The adaptive strategy was 15 times as efficient as simple random sampling. Stratified adaptive sampling improves the detection of clusters when the locations and shapes of the clusters cannot be predicted prior to the survey (Fig. 1-16). In one example of stratified adaptive sampling, the adaptive strategy was 24% more efficient than the comparable nonadaptive one (Thompson, 2002). See also Thompson (2004).

1.3.13 Sequential Sampling

Sequential sampling is a statistical procedure in which the sample size is not fixed in advance. This may reduce the number of sample units required by up to 50%. Sample units are taken until there is enough information to make a decision (i.e., to stop sampling or to continue sampling). Stopping rules are employed to prevent sampling indefinitely. Sequential sampling is used in ecology, in resource surveys, and in insect pest control. It is rarely used in marine biology. The mathematics
1.3 Quantitative Sampling Methods

are relatively complex. Krebs (1999) discusses in detail sequential sampling involving distributions that are normal (uniform), binomial, or negative binomial (aggregated). The Schnabel method of population estimation is one of several methods suitable for sequential analysis. Krebs (2000a) has computer software programs for sequential sampling.

1.3.14 Rapid Sampling Methods

Some relatively newer techniques of rapid sampling involve photos and videos. These techniques were pioneered by Mark and Diane Littler in the United States who studied marine benthic algae (Littler and Littler, 1985). **Place a quadrat frame on the substratum and take a photo of the quadrat from above.** This technique can be used in both the intertidal and subtidal zones. To sample the images (the slides can be selected randomly), project the slide with the quadrat onto a screen over which has been placed a grid of 100 points (Fig. 1-15). **To determine the areal density of a species, count the points on the screen that intercept the species of interest.** This gives the percentage of the total area intercepted by the species. Repeat the process for the remaining slides and tally the results. One could also use 100 random points to estimate the percentage cover of all species of interest (see above). An easier method of doing this would be to create a grid of 100 points then superimpose or layer the image above a photo of the quadrat image. Alternatively, an image-processing algorithm can be developed that automatically counts or measures the area of interest (see p. 186 in Chapter 3 and Wright et al., 1991).

One can also swim above a transect line or measuring tape and **photograph the organisms with a video camera.** For example, LaPointe et al. (2003) swim slowly along two 50 m long belt transects holding a camcorder 0.4 m off the bottom. A second oblique (45 degrees angle) close-up video is taken along the transects to aid in the identification of the biota. Later, 10 rectangular quadrats are selected from each video transect and quantified for percentage cover of the biota using a randomized point-count method (LaPointe et al., 1997). Phillip Dustan has developed a computer program (PointCount99) that will assign random points to still photos or videotape frames for counting organisms (see the Appendix). Alternatively, each species in the video frames can be assigned a color then counted or the area measured automatically (Whorff & Griffing, 1992). Bezier curves and AutoCAD® have been used to estimate digital cover (Tkachenko, 2005). The automated techniques here and those mentioned above require computers, video cameras, and relatively expensive computer boards and/or software. However, prices have decreased dramatically over the past two decades and a complete, automated system can be purchased for several thousand dollars (U.S.).

The disadvantages of photographic and video techniques are:

1. Only surface organisms are counted and measured. There may be numerous species that are missed, such as animals living under algae in colder waters and the cryptofauna and infauna of coral reefs. This is a serious deficiency.
28 Chapter 1 Biological Sampling Design and Related Topics

(2) One must be able to identify the organisms in the photos or videos, which is not an easy task in many cases.

The major advantages of these rapid assessment techniques are:

(1) rapid data collection
(2) collection of large amounts of data
(3) less tedious data collection.

1.3.15 Introduction to Plotless Sampling

Plotless methods, especially older ones, often assumed that the individuals are randomly distributed. Trees have been successfully estimated in this way. Highly aggregated or rare species are seldom suitable for this type of analysis. Estimates of total density cannot be compared except in terms of relative density. Sample sizes of 40–60 (Krebs, 1999) and 60–80 (Buckland et al., 2001) are recommended for good precision. Buckland et al. (2001) discuss the assumptions, strengths, and weaknesses of many of the plotless sampling techniques. For further information see Southwood (1978) and Southwood and Henderson (2000).

1.3.16 Best Guess or Estimation

The best guess method [waterfowl or sea lion populations estimated from the air – see Krebs (2000) for a computer program] has been frequently used by Fish and Game or Fish and Wildlife agencies. Experienced observers can estimate wildlife populations from the air by eye with a relatively high degree of accuracy. Double sampling or two-phase sampling is used in surveys of the abundance of certain animal or plant species, less accurate counts being made by air and more accurate counts by ground crews (Thompson, 2002).

1.3.17 Catch or Weight Per Unit Effort (CPUE)

There are numerous methods of estimating commercial fish populations. Many of them are quite complex. A relatively simple method used in commercial fisheries to estimate the density of shrimp or fish is to tow a trawl, expressing the results as CPUE or catch or weight per unit effort (for example, kg shrimp/h with a 100 ft [32 m] otter trawl). No correction is made for towing with, across, or against a current. Krebs (2000a) has a program for catch per unit effort. These data and fish length data are used in fishery stock assessment (computer program FiSAT II, available from ICLARM, now located in Penang, Malaysia [FAO,
and in developing fish growth curves (computer program ELEFAN I). Using and interpreting these programs require training. A more recent development is the appearance of freeware computer programs. EcoPath (http://www.ecopath.org) is used to model food webs in marine ecosystems. This information is then incorporated into EcoSim (same Internet address), which predicts changes in fish populations. EcoVal (http://www.fisheries.ubc.ca) shows the economic impacts of information from the former programs. A training tutorial is needed to learn how to use the programs (Christensen et al., 2004). See Ricker (1958), Green (1979), Caddy (1982), FAO (1994), Quinn and Deriso (1999), Krebs (2000a), Southwood and Henderson (2000), Gore et al. (2000), and Walters and Martell (2004) for further information. See Caldrin et al. (2004) for stock identification methods.

1.3.18 Coordinate Lines

Coordinate lines (as opposed to a grid system) are used to save time in sampling under difficult conditions (e.g., random sampling on an intertidal sandy beach in the surf or in a dense forest, see Fig. 1-7). A grid system setup in the intertidal could easily be washed away by the surf. A coordinate system of evenly spaced rocks or poles (spaced 5–10 m apart) placed on the upper sandy beach coupled with poles forced into the sand at spaced intervals down the beach creates a useful sampling pattern for that habitat. In large areas such as an estuary mud flat, one can use a GPS to keep the grid square.

1.3.19 Cluster Sampling

A different type of simple random sampling is cluster sampling. Cluster sampling can use points in space (plotless) or plots. In cluster sampling, a primary unit consists of a cluster of secondary units, usually in close proximity to each other (Thompson, 2002). **Cluster sampling involves sampling a cluster of**

![Figure 1-17](image-url)
things (e.g., artisanal fishing boats, trees, sampling for bodysize in polychaete worms, capture–recapture of fish) to save time and resources. This technique would be useful in surveying the fish catch of artisanal fisheries along a coast for social and economic information (see Manly, 1986). Cluster sampling is exemplified by having five clusters (groups) of coastal fishing boats. Select from each cluster of boats three boats from a table of random numbers and determine the fish catch per boat in each selected cluster (Fig. 1-17). Cluster sampling is often carried out for reasons of convenience or practicality rather than to obtain the lowest variance for a given number of units observed (Thompson, 2002). The advantage of cluster sampling is that it is usually less costly to sample a collection of units in a cluster than to sample an equal number of units selected at random from the population. Adaptive cluster sampling can be used when organisms are rare and highly clustered (i.e., aggregated). Additional quadrats are sampled near the site of the first occurrence of the species of interest. See p. 25 and Thompson (2002). Conners and Schwager (2002) found that adaptive cluster sampling for spatially patchy and/or rare species gave better results than traditional cluster sampling techniques.

1.3.20 Introduction to Distance Measurements

A number of biological sampling methods are called distance measurements. They include Nearest Neighbor, Point-Center Quarter, and Strip or Belt Transect methods, among others. Distance-based methods are most commonly used for sampling forest structure (McCune et al., 2002). They often perform best when organisms are randomly distributed. For detailed information on distance sampling see Buckland et al. (2001). The computer program “Distance” is available free of charge from the Internet and is based on their book, as follows:

http://www.ruwpa.st-and.ac.uk/distance/

Steve Buckland (pers. comm.) recommends a minimum of 12 lines and preferred 20 or more lines for larger study areas. Differing numbers of lines could give varying results if they are not generally proportional to the size of the study area. Thompson (2002) states that evenly spaced transect lines may be preferable to randomly selected transect lines because randomly selected transect lines may aggregate. Both modes of arranging transect lines have been used in past surveys. Barbour et al. (1999) and Buckland et al. (2001) recommend using random or regular (i.e. evenly spaced) points depending on the type of study. The recommended number of sampling points for distance measurements (e.g., PCQ) ranges from 40 (Krebs, 1999) to 80 (Buckland et al., 2001).

