AC motor drives, 423
AC systems, at mains frequency, 177
 AC contact line power supply, 186
 AC traction power substation
diagram, 185
 neutral section, 180
 order sequence 6, 183
 potential difference in neutral
 section, 180, 182, 183
 Scott diagram, 181
 unbalance coefficient, 178
 V connection diagram, 182
AC systems, at railway frequency, 255
 centralized distribution, 255
 contact line supply parameters, 258
 distributed conversion system, 256
 phase and frequency conversion, 256
 second harmonic filter, 261
 static phase and frequency
 conversion, 260
2x25 kV autotransformer system, 188
 autotransformer equations, 196
 circuit equations, 209
 feeder conductor, 204
 geometric mean radius (GMR), 200
 ideal working principle, 208, 281
 influence of autotransformer
 parameters, 222
 line inductance calculation, 216
 on-load tap changer (OLTC), 193
 overhead line parameters
calculation, 198
 real working principle, 209
 skin depth, 208
 skin effect, 206
 three-winding transformer
 equations, 188
 track rail, 205
autotransformer system, construction
of, 224
 auxiliary points, 231
 auxiliary services power supply, 246
 disconnection and protection
 points, 241
double parallel and autotransformer
point, 233
electric border point (EBP) between AC
and DC systems, 236
 filter units, 238, 268
 line and grounding conductors, 243
 main low voltage switchboard, 253
 mode of operation, 240
 pole transformation points, 252
 primary supply lines, 224
 protective devices, 240
 service points, 242
 single parallel and autotransformer
 point, 233
 single-phase battery charger, 249
 static switch, 251
 three-phase battery charger, 250
 traction power substations
 (TPSSs), 228–231
 transformer-separator unit, 237
 uninterruptable power supply
 (UPS), 247
batteries, 517
 ageing, 525
 cell voltage, 520
batteries (Continued)
current dependence, 524
discharge profile, 526
electrochemical batteries, 518
Gibbs potential, 520
nickel-cadmium cell (Ni-Cd), 521
nickel-metal hydride cell (Ni-MH), 521
Ragone chart, 522
for railway applications, 521
redox reaction, 520
sizing, 526
state of charge (SOC), 523
dependence, 525
temperature dependence, 525
variables and parameters, 523
block diagram, of traction unit, 354
TCU’s main functions, 356
traction control unit (TCU), 354
braking energy recovery system, 133
basic electric diagram, 134
probabilistic methods for storage
sizing, 135
braking systems, 341, 527
brake control unit (BCU), 532
compressed air brake, 528
Eddy current brake, 530
electrodynamic brake (ED brake), 529
electromagnetic runner brake, 532
electropneumatic brake (EP brake), 528
emergency brake mode, 534
parking brake mode, 534
service brake mode, 533
stopping brake mode, 534
vacuum brake, 527
Westinghouse brake, 527, 528

compressed air production, 526
contact lines, 139
bilateral power supply, 153
catenary suspension, 142
constructive aspects, 142
deflection, 143
electrical calculations, 146
line resistance, 147
protection of contact line, 162
staggering of the contact wire, 144
system efficiency, 160
tensioning of contact line, 144
track resistance, 148
unilateral power supply, 150
up-line and down-line parallel
connection, 158
voltage drops, 148
wire characteristics, 140
control techniques, 74
direct power control, 80
virtual flux oriented control, 79
voltage-oriented control (VOC), 75
architecture, 78
current collecting systems, 505
catenary complicate, 511
critical speed, 509
current collecting quality, 507
forces acting in pantograph-catenary
system, 510
maximum collectable power, 512
natural oscillating frequency, 508
pantograph, 506
catenary interaction, 508
propagation of oscillation, 512
third rail, 512
trajectory of arch, 510
vertical lift forces, 509

DC motor drives, 359
air gap torque, 374
armature/stack reaction, 368
compensator windings, 371
constructive aspects, 359
efficiency, 374, 386, 402
