Index

accelerated failure time (AFT) model, 157
acquisition discount, 124
actual acquisition probability, 48
AdaCost boosting, 153
AMOS software, 65
analytical methods, 2, 9
ARPRO (Acquisition, Retention, and PROfitability) model, 48
artificial intelligence, 70
average order size, 35, 87, 124
defined, 87
multivariate regression (OLS), 87
two-stage least squares estimation in, 87
balancing acquisition, 122. See also retention modeling
modeling framework, 128–9
SAS code, 142–3
SAS output, 144–7
B2B firm, 15, 23, 27, 33, 48, 51, 122, 129, 151, 156
contractual basis, 156
improving acquisition rate, 32
B2C firm, 15, 17, 66, 75, 92, 150, 167, 170
CRM implementation at, 202
improve repurchase rate, 74
bias, 24, 39, 40, 83, 88, 98, 132, 173, 176, 178
binary dependent variable, 32, 74, 129, 171
binary variable, 32, 70, 73, 80, 91, 93, 127, 129, 170
Blogs, 224
CDF. See cumulative distribution function (CDF)
ceiling rate, 48
censoring issues, 127
CLV. See customer lifetime value (CLV)
content communities, 225
contractual business, 27
CRM implementation
at B2C firm, 202
challenges, 219–22
CLV management framework, 202–22
fashion retailer, 203–19
focal firm background, 202
implementation, 202–3
at IBM, 190–202
background, 190–1
implementing CLV management framework, 191–202
cross-buying, 69, 91, 93
determine odds ratio, 94–5
effect of acquisition channels on, 91
identifying drivers, 93–5
implementation, 97
cross-buying (Continued)

logistic regression
cutoff value, 96
probability function, 95
results from, 93–4
predicted vs. actual cross-buy, 96
transaction behavior, 93
variables for model, 92–3
cross-sectional data, 37
cumulative distribution function (CDF), 41,
51, 91, 100, 101, 134, 137, 175,
176, 178
customer acquisition, 3, 11–15, 12–15, 17,
22
drivers of, 122
joint distribution of acquisition time and
duration, 128
mixing distribution for univariate
function, 127
models
issues addressed in, 23
review, 26
questionnaire, 22–3
Sarmanov family of multivariate
distributions
defining density functions and bounded
mixing functions, 127
SAS code, 53–4
SAS output, 55–61
select empirical studies modeling,
24–5
selection decisions (See initial order
quantity; lifetime duration; response
probability)
variables, used for analysis, 27–8
customer acquisition likelihood, 32
customer asset value, 124
customer churn, 12, 149
attrition effects, 153
bagging and boosting classification trees
for prediction, 152
binary logistic regressions, 152
data include variables, 151
drivers and likelihood, studies, 151
error term, properties, 153
five-stage churn management framework,
156
impact of, 17–18
implementation, 161
likelihood contribution of volunteer,
154–5
MacKay’s Bayesian ARD neural network
and random forests, 152
models, 150, 152
prediction accuracy of proposed
techniques, 153
probability calculation, 151
probit model, 153–4
proportional hazards model, to analyze
customer attrition, 156
results, 158–61
computing MAD, 160
interpreting parameter coefficients from
AFT model, 158, 159
predictive accuracy of model, 161
ratio of survival times, 159
SAS code, 162
SAS output, 163–4
time series analysis, 153
utility expression, 151
variables, for studies, 157
Weibull hazard model with time-varying
covariates, 155
customer–company relationships, 42
baseline hazard, 43
density function, 43
duration/time, 42–3
results from estimation, 45–6
variables, 44
generalized gamma models, 42
hazard function, 42, 43
MLE method, 43
non-contractual settings, 47
survival function, 43
Weibull distribution, 43
Weibull model, 43
Weibull distribution, 43
customer equity, 9, 23, 102, 124, 125, 221
model, 23, 47
customer–firm relationship life cycle, 12
customer influence effect (CIE) metric, 224
customer influence value (CIV), 225
customer life cycle, 19, 22, 121, 122, 169,
186, 187
customer lifetime value (CLV), 2, 12, 16, 47
based churn models, 18
based management framework at IBM,
191
process assessing impact of, 192
challenges in implementing framework, 219–22
and implement CRM initiatives, 3
management framework at fashion retailer, 203–19
measurement approach, 187–90
profitability, 102–4
customer no longer repurchase, 71
covariate coefficients, 72
dependent variable in study, 71
discrete-hazard approach, 72
discrete-time model, 72
duration of service retention dh, 73
hazard rate of lapsing, 71
hazards regression using baseline hazard function, 73
household’s probability of purchasing product, 72
implementation, 78
instantaneous probability, 71
likelihood function, 72
Markov chain Monte Carlo (MCMC) sampling algorithm, 73
result of logistic regression, 75–8
survival function for retention modeling, 73
third-order polynomial expression, 73
variables, for model, 74–5
customer profitability, 48
customer relationship management
defined, 2–3
initiatives, 3
customer retention, 3, 11, 12
data, 66
demographics, 69
transaction information, 66, 69
factors, effects of, 65
industries, 63
integrated relationships, 64
modeling
issues addressed in, 65
review of, 67–8
research on, 63
SAS code, 106–10
SAS output, 111–18
significance of, 15–17
strategies, 63
customer-to-customer (C2C) exchanges, 226
customer win-back
benefits of, 18–20
cost of, 19
data, including variables, 167
effects of price changes, 168
implementation, 179
models, 167
probability of customer terminating relationship, 168–9
conditional regression, 168
customer-specific preferences, 169
error variances, 169
latent duration of relationship, 169
reacquisition and duration of second lifetime, 169
probit model for probability of reacquisition, 168
reacquisition model, 170
cutoff value, 172
likelihood of readoption, 173
probit regression, 171–2
variables, 171
regain profit (RP) function, 168
SAS code, 180–1
SAS output, 182–5
SCLV model, 176–8
computing MAD, 178
results, 177–8
variables, 177
second duration model, 173–6
inverse Mills ratio, 174, 176
probit model, 173
sample selection bias, 173
variables, 174–6
second life-time value (SLTV), 168
split hazard model, 168
customized marketing campaigns, 227–9
cutoff value, 38, 77, 96, 131, 172
database, 3
categories of, 4
customer database, 4
inactive customers, 4
sources of, 5–6
transaction-related, 4
variables, 27–8
decision calculus, 48
decision tree, 153, 156
defection behaviors, 161
dependent variable, 30, 32, 33, 37, 46, 60, 71, 72, 74, 88, 97, 104, 132, 135, 151, 171, 177, 210, 214
dummy variables, 81, 86, 87, 91, 97, 154
duration model, 131–4
EQS software, 65
ERP (Enterprise Resource Planning) systems, 7
firm’s performance, 47–9
customers meet criteria, 50
future profitability, 50
predict CLV for each customers, 51
results, 50–2
variables, model include, 49–50
First_Purchase model, 40, 41
Fisher-scoring solution, 71
FREQ Procedure, 38, 56, 78, 97, 112, 116, 145, 164, 183
GAUSS, 34, 78, 80, 85, 97, 101, 105, 141, 161, 179
Gini coefficient, 152
inactive customers, 4
information for documentation, 4–5
independent variables, 30, 32, 33, 37, 44, 45, 50, 74, 75, 88, 91, 93, 99, 104, 129, 132, 135, 154, 158, 171, 174, 177, 178, 209
initial order quantity, 35–7, 39
biased estimates, 39
cross-sectional data, 39
list of variables, 39
two-stage modeling framework, 40, 41
internet, 6
inverse Mills ratio, 39, 40, 42, 50, 52, 88, 89, 91, 132, 134, 135, 137, 174, 177, 178, 180
lifetime duration, 78–83
BG/NBD model, 80
biased estimates, 79
Hazard models, 79
implementation, 85
methods from machine learning fields, 79
negative binomial distribution (NBD)/Pareto model, 79
in non-contractual setting, 79
probabilities, 80
results, 84–5
for retailing stores, 80–2
sBG probabilities calculation, 82, 83
shifted-beta geometric (sBG) distribution, 79
standard right-censored Tobit model, 83
survival analysis, 79
variables for model, 83
lifetime value model (LTV), 23, 47
LISREL software, 65
LOGISTIC procedure, 55, 56, 57, 59, 60, 111, 113–16, 144, 145, 182
logistic regression, 33, 37, 70, 75, 78, 93, 95, 124, 150, 156, 213
log-odds ratio, 33, 34, 94
response probability, 28, 29
logit model, 48
binary, 30, 152
MLE method, 29
multinomial, 79, 97, 98
machine learning, 70, 79, 152, 161
marketing functions
customer-centric, 1
product-based, 1
MATLAB, 34, 78, 85, 97, 101, 105, 141, 161, 179
maximum likelihood estimates, 55, 57, 60, 112, 114, 116, 145, 182
mean absolute deviation (MAD), 41, 42
mean absolute percent error (MAPE), 41, 42
metrics, 7
categories, 7
commonly used CRM metrics, 8–9
mobile marketing, 226–7
newly acquired customers, 35–7
prediction, 37–8
newspaper subscriptions, business, 27
null hypothesis, 55, 57, 60, 111, 113, 116, 144, 152
odds ratio, 33, 76, 77, 94, 95
estimates, 55, 56, 112, 116
OLS regression model, 40, 47, 49, 91, 105, 157, 158
R-Square, 55, 58, 61, 111, 116, 118, 146, 147, 184