Care must be taken to be certain that relatively stationary organisms (e.g., limpets) have not moved over a period of several tides or corrections for this need to be made (i.e., by recording the positions of marked individuals). Also, arroyos and gullies increase the size of the study’s sampling plot resulting in an underestimation of plant density (Barbour et al., 1999).
1.3.21 Nearest Neighbor and Point to Nearest Object

1.3.21.1 Nearest Neighbor Method

The distance from the nearest individual to its nearest neighbor or from a random point to a nearest neighbor is:

\[N = \frac{1}{4\bar{r}^2} \]

where:
- \(N \) = number of individuals per unit area
- \(\bar{r} \) = mean distance between nearest neighbors.

This must be measured in the same units as the final density (e.g., meters). Nearest neighbor techniques tend to overemphasize density by a factor of 2 or 3. (Underwood, 1976). A modification of this method that improves results is to measure the second or especially the third nearest individual (Fig. 1-18).

1.3.21.2 Point to Third Nearest Object

This technique is almost the same as the third nearest neighbor (3NN). It measures the distance from a random point to the third nearest object or individual (Fig. 1-18), whereas the 3NN method measures the distance from a random individual to its third nearest neighbor. The equation is the same as the 3NN equation from Krebs (1999).

\[D = \frac{3n - 1}{\pi \sum (d^2)} \]
where
\[n = \text{number of measurements to the 3rd nearest object (3NO)} \]
\[d = \text{distance (m)} \]
\[\pi = 3.14159 \]
\[D = \text{density (No. of individuals/m}^2\text{)} \]
\[\Sigma = \text{sum.} \]

The distance to the 3rd nearest object needs to be reported in the same units as the final density (e.g., meters).

Example

Three 3rd nearest neighbor distances measured (20 m, 20 m, 20 m)

\[
D = \frac{(3 \times 3) - 1}{3.14159(400 + 400 + 400)} \\
D = 0.00212 \text{organisms/m}^2.
\]

A computer program for the 3rd nearest neighbor or 3rd nearest object is provided in the Appendix (see Gore et al. (2000), for a mathematical discussion). We found that the 3rd nearest neighbor technique using a laser rangefinder to be the simplest technique for density estimations of trees (Bakus, et al., 2006). However, Buckland et al. (2001) do not recommend nearest neighbor or point to object methods, with the exception of estimating the density of forest stands, because of several logistic and time considerations and the fact that the measurements are bias-prone.

1.3.21.3 General Equation for Nearest Neighbor or Point to Nearest Object Density Data (Gregory Nishiyama)

The following is a general equation for determining densities from any rank nearest neighbor data (1st, 2nd, 3rd, 4th, 5th, 6th, … nearest neighbor). It is not a new equation but a summation of old equations. A regression line (plotting a density coefficient against rank) was constructed from data presented in Krebs (1999:197; see Table 6.1) and used to develop the coefficients 0.316 and 0.068 found in the equation below. It is assumed that the organisms are somewhat randomly distributed and the organisms are allowed to overlap (i.e., corals growing over each other). The user can employ any nearest neighbor data such as the 1st nearest neighbor data or 3rd nearest neighbor data which are the two types of proximity data most frequently used. Insert the rank of the nearest neighbor you are using as well as the average nearest neighbor distance. This will give an estimate of the density of the organism.

\[
\text{Density} = \frac{0.316X - 0.068}{(\text{average distance})^2}
\]
where:

\[X = \text{distance rank (e.g., } 3 = \text{3rd nearest neighbor)} \]

average distance = average distance between randomly selected points and their nearest neighbors.

Example

\[X = 3 \text{ (3rd nearest neighbor)} \]

average distance = 5 m

\[
\text{Density} = \frac{0.316(3) - 0.068}{(5)^2}
\]

\[
\text{Density} = 0.0352/\text{m}^2 \text{ or } 3.52/100 \text{ m}^2
\]

The equation above seems to work as well as Kreb’s (1999) equation based on simulations. However, it needs to be tested in the field.

1.3.22 Point-Center Quarter or Point Quarter Method

This method involves measuring the distance from the sampling point to the nearest individual of a species in each of four quadrants (see Fig. 1-19). One divided by the mean distance calculated\(^2\) = approximate density (e.g., mean distance = 2 m then density = \(~1 \text{ individual/4 m}^2\)). Recommended: At least 13 random points with four measurements each, but preferably 50 random points (=200 measurements total). It is assumed that the distribution of organisms is random (Pollard, 1971).

![Figure 1-19. Point-center quarter method. The distance from a random point to the nearest individual is measured in each of the four quadrants. An arbitrary boundary may need to be established. See text for explanation.](image-url)

$$D = \frac{4(4n - 1)}{\pi \Sigma (d^2)}$$

where

- D = density (No. of individuals/m2)
- n = number of random points
- d = distance to the nearest individual (m)
- $\pi = 3.14159$
- Σ = sum.

Mitchell (2001) presents a clear and detailed discussion of the PCQ method.

Note that although the PCQ method was originally designed without boundaries, borders must be established or you may wander out too far from the random point or lose track of the boundaries. This is especially common in diving studies. When the species cannot be found in a quadrant, you can correct for zero data by using the correction factor table of Warde & Petranka (1981) (Table 1-2). The random points are often located along a transect line. Ideally they need to be spaced so that the same organisms (e.g., sponges or trees) are not counted by two nearby random points. However, this is not always possible (Bakus et al., 2006). Another problem exists with randomly selected transects. They may fall too close to the boundary of the study area so that PCQ measurements occur well beyond the boundary, possibly resulting in density estimation errors. The PCQ method is useful in forestry, particularly practical in moderately dense to dense forests. It has also been used in dense mangrove forests and on coral reefs (see Loya, 1978). Krebs (2000a) has a computer program for the PCQ method. It provides densities but does not include the correction table of Warde and Petranka (1981). Other plotless methods are discussed by Nimis and Crovello (1991) and Krebs (1999).

The correction for zeros in quadrants (Warde and Petranka, 1981):

$$\text{Total Approximate Density (No./m}^2\text{)} = \frac{1}{(\text{Mean distance})^2} \times \text{CF} \left(n_o/nk\right)$$

where

- CF = correction factor (from Table 1-2)
- n_o = number of quadrants or sectors with missing data
- nk = total number of quadrants

Example:

Suppose the mean distance between giant kelp (or oak trees) is 10 m and that 5 of the 100 quadrants lacked giant kelp (or oak trees). The approximate density of giant kelp
1.3 Quantitative Sampling Methods

(oak trees) using the simple method described above on p. 33 is:

\[
\frac{1}{(10\text{m})^2} \times CF (0.87368)
\]

0.01\times CF (0.87368) = 0.00873/m^2

0.00873/m^2 = 87.3/hectare

Using the Krebs equation above:

0.0101859 \times CF (0.87368) = 89.0/hectare

A computer program (PCQ) by the author for PCQ with a built-in correction table is given in the Appendix.