equivalent electric circuit, 361
interpoles, 370
load operation, 368
loss figure, 366
magnetic circuit, 362
magnetization characteristic, 370
mechanical losses, 365
no-load operation, 364
no-load test, 367
rotor core losses, 366
speed characteristic, 373
starting conditions, 372
tractive effort diagram, 376
voltage drops, 372
electrification systems, in the
world, 1, 12
DC electrification, 5, 99
electrification at
mains frequency, 8, 177
railway frequency, 7, 255
three-phase electrification, 9
electromagnetic compatibility, 263
Bode diagram of the filter transfer
function, 274
capacitive interference phenomena, 284
Carson-Clem theory, 275
conducted interference phenomena,
265
electromagnetic field, 286
filter transfer function, 273
induced interference phenomena, 274
influence of parameters deviation, 272
mutual coupling, 275
power and signaling current
interferences, 264
protection at electric border point, 266
protection of parallel lines, 283
psophometrically weighted noise
voltage, 284
quality factor, 271
radiated interference phenomena, 285
tuned LC filters, 268
electronic DC motor drives, 405
DC/DC converter
chopper, operating principle of, 409
different states of, 410
real operating principle of, 413
during vehicle operation, regulation
of, 416
duty cycle, 408
harmonic current
analysis, 421
generated by DC/DC converter, 419
limits, 419, 420
input filter characteristics, 420
ripple factor, 415
step-up and step-down chopper, 405,
406
four quadrant (4Q) converter, 544
basic diagram of 4Q, 545
Bode diagrams, 559, 560
DC link voltage, 548
2f oscillation, 548
harmonic analysis, 561
interleaving of multiple 4Q
converters, 559
LC resonant 2f filter, 546, 548
main working equations, 547
open-loop transfer function, 558
PI regulation system, 557
power factor, 545
small signal model, 556
stability analysis, 549
system linearization, 555
THD sensitivity analysis, 562
total harmonic distortion (THD),
561
vector diagram, 546
gauge, 14
broad gauge, 14
narrow gauge, 14
standard gauge, 14
Graetz diode bridge, 42
harmonic currents, 45, 49
harmonic voltages, 46
six-pulse rectifier, 42
transformer sizing, 46
twelve-pulse rectifier, 47
heating, ventilation and air conditioning
(HVAC), 534
air conditioning system, 536
comfort parameters, 534
distribution system arrangements,
535
ventilation and fans, 536
induction motor drives, 423
control chain management, 450
control strategies, 438
cut-away of induction motor, 424
direct action vector control, 443
direct self control (DSC), 445
direct torque control (DTC), 448
dynamic model of induction
machine, 437
elasticity of motor, 433
induction motor drives (Continued)
electromagnetic torque, 435
equivalent electric circuit, 426
flux control, 448
high speed regulator, 447
indirect action vectorial control (FAM), 441
induction machines, advantages of, 424
low speed regulator, 446
magnetic and electric equations, 435
in park domain, 436
maximum torque conditions, 428
operation
in a constant power range, 432
in a constant torque range, 431
principle of induction motor, 425
at variable speed, 429
power transmitted, 427
rotor frequency, 426
rotor slip, 425
simple scalar control, 440
speed reverse, 452
switching table, 450
synchronous speed, 425
torque
control, 450
diagram, 427
and speed control, 434
variable voltage and variable frequency, 430
volt/hertz control, 441
mechanical aspects, of rail vehicles, 297
articulated vehicles, 300, 302
classification of rolling stocks, 302
electric multiple unit (EMU), 302
light rail vehicle (LRV), 305
vehicles with bogie structures, 299
wheel arrangements, 301
motion transmission, 348
fully suspension on bogie, 348
car-body, 349
nose suspension, 348
multilevel converters, 82
cascaded multilevel inverter, 94
diode-clamped, 84
flying capacitor, 84
multilevel space vector modulation, 90
multisystem rolling stocks, 539
AC operation, 566
DC operation, 567