sample selection, 39, 40, 88, 89, 132, 135, 173, 174, 176

SAS code, 53–4

SAS Data, 38, 52, 106–10

SAS output, 55–61, 111–18

SAS System, 55–9

segmentation techniques, 14, 15, 204, 205, 212, 213, 215

share-of-wallet (SOW), 69, 81, 97

banking industry, 98

two-level latent class regression model, 98

defined for customer, 97
determine drivers, 99
effect of loyalty programs, 97
implementation, 101
limited dependent variable, 99
log-odds ratio, 98

multinomial logit model

MLE method, 98
predicted probability, 98
predictive accuracy of model, 99
results, 100–101

two-stage least squares (2SLS) procedure, 98
variables of model, 99

shopping behavior, 152, 212

social coupons, 225

social media, 223–6

SOW. See share-of-wallet (SOW)

SPSS program, 34, 42, 52, 78, 91, 97, 105

statcrm.customer_acquisition, 53–6, 58, 59

statcrm.customer_trans, 106

statistical software, 65

switching behavior, 30

telecommunications services, 27

Tobit model, 47, 48, 49, 83, 85, 86, 102, 125–7
to estimate PVR for customers, 47
mathematical specifications, 126
for online grocery retailing
industry, 48

selectivity variable

lambda (\(\lambda_1\)), 127
standard right-censored, 125, 127

transactions behavior, 69, 74, 83, 93

validation, 156, 203

variance, 28, 58, 61, 104, 114, 118, 146, 147, 169, 183, 184, 197, 210

variant across time (VAR) modeling, 49

Ventriloquist Express, 19

voice over internet protocol (VoIP) technology, 6

Web-based technology, 6–7

Weibull distributions, 45–7, 73, 154, 155

weighted average cost of capital (WACC), 187

Wheel-of-Fortune strategies, 12