<table>
<thead>
<tr>
<th>(n_0/nk)</th>
<th>CF</th>
<th>(n_0/nk)</th>
<th>CF</th>
<th>(n_0/nk)</th>
<th>CF</th>
<th>(n_0/nk)</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.96670</td>
<td>0.26</td>
<td>0.57018</td>
<td>0.51</td>
<td>0.33103</td>
<td>0.76</td>
<td>0.14685</td>
</tr>
<tr>
<td>0.02</td>
<td>0.94012</td>
<td>0.27</td>
<td>0.55896</td>
<td>0.52</td>
<td>0.32284</td>
<td>0.77</td>
<td>0.14023</td>
</tr>
<tr>
<td>0.03</td>
<td>0.91630</td>
<td>0.28</td>
<td>0.54791</td>
<td>0.53</td>
<td>0.31473</td>
<td>0.78</td>
<td>0.13367</td>
</tr>
<tr>
<td>0.04</td>
<td>0.89431</td>
<td>0.29</td>
<td>0.53704</td>
<td>0.54</td>
<td>0.30670</td>
<td>0.79</td>
<td>0.12715</td>
</tr>
<tr>
<td>0.05</td>
<td>0.87368</td>
<td>0.30</td>
<td>0.52633</td>
<td>0.55</td>
<td>0.29874</td>
<td>0.80</td>
<td>0.12068</td>
</tr>
<tr>
<td>0.06</td>
<td>0.85416</td>
<td>0.31</td>
<td>0.51579</td>
<td>0.56</td>
<td>0.29086</td>
<td>0.81</td>
<td>0.11425</td>
</tr>
<tr>
<td>0.07</td>
<td>0.83554</td>
<td>0.32</td>
<td>0.50539</td>
<td>0.57</td>
<td>0.28306</td>
<td>0.82</td>
<td>0.10787</td>
</tr>
<tr>
<td>0.08</td>
<td>0.81771</td>
<td>0.33</td>
<td>0.49514</td>
<td>0.58</td>
<td>0.27532</td>
<td>0.83</td>
<td>0.10153</td>
</tr>
<tr>
<td>0.09</td>
<td>0.80056</td>
<td>0.34</td>
<td>0.48504</td>
<td>0.59</td>
<td>0.26766</td>
<td>0.84</td>
<td>0.09524</td>
</tr>
<tr>
<td>0.10</td>
<td>0.78401</td>
<td>0.35</td>
<td>0.47507</td>
<td>0.60</td>
<td>0.26006</td>
<td>0.85</td>
<td>0.08899</td>
</tr>
<tr>
<td>0.11</td>
<td>0.76800</td>
<td>0.36</td>
<td>0.46523</td>
<td>0.61</td>
<td>0.25254</td>
<td>0.86</td>
<td>0.08278</td>
</tr>
<tr>
<td>0.12</td>
<td>0.75248</td>
<td>0.37</td>
<td>0.45552</td>
<td>0.62</td>
<td>0.24508</td>
<td>0.87</td>
<td>0.07662</td>
</tr>
<tr>
<td>0.13</td>
<td>0.73741</td>
<td>0.38</td>
<td>0.44594</td>
<td>0.63</td>
<td>0.23768</td>
<td>0.88</td>
<td>0.07050</td>
</tr>
<tr>
<td>0.14</td>
<td>0.72275</td>
<td>0.39</td>
<td>0.43647</td>
<td>0.64</td>
<td>0.23035</td>
<td>0.89</td>
<td>0.06441</td>
</tr>
<tr>
<td>0.15</td>
<td>0.70845</td>
<td>0.40</td>
<td>0.42712</td>
<td>0.65</td>
<td>0.22308</td>
<td>0.90</td>
<td>0.05837</td>
</tr>
<tr>
<td>0.16</td>
<td>0.69451</td>
<td>0.41</td>
<td>0.41789</td>
<td>0.66</td>
<td>0.21586</td>
<td>0.91</td>
<td>0.05236</td>
</tr>
<tr>
<td>0.17</td>
<td>0.68090</td>
<td>0.42</td>
<td>0.40876</td>
<td>0.67</td>
<td>0.20871</td>
<td>0.92</td>
<td>0.04640</td>
</tr>
<tr>
<td>0.18</td>
<td>0.66759</td>
<td>0.43</td>
<td>0.39974</td>
<td>0.68</td>
<td>0.20162</td>
<td>0.93</td>
<td>0.04047</td>
</tr>
<tr>
<td>0.19</td>
<td>0.65456</td>
<td>0.44</td>
<td>0.39082</td>
<td>0.69</td>
<td>0.19458</td>
<td>0.94</td>
<td>0.03458</td>
</tr>
<tr>
<td>0.20</td>
<td>0.64182</td>
<td>0.45</td>
<td>0.38200</td>
<td>0.70</td>
<td>0.18761</td>
<td>0.95</td>
<td>0.02873</td>
</tr>
<tr>
<td>0.21</td>
<td>0.62931</td>
<td>0.46</td>
<td>0.37327</td>
<td>0.71</td>
<td>0.18068</td>
<td>0.96</td>
<td>0.02291</td>
</tr>
<tr>
<td>0.22</td>
<td>0.61705</td>
<td>0.47</td>
<td>0.36465</td>
<td>0.72</td>
<td>0.17381</td>
<td>0.97</td>
<td>0.01713</td>
</tr>
<tr>
<td>0.23</td>
<td>0.60502</td>
<td>0.48</td>
<td>0.35611</td>
<td>0.73</td>
<td>0.16699</td>
<td>0.98</td>
<td>0.01139</td>
</tr>
<tr>
<td>0.24</td>
<td>0.59320</td>
<td>0.49</td>
<td>0.34766</td>
<td>0.74</td>
<td>0.16023</td>
<td>0.99</td>
<td>0.00568</td>
</tr>
<tr>
<td>0.25</td>
<td>0.58159</td>
<td>0.50</td>
<td>0.33930</td>
<td>0.75</td>
<td>0.15351</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3.23 Line Intercepts

Line intercept methods involve laying a transect line (e.g., measuring tape or twine) on the substratum, moving along the line to encounter an organism (e.g., coral), then measuring the length of the organism under or over the line (e.g., tree canopy), and continuing on. Line intercept sampling is an example of an unequal probability design, that is, the larger the patch (e.g., a shrub), the higher the probability of inclusion in the sample (Thompson, 2002). There is no fpc factor (see p. 13) because the selection of positions along the baseline is essentially with replacement.

An example of a line intercept study is for a diver to lay down a length of transect line and to swim the length at a steady known rate while counting fish (see p. 25 or p. 51, and Krebs, 1999 for a computer program). Line intercepts also involve placing a transect line (e.g., a 100-m tape) over a coral reef then measuring the distances intercepted under the line by categories such as hard corals, soft corals, and so forth (Table 1-3). The total length intercepted by a category (e.g., lengths of hard coral directly under the line) is then expressed as a percentage of the total line length. While the investigator is doing this, he or she can make other measurements (see p. 38).

Line intercept reef studies have been conducted in three ways: (1) A taut or straight line; (2) A slack line lying on the reef; and (3) A line that follows the detailed contours of the reef (sometimes called chain length – see Fig. 8-20). Results from the three methods are often variable (3–27% difference between a straight line and a contour line in our marine studies – see Bakus et al., 2006). The easiest and most rapid method is to use the straight line. Straight-line measurements give more accurate results whereas slack line or contour line (chain length) measurements produce underestimations of densities. For greater precision, a plumb line can be hung from a taught intercept line to precisely indicate the start and end points of any organism under the straight line (e.g., hard coral). This increases the accuracy of straight-line measurements slightly but the method takes considerably more time.

Table 1-3

Life forms. These categories are used with transect lines or line intercepts on coral reefs. The difficulty in identifying organisms often precludes using generic or specific categories (source: Bakus and Nishiyama, 1999).

<table>
<thead>
<tr>
<th>Life forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live coral (branching, table, massive)</td>
</tr>
<tr>
<td>Sand</td>
</tr>
<tr>
<td>Coral rubble</td>
</tr>
<tr>
<td>Dead coral</td>
</tr>
<tr>
<td>Seagrass</td>
</tr>
<tr>
<td>Sponges</td>
</tr>
<tr>
<td>Turf algae</td>
</tr>
<tr>
<td>Pavement algae</td>
</tr>
<tr>
<td>Other organisms</td>
</tr>
</tbody>
</table>
than simply sighting the organism below a taut line and measuring the length of tape intercepted by the organism. The ratio between the slack or contour lengths and the straight-line length increases with increasing heterogeneity, resulting in a simple mathematical decrease (i.e., error) in density estimates. Benthic marine populations are typically counted in quadrats as the organisms are observed from above, avoiding vertical surfaces, overhangs, and cracks and crevices in order to standardize and greatly simplify the counting. As substratum heterogeneity increases, the number of species and individuals usually increase. This is not only the result of organisms (e.g., limpets) living on vertical surfaces and overhangs, but sometimes considerable increases in species and individuals living in cracks and crevices and between coral branches (i.e., the cryptofauna) (Bakus, 1969). Thus the straight-line measurements may not reflect either species richness or population increases related to increased physical heterogeneity. Reef heterogeneity can be estimated by comparing straight-line measurements with contour (chain length) measurements to arrive at a ratio between the two.

Line intercepts can also be used to determine if the occurrence of an organism or substratum type is closely associated with or dependent upon another organism or substratum type (e.g., sponges and dead coral; sand and clams). The sequencing of organisms is recorded along transect lines and the frequencies of co-occurring organisms or substratum types are tabulated. A transition frequency matrix is developed (e.g., a matrix showing replacement of substratum types along a transect line) and a Chi-square equation (or G-test nowadays) is applied to the matrix to determine if any of the sequences of associated organisms, categories, or substratum types is significant (see Chapter 3, p. 163 and Davis, 1986 for a detailed explanation of the technique). The line transect can be videotaped and analyzed in the laboratory. Surface animals and plants can be counted directly or indirectly (i.e., by assigning random points to the videotaped frames). A program for this was developed by Phillip Dustan (see PointCount99 in the Appendix).

The line intercept method works well on coral reefs because it can provide considerable information on benthic organisms and substratum types with a minimum of effort (see Marsh et al., 1984). The line intercept method (typically lines arranged perpendicular to the shore) can provide at least the following information:

1. Coral reef profile based on depth measurements (by scuba depth gauge) at 5 or 10 m intercept lengths.
2. The rank dominance of organisms and substratum types expressed as a percentage of the total length of the intercept line.
3. Size-frequency data on hard corals and other organisms. This is an additional measurement made as one moves along a transect line. There is a bias here for large individuals, thus the advantage of using belt or strip transects rather than line intercepts, if there is sufficient time to do so.
4. An estimation of the population densities of selected organisms.
5. Information on whether the occurrence of an organism category (e.g., sponges, turf algae, etc.) is associated with or dependent on another category of organism or a specific substratum type.

6. The incidence of disease (e.g., black band disease in hard corals). This is an additional recording.

The major disadvantage of the line intercept method is that small organisms (<3 inches or <9 cm) are not often intercepted by the metric tape [measuring 1/2" or 3/4" (13 or 19 mm wide)]. For information on distance sampling see Buckland et al. (2001).

