Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>About the Author</td>
<td>xix</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxi</td>
</tr>
<tr>
<td>I Self-Organization</td>
<td>1</td>
</tr>
<tr>
<td>1 Introduction to Self-Organization</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Understanding self-organization</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Application scenarios for self-organization</td>
<td>5</td>
</tr>
<tr>
<td>2 System Management and Control – A Historical Overview</td>
<td>7</td>
</tr>
<tr>
<td>2.1 System architecture</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Management and control</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Centralized control</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Distributed systems</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Self-organizing systems</td>
<td>14</td>
</tr>
<tr>
<td>3 Self-Organization – Context and Capabilities</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Complex systems</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Self-organization and emergence</td>
<td>19</td>
</tr>
<tr>
<td>3.3 Systems lacking self-organization</td>
<td>22</td>
</tr>
<tr>
<td>3.3.1 External control</td>
<td>22</td>
</tr>
<tr>
<td>3.3.2 Blueprints and templates</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Self-X capabilities</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Consequences of emergent properties</td>
<td>24</td>
</tr>
<tr>
<td>3.6 Operating self-organizing systems</td>
<td>26</td>
</tr>
<tr>
<td>3.6.1 Asimov’s Laws of Robotics</td>
<td>26</td>
</tr>
<tr>
<td>3.6.2 Attractors</td>
<td>28</td>
</tr>
<tr>
<td>3.7 Limitations of self-organization</td>
<td>30</td>
</tr>
</tbody>
</table>
CONTENTS

4 **Natural Self-Organization**
4.1 Development of understandings
4.2 Examples in natural sciences
4.2.1 Biology
4.2.2 Chemistry
4.3 Differentiation self-organization and bio-inspired
4.3.1 Exploring bio-inspired
4.3.2 Bio-inspired techniques
4.3.3 Self-organization vs bio-inspired

5 **Self-Organization in Technical Systems**
5.1 General applicability
5.1.1 Autonomous systems
5.1.2 Multi-robot systems
5.1.3 Autonomic networking
5.1.4 Mobile Ad Hoc Networks
5.1.5 Sensor and Actor Networks
5.2 Operating Sensor and Actor Networks

6 **Methods and Techniques**
6.1 Basic methods
6.1.1 Positive and negative feedback
6.1.2 Interactions among individuals and with the environment
6.1.3 Probabilistic techniques
6.2 Design paradigms for self-organization
6.2.1 Design process
6.2.2 Discussion of the design paradigms
6.3 Developing nature-inspired self-organizing systems
6.4 Modeling self-organizing systems
6.4.1 Overview of modeling techniques
6.4.2 Differential equation models
6.4.3 Monte Carlo simulations
6.4.4 Choosing the right modeling technique

Appendix I **Self-Organization – Further Reading**

II **Networking Aspects: Ad Hoc and Sensor Networks**

7 **Mobile Ad Hoc and Sensor Networks**
7.1 Ad hoc networks
7.1.1 Basic properties of ad hoc networks
7.1.2 Mobile Ad Hoc Networks
7.2 Wireless Sensor Networks
7.2.1 Basic properties of sensor networks
7.2.2 Composition of single-sensor nodes
7.2.3 Communication in sensor networks
11 Data-Centric Networking 153
11.1 Overview and classification 155
 11.1.1 Data dissemination 156
 11.1.2 Network-centric operation 158
 11.1.3 Related approaches 159
11.2 Flooding, gossiping and optimizations 159
 11.2.1 Flooding 160
 11.2.2 Pure gossiping 163
 11.2.3 Optimized gossiping 165
11.3 Agent-based techniques 170
11.4 Directed diffusion 173
 11.4.1 Basic algorithm 173
 11.4.2 Mobility support 176
 11.4.3 Energy efficiency 177
11.5 Data aggregation 178
 11.5.1 Principles and objectives 179
 11.5.2 Aggregation topologies 181
11.6 Conclusion 184

12 Clustering 185
12.1 Principles of clustering 186
 12.1.1 Requirements and classification 187
 12.1.2 k-means 189
 12.1.3 Hierarchical clustering 190
12.2 Clustering for efficient routing 191
 12.2.1 Low-Energy Adaptive Clustering Hierarchy 192
 12.2.2 Hybrid Energy-Efficient Distributed Clustering Approach 195
12.3 Conclusion 196

Appendix II Networking Aspects – Further Reading 199

III Coordination and Control: Sensor and Actor Networks 203

13 Sensor and Actor Networks 205
13.1 Introduction 205
 13.1.1 Composition of SANETs – an example 206
 13.1.2 Properties and capabilities 207
 13.1.3 Components of SANET nodes 210
 13.1.4 Application examples 212
13.2 Challenges and research objectives 214
 13.2.1 Communication and coordination 215
 13.2.2 Collaboration and task allocation 216
13.3 Limitations 217

14 Communication and Coordination 219
14.1 Synchronization vs coordination 220
V Bio-inspired Networking 303

18 Bio-inspired Systems 305
18.1 Introduction and overview ... 306
 18.1.1 Ideas and concepts ... 306
 18.1.2 Bio-inspired research fields 308
18.2 Swarm Intelligence .. 312
 18.2.1 Principles of ant foraging 312
 18.2.2 Ant-based routing .. 315
 18.2.3 Ant-based task allocation 316
18.3 Artificial Immune System ... 318
 18.3.1 Principles of the immune system 318
 18.3.2 Application examples ... 322
18.4 Cellular signaling pathways ... 323
 18.4.1 Introduction to signaling pathways 323
 18.4.2 Applicability in SANETs .. 327
18.5 Conclusion .. 329

Appendix IV Bio-inspired Networking – Further Reading 331

Bibliography 335

Index 355