1.3.24 Strong Method

The Strong method is a line intercept method, based on the probability of intercepting an object along a transect line. Long ago botanists developed a complex technique using calculus with line intercepts to estimate population densities. This was later simplified and improved upon by Strong (1966) whose technique is still employed today. The equation is based on the concept that the wider an organism is, the greater the probability that a transect line will intercept it. The diver selects a category or taxon of interest (e.g., sponges). When the diver intercepts a sponge under the transect line, he measures the widest width (i.e., orthogonal width) of the sponge and records it (Fig. 1-20). This procedure is continued until the 100-m line has been traversed. The data on sponge widths are then plugged into an equation by Strong (1966) to give an approximation of the sponge density. TheStrong method(also known as a modified Eberhardt method which appeared later—see Krebs, 1999) can be applied to any organisms that can be distinguished as an individual or as a separate colony (e.g., bryozoan colony). The Strong method is an estimation of density using the harmonic mean.

\[
\text{Density (No. of organisms/m}^2\) = \sum \frac{1}{M} \text{ unit area} \text{ total transect length}
\]

where:

- \(\Sigma\) = sum
- \(M\) = maximum orthogonal width (m) of an organism intercepting the transect line
- unit area (=1 m\(^2\) for example)
- total transect length = 100 m (in this example).

Example

Corals (table *Acropora*) or trees intercepting a transect line (measuring the greatest width of the tree canopy)

Intercepted widths (m) are: 2, 3, 1, 4, 3, 1, 3, 2
1.3 Quantitative Sampling Methods

1.3.25 Weinberg Method

The Weinberg (1981) method is a line intercept method, based on the probability of an object intercepting the line. It has been buried in the coral reef literature for many years, largely unavailable to terrestrial and freshwater biologists. In the Weinberg method (1981), lengths of organisms intercepted by a transect line are recorded. This method works well with circular organisms (e.g., some hard corals, shrubs) that are larger than about 1.0 m in diameter (Fig. 1-21).

The equation is as follows:

\[
\text{Density} = \frac{\text{No. of intercepts}}{\text{transect length}} \times \frac{1}{\text{mean organism intercept length}} \times 1.156 \text{(coral colony size correction factor)}
\]

\[
\text{or}
\]

\[
\text{Density} = 4.249 \times \frac{1}{100} = 0.04249 \text{ organisms/m}^2
\]

![Figure 1-20. Strong method. Measuring the greatest orthogonal width along a transect or line intercept. For smaller plants – measurements are made below the line (e.g., with grasses, forbs, and small shrubs) and above the line (e.g., with larger plants). For trees, the canopy width is measured.}
Example

Corals intercepting a 50 m transect line
Organism intercept length (m) – 2.0, 3.4, 1.2, 3.2, 4.5

\[D = \frac{5/50}{2.86(1.156)} = 0.0303 \text{ coral/m}^2 \]

A computer program (Weinberg) for this is found in the Appendix. See Weinberg (1981) and Nishiyama (1999).

Gregory Nishiyama Correction for the Weinberg Equation:

In the Weinberg equation for the estimation of the density of an organism, he approximates the organism’s diameter from the intercept lengths of the organism on the transect line. Thus, he multiplies the average intercept length by the correction factor 1.156. Weinberg assumed that the average intercept length that is found midway between the maximum and minimum possible intercept lengths to be the average intercept length (Fig. 1-22). However, Weinberg’s midpoint does not designate the average chord or intercept length. To obtain this, one must add up sample lengths (from maximum to minimum possible lengths) and find the average (Fig. 1-23).
The final correction factor comes out to be 1.301. So the Weinberg equation becomes:

\[
\frac{\text{No. of intercepts}}{\text{transect length}} \div \frac{\text{mean intercept length}}{1.301}
\]

Although this correction factor may not seem very different from Weinberg’s 1.156, there is a 13% difference in these two numbers that translate to a 13% difference in their density estimates. This is a significant difference when ideally an estimation method should have a maximum of a 10% error. This new correction factor was tested by Nishiyama on 30 simulations and shown to produce more accurate estimates than the original Weinberg correction factor. This new correction factor needs to be tested in the field.
1.3.26 Nishiyama Method

The Nishiyama method is a line intercept method. Nishiyama has developed a density estimate technique which takes into consideration the orientation of organisms relative to the transect line. This method was used to estimate the densities of strongly ovate intertidal organisms (e.g., mussels). The transect lines are parallel to the shoreline.

Gregory Nishiyama Density Orientation Method:

Although such methods as Weinberg and Strong can estimate the densities of organisms, they do not take into consideration the effect of the orientation of the organisms. If the orientation of the organism is random, such methods above may work successfully. However, if there is a bias in the orientation of the organism (around 20% or more bias in a particular direction – e.g., organisms oriented more or less parallel to the incoming waves) and it is ovate in shape (especially if the organism’s length to width ratio $= >3$) (e.g., mussels, some chitons) the error in the estimation of density can be considerable. The following equation is an extension of the Weinberg equation, which addresses the problems with orientation and shape.

To use the proposed equation, the investigator must place each organism intercepting the transect line into one of four categories based on its orientation relative to the line. Although each category is assigned an angle designation, the categories actually represent ranges of angles. When an organism has a particular orientation at or close to a particular category, it is placed into that category. For example, if an organism has an orientation of 37 degrees relative to the line, it is placed into the 30-degree category. Alternatively the user can divide the circle into numerous categories with angle ranges, however, this may make the collection of data more difficult. Instead, if it is close to one of four categories, the user should simply put it in its proper angle group. Once these data are gathered, each angle category is analyzed separately and then all the density estimates are summed. This will give the total density.

Each organism intercepting the transect line is placed in one of the orientation categories (Fig. 1-24).

![Figure 1-24](image-url)
These counts and the organism’s dimensions are then placed into the appropriate sections of the following equation:

\[
\text{Density (number of individuals/m}^2\text{)} = \frac{n}{(90^\circ) L} + \frac{n}{(60^\circ) (0.87L)} + \frac{n}{(30^\circ) (0.50L)} + \frac{n}{(0^\circ) W}
\]

where

- \(n \) = number of intercepts (for each orientation category—see Figure 1-24)
- TL = transect length (e.g., in meters)
- L = mean organism length (e.g., in meters)
- W = mean organism width (e.g., in meters)

Note: All measurements must be in the same units

Example

Assume that the numbers of mussels in different orientations = 10, 5, 20, 10; transect length = 100 m; average mussel lengths = 5, 6, and 7 cm; and average mussel width = 3 cm.

\[
D = \frac{10}{100} + \frac{5}{100} + \frac{20}{100} + \frac{10}{100} = 2 + 1 + 6 + 3
\]

D = 12 mussels/m\(^2\)

In a dozen simulations where there was a bias in the organism’s orientation, up to a 33% error between the density estimates of the Weinberg method and Nishiyama method was observed. That is, the Nishiyama method was more accurate than the Weinberg method due to the consideration of the orientation of the organisms. A computer program (Nishiyama) for this is presented in the Appendix. The Nishiyama method needs to be tested in the field.

Some of these plotless methods and others have deficiencies that produce crude estimates and one should consult references or specialists before using them. However, sometimes they are the only practical sampling technique available and therefore of use. **When various plot and plotless estimates are compared with a complete census (i.e., total count), there are often considerable differences in the results** (even using stratified random sampling), an important point to remember. This is especially true when relatively few samples are taken or organisms are highly aggregated, which often produce inaccurate estimates. See Venrick (1971), Weisberg and Bowen (1977), and Yates (1981).

A summary of 12 terrestrial and marine density estimate studies indicated that the Strong method was most accurate among several methods tested for stationary organisms (Bakus et al., 2006). Moreover, it is best used for those organisms
measuring more than about 0.3 m (1 ft) in diameter (e.g., corals, shrubs, trees). Stratified random sampling ranked second best and the Third Nearest Object the third best (Bakus et al., 2006). Goedickemeier et al. (1997) found that at a scale of 10–50 km², stratified random sampling creates an accurate picture of small-scale vegetation pattern at low sampling effort.

Additional distance sampling methods include point counts, point transect sampling, trapping webs, and cue counting, among others (Buckland et al., 2001).

1.3.27 Mark (or Tag) and Recapture (Mark and Resight) Techniques

Mark-recapture techniques consist of marking or tagging a mobile species one day (Table 1-4), then returning to recapture the species and count the individuals the next or succeeding days. An estimate of the population in the area is thus acquired. Capture–recapture methods are now frequently used for the estimation of birth, death (or survival), and emigration rates (Southwood and Henderson, 2000). Mark-recapture methods have several advantages over line transect sampling for wildlife (see Buckland et al., 2001, for details). However, mark-recapture field costs are substantially higher to achieve the same precision on abundance estimates than line transect sampling (Borchers et al., 2002). For example, mark- and-resight techniques for fishes take 13–15 times more diver time than a visual belt transect estimation (Davis and Anderson, 1989). Although mark-and-resight techniques

| Table 1-4. Methods of marking and tagging organisms. |
|---------------|-------------|-------------|------------------|
| **Molluscs:** | Quick-drying paint; notches with file, carborundum wheel or dentist’s drill; adhesive tape; metal; Peterson discs; Plastic tags |
| **Crustaceans:** | Spaghetti and dart tags; punching telson, etc. (problem with molting); dyes for shrimp (Penaeus). |
| **Echinoderms:** | Monofilament nylon (sea urchins) |
| **Fishes:** | Branding (sharks); clipping fins; internal magnetic or radioactive tags; external tags, dart tag best, plastic, inserted just below dorsal fin |
| **Turtles:** | Magnetic tag injected into muscle |
| **Birds:** | Aluminum, colored celluloid or plexiglass bands; sonic marker |
| **Mammals:** | a. Seals and sea lions — hot iron branding best, good for over 20 years on fur seals; metal tags in foreflipper good for 8 years. |
| | b. Cetaceans — stainless steel tube coated with penicillin, shot into whales, recovered in boilers, reward offered. |
| **Newest Methods:** | Fluorescent paints, injection, tattoos, clipping of wings or fins, rare elements, radioactive isotopes, radioactive labels and incorporation in tissues, transponders and sonic tags, radio-telemetry (radio collars) and micro-videocameras (e.g., attached to elephant seals or great white sharks). For further information see Seber (1982), Sutherland (1996), and especially Southwood and Henderson (2000). |
produce more accurate estimations of fish populations than visual belt transects, the method is prohibitively expensive for regular use (Hallacher, 2004). Mark-recapture abundance estimates are more sensitive to failure of assumptions than line transect estimates.

Population marking techniques are often classified as batch (group) or individual tagging techniques (Southwood and Henderson, 2000). Thomson (1962) used 12 different tags and markers on 183,113 shellfish, crustaceans, fishes, and whales. The overall recovery was 5.5%, comparable to other previous large studies on tagging and marking. Because the average recovery rate for many tagged or marked marine organisms is about 5%, hundreds or thousands of animals may need to be marked or tagged to provide meaningful results (Thomson, 1962). For this reason, a sample size estimation needs to be made before starting the marking or tagging program (Krebs, 1999). Dale Kiefer (pers. comm.) reports that tagging recovery for southern sea elephants (*Mirounga leonina*) is as high as 90%. Mark-recapture techniques are only appropriate for use with mobile animals such as shrimp and fishes, but only with fishes that remain in the study area over several days or more.

Some of the recent developments in tagging involve the use of satellite and data storage tags. Seabirds such as the Wandering Albatross (*Diomedia exulans*) are followed with satellite tags (PPT or Platform Terminal Transmitter). Data Storage Tags (DST-CTD) are used for tagging large fishes such as tuna. They measure conductivity (salinity), temperature, and depth. The system consists of a tag, communication box, computer, and software. Pop-up satellite archival tags (PSAT) measure ambient light (for latitude and longitude), temperature, and depth and transmit this information from the sea surface to an Argos satellite system. The tags can be programmed to detach at a preset depth or preset time. Among animals studied in this manner are Bluefin Tuna (*Thunnus thynnus*), Blue Marlin (*Makaira nigricans*), Tiger Shark (*Galeocerdo cuvier*), Blue Shark (*Prionace glauca*), Great White Shark (*Carcharodon carcharias*), Black-footed Albatross (*Phoebastria nigripes*), and the Southern Sea Elephant (*Mirounga leonina*). A fish algorithm developed by Frank O’Brien was incorporated into the computer program Easy (developed by Dale Kiefer, Department of Biological Sciences, University of Southern California) to analyze data collected by satellite tags. This analysis technique can also be applied to seabirds (e.g., Laysan Albatross — *Phoebastria immutabilis*) and marine mammals (e.g., sea lions, elephant seals, whales). One of the latest developments in fish management is the use of Mini GPS fish tags (Gudbjornsson et al., 2004).

Mark-recapture methods used in the past were based on a number of assumptions (Bakus, 1990): (1) The animal will not be affected by the marking or tagging (see Murray and Fuller, 2000); (2) The marks are not lost; (3) The population is sampled randomly and the age groups and sexes are equally available, that is, each individual has an equal probability of capture; (4) The sampling time is small relative to the total time of the study; (5) The population is either closed or immigration and emigration can be measured; (6) No births or deaths occur between sampling periods or some correction for this must be made; and (7) The initial capture does not effect subsequent recapture. It should be emphasized that a number of these
assumptions (e.g., random sampling and age groups and sexes are equally available) are no longer present in recent models.

The simplest mark-recapture method is the Simple Lincoln Index (for closed populations). A closed population is one in which there are no gains by births or immigration and no losses by deaths or emigration. This is based on the Petersen method (Krebs, 1999); also see a modified Petersen method (Arnason, 1973). The animals are marked then recaptured on a subsequent day, and marked and unmarked animals are counted. The second count assumes random sampling. This index is seldom used today except perhaps for some student field exercises.

1.3.27.1 Lincoln Index

Example:

Fishes (e.g., territorial damselfish) are collected from the ends and the middle of a large tidepool during low tide. The fishes (64) are tagged then released into the same tidepool. The next day damselfishes are recollected from the ends and middle of the same tidepool. Count the tagged (6) and untagged (56) animals. Use the Simple Lincoln Index to calculate the approximate population size (see below). Note that the answer is not a true density estimate but an estimated total population size, applicable to mobile animals only (see Green, 1979, and Krebs, 1999, for further information). Moreover, the assumption that immigration and emigration has not occurred is likely to be invalid for many species of fishes. Other assumptions are also violated.

\[P = \frac{(a)(n)}{(r)} \]

where

- \(P \) = total number of individuals (estimated population size)
- \(a \) = number of animals marked in first sample
- \(n \) = total number of individuals captured in second sample
- \(r \) = number of marked individuals captured in second sample

\[P = \frac{(64)(56 + 6)}{(6)} \quad P = 661 \text{ tidepool damselfish} \]

The 95% confidence limits for a Poisson frequency distribution are 286 tidepool damselfish and 1097 tidepool damselfish (see Krebs, 1999, for a detailed discussion). This is as low or as high as we would expect the damselfish population to be with 95% confidence (i.e., one in 20 chance of being below 286 or above 1097).

1.3.27.2 Sampling at three or more times (for open populations)

Open populations are those in which individuals of a species are subject to gains by birth or immigration and losses by death or emigration. Three methods
1.3 Quantitative Sampling Methods

have been commonly used for this type of sampling, the Seber method, the Schnabel method, and the Manly–Parr method. The Jolly–Seber or Cormack–Jolly–Seber models were often preferred because they account for recruitment and mortality and are fully stochastic (Southwood and Henderson, 2000). The calculations are quite lengthy. The classical Jolly–Seber method for open populations is now presented (Sutherland, 1996). It requires that at least three samples should be taken and animals should be individually marked or have marks that are batch-specific (Tables 1-5 and 1-6).

There are many new mark-recapture techniques for both closed and open populations. Among them are modified Jolly–Seber models such as the Pradel model, Pollock model, Band Recovery model, Joint Live and Dead Encounter model, Known Fate model, Encounter Histories model, and Bayesian models, among others. There are also many computer programs available for these models. One in current favor by many investigators is the program MARK that can handle some 16 variables. The MARK program can be downloaded from the Internet for free:

http://www.cnr.colostate.edu/~gwhite/mark

See also: http://www.phidot.org/software/

Sutherland (1996) discusses several mark-recapture methods with examples. Southwood and Henderson (2000) list computer software for capture-recapture methods and discuss Moran–Ricker curves. Statistical tests used to detect variation in catchability (e.g., Cormack’s test) are presented by Southwood and Henderson (2000). A recent handbook on capture-recapture analysis is presented by Amstrup et al. (2006); see also Begon (1979).

Table 1-5. Recording the composition of each collection sample for the Jolly–Seber method when marks or tags are batch-specific (source: Sutherland, 1996).

<table>
<thead>
<tr>
<th>Days on which previously captured</th>
<th>Number of animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0(^a)</td>
<td>0(^b)</td>
</tr>
<tr>
<td>+(^a)</td>
<td>0(^b)</td>
</tr>
<tr>
<td>0(^b)</td>
<td>+(^a)</td>
</tr>
<tr>
<td>0(^b)</td>
<td>0(^b)</td>
</tr>
<tr>
<td>+(^a)</td>
<td>+(^a)</td>
</tr>
<tr>
<td>0(^b)</td>
<td>+(^a)</td>
</tr>
<tr>
<td>+(^a)</td>
<td>+(^a)</td>
</tr>
<tr>
<td>0(^b)</td>
<td>0(^b)</td>
</tr>
</tbody>
</table>

\(^a\)Plus signs indicate that an animal was caught on that day.

\(^b\)zeros that it was not. This example refers to sample number 4 in a hypothetical study.
Table 1-6. An example of the Jolly–Seber method of mark or tag and recapture analysis (source: Sutherland, 1996).

The Jolly–Seber method

Definitions

\[n_i = \text{total number of animals caught in the } i\text{th sample} \]
\[R_i = \text{number of animals that are released after the } i\text{th sample} \]
\[m_i = \text{number of animals in } i\text{th sample that carry marks from previous captures} \]
\[m_{hi} = \text{number of animals in the } i\text{th sample that were most recently caught in the } h\text{th sample} \]

Example

Black-kneed Capsides *Blepharidopterus angulatus* caught at 3- or 4-day intervals in a British apple orchard (Jolly 1965).

The data are best summarized in a table of \(m_{hi}\) values, with \(n_i\) and \(R_i\) values across the top and the \(m_i\) values (which are the sums of the \(m_{hi}\) values in the column above) across the bottom. Thus in the table below, 169 insects were caught in sample 3 (\(n_3\)) of which 164 (\(R_3\)) were released; 3 of them bore marks from sample 1 (but not from sample 2) (\(m_{13}\)) and 34 bore marks from sample 2 (\(m_{23}\)), giving a total of 37 marked insects (\(m_3\)).

\[
\begin{array}{cccccccccccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
 n_i & 54 & 146 & 169 & 209 & 220 & 209 & 250 & 176 & 172 & 127 & 123 & 120 & 142 \\
 R_i & 54 & 143 & 164 & 202 & 214 & 207 & 243 & 175 & 169 & 126 & 120 & 120 & — \\
\end{array}
\]

The table contains two other sets of summations:

\[r_h = \text{the number of animals that were released from the } h\text{th sample and were subsequently recaptured}; \text{ these are simply the row sums} \]

\[z_i = \text{the number of animals caught both before and after the } i\text{th sample but not in the } i\text{th sample itself}; z_i \text{ is the sum of all the } m_{hi} \text{ that fall in columns to the right of column } i \text{ and all rows above row } i; \text{ thus the dashed lines in the table delimit the } m_{hi} \text{ values that must be summed to obtain } z_i, \text{ for example} \]

Parameter estimates

\[\hat{M}_i = \text{number of marked animals in the population when the } i\text{th sample is taken (but not including animals newly marked in the } i\text{th sample).} \]

\[= m_i + (R_i + 1)z_i/(r_i + 1) \]
1.3 Quantitative Sampling Methods

Table 1-6. (continued)

\[\hat{N}_i = \text{population size at the time of the } i \text{th sample} \]
\[= \hat{M}_i / (n_i + 1)(m_i + 1) \]
\[\Phi_i = \text{proportion of the population surviving (and remaining in the study area) from the } i \text{th sampling occasion to the } (i + 1)\text{th} \]
\[= \hat{M}_i / (\hat{M}_i - m_i + R_i) \]
\[\hat{B}_i = \text{number of animals that enter the population between the } i \text{th and } (i + 1)\text{th samples and which survive until the } (i + 1)\text{th sampling occasion.} \]
\[= \hat{N}_{i+1} - \Phi_i (\hat{N}_i - n_i + R_i) \]

Note that one cannot calculate \(\hat{M} \) for the last sample. \(\hat{N} \) for the first or last, \(\Phi \) for the last two, or \(\hat{B} \) for the first or last two. \(\hat{M}_1 \) is bound to be zero.

Calculations are eased if laid out systematically:

\[\hat{M}_2 = 10 + (143 + 1)14 / (80 + 1) = 34.89 \]
\[\hat{M}_3 = 37 + (164 + 1)57 / (70 + 1) = 169.46 \]
\[\hat{M}_4 = 56 + (202 + 1)71 / (71 + 1) = 256.18 \]
etc.

\[\hat{N}_2 = 34.89(146 + 1) / (10 + 1) = 466.12 = 466 \]
\[\hat{N}_3 = 169.46(169 + 1) / (37 + 1) = 758.11 = 758 \]
\[\hat{N}_4 = 256.18(209 + 1) / (56 + 1) = 943.82 = 944 \]
etc.

\[\Phi_1 = 34.89 / (0 - 0 + 54) = 0.646 \]
\[\Phi_2 = 169.46 / (34.88 - 10 + 143) = 1.009 \]
\[\Phi_3 = 256.18 / (169.46 - 37 + 164) = 0.864 \]
etc.

\[\hat{B}_2 = 758.11 - 1.009(466.26 - 146 + 143) = 290.68 \]
\[\hat{B}_3 = 943.82 - 0.864(758.11 - 169 + 164) = 293.13 \]
etc.

Confidence limits for \(\hat{N}_i \)
Methods usually presented for calculating confidence limits of Jolly–Seber estimates are inadequate for the commonly encountered sample sizes. The following method, due to Manly, provides better limits.

Calculate a transformation of each \(\hat{N}_i \) and the standard error of the transformation.

\[T_i = \log_e \hat{N}_i + 0.5 \log_e \left[0.5 - \frac{3n_i}{8\hat{N}_i} \right] \]
\[s_{T_i} = \sqrt{\left(\frac{\hat{M}_i - m_i + R_i + 1}{\hat{M}_i + 1} \right) \left(\frac{1}{n_i + 1} - \frac{1}{R_i + 1} \right) + \frac{1}{m_i + 1} - \frac{1}{n_i + 1}} \]

For example, the transformation for \(\hat{N}_2 \) is

\[T_2 = \log_e 466.26 + 0.5 \log_e [0.5 - 3(146)/8(466.26)] = 5.6643 \]
\[s_{T_2} = \sqrt{\left(\frac{34.89 - 10 + 143 + 1}{34.89 + 1} \right) \left(\frac{1}{80 + 1} - \frac{1}{143 + 1} \right) + \frac{1}{10 + 1} - \frac{1}{146 + 1}} = 0.3309 \]

(continued)
Calculate confidence limits for \(T_i \), and their exponents:

\[
T_{iL} = T_i - 1.65s_T; \quad W_{iL} = e^{T_i L}
\]
\[
T_{iU} = T_i + 2.45s_T; \quad W_{iU} = e^{T_i U}
\]

Continuing the same example:

\[
T_{2L} = 5.664 - 1.65(0.331) = 5.118; \quad W_{2L} = e^{5.118} = 166.98
\]
\[
T_{2U} = 5.664 + 2.45(0.331) = 6.475; \quad W_{2U} = e^{6.475} = 648.69
\]

95\% confidence limits are given by

\[
(4W_{iL} + n_i)^2/16W_{iL} \quad \text{and} \quad (4W_{iU} + n_i)^2/16W_{iU}
\]

For the example of \(\hat{N}_2 \) the limits are

\[
[4(166.98) + 146]^2/16(166.98) = 248
\]

and

\[
[4(648.69) + 146]^2/16(648.69) = 724
\]

Goodness-of-fit test

The test is applied to each sample in turn, except the first and the last. All animals caught in the sample are categorized as follows:

- \(f_1 \) = first captured before this sample, subsequently recaptured
- \(f_2 \) = first captured before this sample, not subsequently recaptured
- \(f_3 \) = first captured in this sample, subsequently recaptured
- \(f_4 \) = first captured in this sample, not subsequently recaptured

Calculate

\[
a_1 = f_1 + f_2, \quad a_2 = f_3 + f_4, \quad a_3 = f_1 + f_3, \quad a_4 = f_2 + f_4
\]
\[
n = f_1 + f_2 + f_3 + f_4
\]
\[
g_1 = \sum f \log_e f, \quad g_2 = \sum a \log_e a
\]
\[
G = 2(g_1 - g_2 + n \log_e n)
\]

Meadow Voles *Microtus pennsylvanicus* trapped over 6 occasions in Maryland, USA, by J. D. Nichols (Pollock *et al.* 1990) provide an example for this calculation.

For the second sample the figures were

\[
f_1 = 47, \quad f_2 = 31, \quad f_3 = 29, \quad f_4 = 14
\]
\[
a_1 = 78, \quad a_2 = 43, \quad a_3 = 76, \quad a_4 = 45
\]
\[
n = 121
\]
\[
g_1 = 47 \log_e 47 + 31 \log_e 31 + 29 \log_e 29 + 14 \log_e 14 = 422.01
\]
\[
g_2 = 78 \log_e 78 + 43 \log_e 43 + 76 \log_e 76 + 45 \log_e 45 = 1001.99
\]
\[
n \log_e n = 121 \log_e 121 = 580.29
\]
\[
G = 2(422.01 - 1001.99 + 580.29) = 0.62
\]

This \(G \) should be compared with \(\chi^2 \) with 1 degree of freedom.

The \(G \) values for samples 2, 3, 4 and 5 of Nichols’s study of voles, with their associated probabilities, are
1.3.28 Visual Methods for Fishes

Two major methods of estimating fish populations have been used: (1) belt transect method – see pp. 25 and 51, and (2) rapid visual (roaming or roving) technique – the biologist swims in a “random” or haphazard direction for 10 min and counts fishes (a plotless method). This is repeated six times and a test of concordance (see Chapter 3, p. 159) is calculated for the rank abundances. The belt transect method is generally more reliable for quantitative estimates of fish populations but the roving method is ideal for a quick and simple assessment. It is important for studies to be time-based or standardized for irregular habitats. Jiangang Luo (University of Miami) has developed a device that projects an array of parallel laser beams through the water onto the body of a fish, helping divers estimate its length. See De Martini and Roberts (1982), Branden et al. (1986), Bohnsack and Bannerot (1986), McCormick and Choat (1987), and Bortone and Kimmel (1991) for detailed information.

Example of the estimation of the density of a mobile population (fish):

\[
D = \frac{Z}{2rV}
\]

(Southwood, 1978)

where:

- \(D\) = density of the population (No./m²)
- \(Z\) = number of encounters per unit time (e.g., h)
- \(r\) = effective radius (for an encounter with an observer) (e.g., m)
- \(V\) = average velocity of the organism (the most difficult factor to determine)
 (e.g., m/h)

Example

\(Z = 100\) fish (1 species) encountered per hour
\(r = 10\) m
\(V = 500\) m/h

\[
D = \frac{100}{2(10)(500)} = 0.01\text{ fish/m}^2 \quad \text{or} \quad 1\text{ fish/100 m}^2
\]
1.3.29 Narcotizing Agents and Poison Stations

Fishes can be collected alive by using a narcotizing agent such as quinaldene. However, some people are sensitive to the chemical. The quinaldene is fanned among branches of coral or openings in rocks. It works successfully only if there is no current to disperse the chemical.

Fish populations have been estimated by setting up poison stations. This can be done efficiently using perhaps a dozen divers. Plastic gallon (3.8 l) bags are filled with rotenone or rotenone derivative (Noxfish, Chemfish) and a solvent (e.g., alcohol). Each diver carries a plastic bag with chemicals down to the reef. The divers then break the bag in unison and distribute the rotenone by fanning the water over the coral with their swim fins. Fishes affected by the rotenone begin to swim out of the corals around 15 minutes after the application of rotenone. Typically the last fishes to exit the corals are moray eels, after about 45 min. The diver uses a dip net and goody bag to capture and secure the fishes. The fishes must be captured quickly as they often reenter the reef and probably die. Predators on coral reefs (e.g., large jacks, sharks) may take many of the squirming fishes before the diver has an opportunity to catch them. Thus the resulting fish catch is an underestimation of the population of fishes in the area.

1.4 OTHER METHODS OF ESTIMATING THE ABUNDANCE OF POPULATIONS

1.4.1 Comparison of Estimated Populations with Other Methods

(a) Measure a population by random sampling and compare the results with a relative method (e.g., trap organisms by random sampling and compare them with the number of animals observed per hour).

(b) Calculate the regression of some index with an actual population (e.g., the density of a species of kelp by random sampling and by actual count along a line with depth).

1.4.2 Removal Trapping or Collecting

A known number of animals are removed from a habitat by trapping, and the rate at which the trap catches decrease indicates the size of the total population. Eberhardt’s Removal Method is discussed by Krebs (1999). As mentioned previously, removal methods have poor precision and a large potential for bias (Buckland et al., 2001).
1.4.3 Other Methods

1.4.3.1 Indirect Distance Sampling

The population of elephants in dense forests in Kenya is estimated by counting fresh fecal droppings. These elephants are wary of people and are seldom seen in some biological preserves (e.g., preserve near Malindi). The fresh nests of birds can also be tallied. Point transect sampling can be used for counting birds and whales (Buckland et al., 2001). Typically the lines and points are selected randomly. The area surrounding the point is surveyed over a standardized time period for birds, for example, and the distance from the point to the site where the bird was spotted is measured. Laser binoculars can be used for precise measurements. Spot mapping involves intensive mapping of territories and home ranges of target species (typically birds) at randomly chosen points within the study area (Hallacher, 2004).

1.4.3.2 Rare Species

Thompson (2004) and colleagues discuss the sampling of rare, sparse, or elusive species. Rare species can be defined as species with a low probability of detection. Sparse species are those that occur in small clumps but over large areas. Elusive species are species with secretive or nocturnal behavior. Among the many techniques discussed in Thompson (2004) are aerial surveys, distance sampling, intercept sampling, mark-recapture, adaptive sampling, two-phase or stage or double adaptive sampling, adaptive cluster sampling, sequential sampling, point count method of sampling for birds, sighting probability models, patch-occupancy models, occupancy estimation using likelihood methods, resource selection functions for the design of unequal probability sampling, Bayesian estimation, spatial modeling of plants, noninvasive genetic sampling (e.g., mitochondrial DNA or nuclear DNA in hair and feces), photographic sampling of elusive mammals in tropical forests, and banding and PIT tagging in bats.

1.4.3.3 Coral Reef Surveys

Live cover of hard corals has typically been measured in two ways: (1) by eye, and (2) by line transect. Live cover by eye involves: being towed by a rope or Manta board behind a boat (Figure 8-22), or using an underwater scooter (e.g., Farallon scooter – see Fig. 1-25). Towing a person with a boat works well but speed must be reduced because it is difficult to hold on to the rope. A Manta board is preferable. Sometimes the diver may be followed by sharks. The underwater scooter is a wonderful method of surveying reefs although velocities must be reduced until the diver develops sufficient holding strength. There are two dangers in using underwater scooters. The scooters travel so fast that it is easy to reconnoiter down to 60m or deeper and be unaware of the depth. The battery may die thus it is important to travel in pairs for safety reasons. Although slow, one scooter can tow two people through the water
back to the ship. In any case, the observer must be competent in coral identification. See p. 24 for information on line transects.

A relatively recent large study of coral reefs in the western Atlantic included the following techniques (Lang, 2003): Benthic organisms – (1) line intercepts (10 m long), (2) measuring hard coral dimensions, (3) recording diseases (e.g., black band), (4) using small quadrats for estimating the percentage of algal cover, and (5) belt transect counts of the sea urchin *Diadema*. Fishes – (1) belt transects (30 m long), (2) a roaming or roving population estimation, (3) counting fish in 7.5 m diameter circles, and (4) fish bites in m² plots (total of five plots). See this chapter and Chapter 3 for discussions of these topics.

1.4.3.4 Artificial Reefs

Artificial reefs enhance substrate or habitat heterogeneity and lead to an overall increase in diversity over time (Bortone and Kimmel, 1991). The primary reason for establishing artificial reefs is to increase lobster and fish populations and to enhance sport diving, especially on sunken ships. Artificial reefs attract and concentrate commercially viable fish populations at a new site, and then overfishing occurs. The newest approach is to develop artificial reefs to enhance the populations of specific species of fish (e.g., see http://myfwc.com/marine/ar/index.asp). Examples of artificial reefs are shown in Fig. 1-26. Recent innovations include limestone reef restoration using electrodes (cathodic reef stimulation) to induce mineral accretion [CaCO₃ and Mg(OH)₂] on artificial reef frames. This produces coral reef growth (see http://www.globalcoral.org/third_generation_artificial_reef.htm).

Artificial reef colonization is often very rapid and shows similar and repeatable patterns in temperate waters. When abiotic conditions are stable, biological factors such as competition and predation are usually important for limiting population sizes and controlling assemblage (community) composition.

Bortone and Kimmel (1991) present a list of variables commonly measured on artificial reefs and references to methods of assessing and monitoring artificial habitats. Techniques include collecting data on individual organisms (e.g., body size, feeding habits, territory size), on populations (e.g., natality, mortality, age classes), nonvisual methods for fish and invertebrates (e.g., hook and line, nets, hydroacoustics), and...
visual methods (diver transects, species-time counts, predation, still photos, videos, ROVs, and manned submersibles). For further information see Seaman and Sprague (1991), Seaman (2000), and especially the Internet. See Berger (1993 or later) for a bibliography on artificial reefs.

Recent reefs in North America available for divers and fisherfolk include:
(1) Comanche reef, Charleston, South Carolina [50 subway cars at a depth of up to 29 m (95 ft)]; (2) Tenneco Towers, Fort Lauderdale, Florida [oil and gas exploration

Figure 1-26. Examples of artificial reefs. Source: Bortone and Kimmel (1991).
platforms at a depth of up to 40 m (130 ft); (3) USS Spiegel Grove, Key Largo, Florida [156 m (510 ft)] Navy landing ship at a depth of up to 40 m (130 ft); (3) Snake Island Wrecks (two ships), Vancouver Island, British Colombia, at a depth of up to 40 m (130 ft); and (4) HMCS Yukon, 112 m (366 ft) Canadian destroyer escort ship, San Diego, California, at a depth of up to 31 m (101 ft). The U.S. Navy recently sank one of its aircraft carriers (USS Oriskany) off the coast of Pensacola, Florida (Gulf of Mexico).

1.4.3.5 Further Methods of Small Scale Sampling

Populations may also be estimated by animal products (e.g., worm tubes, barnacle shells, exoskeleton remains, bird nests, feces) or by effects (e.g., introduction of a known number of animals into a specified habitat or exclusion of grazers from a habitat, amount of plant consumed). Seabird colony populations can be estimated by flushing the birds and whales by cue counting (e.g., whale blows per unit area per unit time). See Borchers et al. (2002) and Gore et al. (2000) for further information. Krebs (1999) discusses methods of estimating abundances of populations with radio transmitters, and a series of enumeration methods used with small mammals. Southwood and Henderson (2000) discuss observation of birds by radar, hydroacoustic methods, automatic fish counters (e.g., for salmon moving upstream), oral detection, trapping including aquatic light traps, baits and lures including kairomones and pheromones, sound, and so forth. Change in ratio methods has poor precision (Borchers et al., 2002). See also Buckland et al. (2001). Other methods of sampling include link-tracing designs (e.g., network sampling), multistage designs, variable circular plots or point transects, and spatial sampling or kriging (Thompson, 2002). Resource or habitat selection sampling is discussed by Manly et al. (2002).

1.4.4 Large Scale Sampling

Techniques that sample large-scale areas include: (1) aerial surveys including photography; (2) satellite imagery; and (3) hyperspectral imaging. Aerial surveys include counts or population estimates of marine birds (e.g., auks, Family Alcidae) and marine mammals (e.g., whales, walruses (Odobenus rosmarus) – see Kauwling and Bakus, 1979). Photography from aircraft has been used for many years. Among the methods are infrared photos of forests or of kelp beds along the coast. Other types of aerial photography include photos from cameras mounted on kites and pigeons, unmanned aerial vehicles (UAVs), and balloon airships. Aircrafts (airplanes) generally operate between 600 ft (183 m) and 100,000 ft (30,488 m). Radar offers the greatest potential for foul weather remote sensing, but is relatively expensive.

The main types of instrumentation used in large-scale sampling include the spectrometer (optical), radiometer (thermal), and radar or microwave scanning (weather). Multispectral scanning began in the 1970s with the digital remote sensing Landsat satellite. Two primary instruments are used in multispectral scanning: (1) MSS (multispectral scanner system) provides from orbit visible and infrared images as high as an 80-m resolution in four bandwidths. MSS systems extend the light reception range into the infrared with much higher spatial resolution than photographic
systems; and (2) TM (Thematic Mapper) has a 30-m resolution from orbit in seven bandwidths. The panchromatic band has a resolution of over 10 m (see below). The SPOT satellite, with a resolution of 20 m, has been used on coral reefs in the Indo-Pacific (Bour et al., 1986). Space Imaging of Thornton, Colorado (see www.space-image.com) in 1999 produced the first commercial 1-m resolution satellite scanner.

Among the earliest satellites that have been used are Landsat and Seasat. Landsat satellites orbit about 900 km above the earth’s surface and scan images of an area of approximately 185 km². Data from Landsat images are used in agriculture, water resources, mineral resources, forestry, land use, marine resources, and environmental science. Landsat images are available to the public for most areas of the world. Seven spectral bands are measured from the TM including red (sensitive to vegetation), green (sensitive to barren areas), and spectral bands in the infrared. The Enhanced Thematic Mapper (ETM+) has a 15-m resolution panchromatic band, a long wave infrared 60-m resolution band, and six 30-m resolution multispectral bands (see Raytheon on the Internet – http://www.raytheon.com/products/etm_plus/). Thermal radiation is measured to determine sea surface temperatures. The results of the color spectra can be combined into one image and each spectrum assigned a false color or pseudocolor for viewing it on the monitor screen. Structural features (i.e., mountains, valleys, rivers), mineral resources, vegetational types, and many other things are observed. The resolution for Landsat today is around 80 m per pixel. A satellite image is shown in Fig. 1-27 and a pseudocolor image is shown in Fig. 1-28. See

![Figure 1-27. A satellite photo of the west coast of the United States. The colors show chlorophyll a patterns in surface coastal waters. Source: modified from Brink and Cowles (1991).](image)
Hudson and Colditz (2003) for some of the latest techniques in remote sensing. Two new U.S. Navy satellites include Windsat and the F-16 (Tomaszeski, 2004). Windsat measures ocean surface wind speed and direction. The F-16 measures temperatures, humidity, ocean wind speeds, cloud water content, surface terrain temperatures, soil moisture content, and other variables.

Satellite remote sensing has not yet replaced airborne remote sensing for oil spills (Fingas and Brown, 2000). Laser fluoro-sensors (using the UV spectra) may be the only means of discriminating between oiled and unoiled weeds and to detect oil on different types of beaches. It is the only reliable method of detecting oil in certain ice and snow conditions. The instrument is large (400 kg) and expensive.

Geographical features are commonly georeferenced (ground-truthed in industry jargon), that is, observers measure the position of features (e.g., edge of a grassland, edge of a water mass) by using a small, hand-held or back-packed GPS (Geographical Positioning System), and often make scientific measurements defining the properties of interest. Garmin, Magellan, and Trimble make a variety of small GPS devices for public use (Fig. 1-29).

One of the newest methods for large-scale sampling is an advanced multispectral or hyperspectral sensing system (Fig. 1-30). Hyperspectral imaging was developed in 1983 by NASA’s Jet Propulsion Laboratory. An imaging radiometer scans the land or ocean surface from an airplane or satellite, measuring radiation from 10s to 100s of wavelengths (i.e., color variations in the energy reflected from the ground). Hyperspectral data can also be obtained from a hand-held instrument by holding the scanner above an object. For example, hand-held instruments have been used to discriminate between healthy coral, bleached coral, sand, and algae, even on a species level (Holden and LeDrew, 2001). The 22° FOV (field of view) sensor is hand-held 10 cm above the substratum or organism by a scuba diver. It can measure 175 spectra using a bandwidth of 1.4 nm. Often unrotated PCA (Principal Component Analysis—see Chapter 5, p. 247) is used to reduce the reflectance data.
to representative spectra, using the first principal component (Table 1-7), then cluster analysis (see Chapter 4, p. 218) is employed to separate different classes of spectral resolutions. Sometimes there is considerable spectral similarity between certain taxa.
(e.g., macroalgae and healthy coral—see brown algae and the hard coral *P. astreoides* in Fig. 1-31). Hyperspectral imaging is used to map invasive plant species and diseased plants with 90% accuracy. For example, it was used to track the spread of alien tree species that are altering the rainforest in Hawaii Volcanoes National Park. Weather conditions can obscure images and species cannot always be distinguished.

<table>
<thead>
<tr>
<th>Class</th>
<th>Number of Spectra</th>
<th>Variance (%)</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>24</td>
<td>97.89</td>
<td>0.99</td>
</tr>
<tr>
<td>Sand</td>
<td>4</td>
<td>99.56</td>
<td>0.99</td>
</tr>
<tr>
<td>Rock</td>
<td>6</td>
<td>99.13</td>
<td>0.96</td>
</tr>
<tr>
<td>Brown algae</td>
<td>7</td>
<td>97.37</td>
<td>0.99</td>
</tr>
<tr>
<td>Green algae</td>
<td>7</td>
<td>97.37</td>
<td>0.99</td>
</tr>
<tr>
<td>Rubble</td>
<td>27</td>
<td>85.47</td>
<td>0.99</td>
</tr>
<tr>
<td>M. annularis</td>
<td>11</td>
<td>98.99</td>
<td>0.99</td>
</tr>
<tr>
<td>D. strigosa</td>
<td>41</td>
<td>97.10</td>
<td>0.99</td>
</tr>
<tr>
<td>P. astreoides</td>
<td>7</td>
<td>99.92</td>
<td>0.99</td>
</tr>
<tr>
<td>P. porites</td>
<td>6</td>
<td>99.06</td>
<td>0.99</td>
</tr>
<tr>
<td>A. palmata</td>
<td>6</td>
<td>99.61</td>
<td>0.99</td>
</tr>
<tr>
<td>M. flavida</td>
<td>6</td>
<td>98.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Anemone</td>
<td>6</td>
<td>99.83</td>
<td>0.99</td>
</tr>
<tr>
<td>Bleached</td>
<td>17</td>
<td>99.62</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Figure 1-31. Cluster tree for data in Table 1-7. Source: Holden and LeDrew (2001).

A relatively new discipline involving large-scale sampling is **spatial analysis**. It typically consists of using remote sensing, GPS, expert systems, and GIS to analyze information. In ecology, it involves sampling by distance measurements, patch analysis, spatial autocorrelation, and chaos, among others (Tilman and Kareiva 1997, Hunsaker et al., 2001; Fortin and Dale, 2005). It covers the spatial dynamics of ecological communities on a larger scale (i.e., metacommunities) (Holyoak et al., 2005). A number of these topics are found in various chapters in this book. An example of spatial analysis in biological oceanography is that of Cowen et al. (2006). Flow trajectories from a high resolution Caribbean ocean circulation model in a Lagrangian stochastic scheme were used to generate an individual-based IBM model for coral reef fish larval dispersal. The biological parameters of the model included pelagic larval duration, larval swimming behavior, and adult spawning by season and frequency. They concluded that typical fish larval dispersal distances in the Caribbean are on a scale of 10–100 km.

An example of spatial analysis in operation is that of the University of Washington Fisheries Sciences Spatial Analysis Laboratory (http://sal.ocean.washington.edu/research/research.html). See also the topic of ocean spatial analysis on the Internet.

SUMMARY

For numbers of sampling units required, use the equations most appropriate for the spatial distribution of the species under study. Density estimates are obtained most accurately by belt or strip transects, stratified random sampling, or using the line intercept method of Strong. Rapid sampling techniques involve taking photos and videos of the benthos followed by a random selection of photographic frames for automatic counting. Visual counts of fishes can be easily made by haphazard roaming or more accurately, but more time-consuming, by belt transects. Line intercept methods provide an abundance of data for reef studies. Large-scale sampling by satellite combined with hyperspectral imaging provide an enormous amount of valuable information. Spatial analysis is the latest development using these techniques.