main transformer, 540
multivoltage and multifrequency transformer operation, 540
power electronic traction transformer (PETT), 541
silicon carbide (SiC) modules, 541
tractive effort diagram for multisystems train, 565
transformer configurations, 568, 569
as inductor, 543
in multisystem vehicles, 567
transition from AC to DC system, example of, 564
onboard auxiliary services, 515
head-end power (HEP), 515
high-frequency transformer, 517
high voltage feeder, 515
low voltage distribution, 516
power supply, 517
onboard protection systems, 514
high speed circuit breaker (HSCB), 514
vacuum circuit breaker (VCB), 514
operational speed limits, 343
forces acting during cornering, 345
superelevation, 346
tilting trains, 347
uncompensated acceleration, 345
park transform, 17
powers in park domain, 31
rms powers, 38
rotating reference frame, 33
space vectors, 19
stationary reference frame, 18
symmetrical components, 28
passenger information system (PIS), 537
permanent magnet synchronous motor drives, 453
coercitivity, 461
control techniques, for PM machines, 479
Curie temperature, 459
direct torque control (DTC), 484
emagnetic torque equation, 473
energy product, 463
insert permanent magnet machines, 477
load line, 462
magnetic circuit equations, 462
mechanical equations, 474
permanent magnets
 characteristics of, 460
 in electrical machines, 459
 equivalent circuit, 465
 machines, classification of, 476
 main properties of, 454
 size calculation, 464
 stability, 457
typologies, 453
PMSM model
 in park domain, 471
 in rotor reference frame, 472
 in stator reference frame, 471
 synchronous machine, 466
pure permanent magnet machines, 476
rare earth magnets, 453
relative value equations, 475
reluctance variations, and
 demagnetization fields, 459, 463
remanence, 461
salience ratio, 474
sensorless control systems, 487
space vector modeling, 467
state observer, 487
synchronous reluctance machine, 477
three-phase electric model, 468
vector control, 479
permanent magnet synchronous machine, in
 traction systems, 491
absorbed current as function of PM flux, 493
DC link, effects of fault in, 501
design criteria, 495
efficiency as function of PM flux, 494
failure probability, reduction of, 496
fault-tolerant machines, 495
induced electromotive force
 problem, 492
polyphase motor drives, 498
power factor as function of PM flux, 494
redundant configuration, 500
railway track, 13
rectifier with unitary power factor, 70
self-propelled vehicles, 571
 basic diagram of
 dual-power vehicle, 585
 fuel cell vehicle, 589
 multiengine systems, 584
 common rail, 575
diesel-electric traction, 571
diesel-electric vehicle with
 AC traction motors, 578
 DC traction motors, 576
diesel engine characteristics, 573
diesel particulate filter (DPF), 575
dual-power vehicles, 584
electric transmission, 576
fuel cell trains, 585
fuel cell vehicles, 588
hydromechanical transmission, 572
last mile module, 585
multiengine systems, 583
power balance, 577
proton exchange membrane fuel cell (PEMFC), 586
 basic working principle, 587
 regulations of diesel engine, 579
 specific fuel consumption, 574
 three-phase generators, 581
torque converter, 572
 transmission with
 AC motors, 582
 DC motors, 579
single-phase full-bridge inverter, 60
speed regulation, of DC motors, 378, 390
 approaching positions, 395
 automatic starting conditions, 396
 bridge transition, 401
evertility, 386
speed regulation, of DC motors (Continued)
electromechanical traditional
drives, 379
electronic DC motor drives, 379, 405
energy loss in starting rheostat, 402
field regulation, 381
forward/reverse drive, 387
rheostatic regulation, 391
rheostat section calculation, 393
separate field motors, 389
series-parallel starting conditions, 404
series-parallel transition, 396, 398
short circuit transition, 398
shunt inductor, 382
tractive effort diagram, 386
voltage regulation, 379
stray currents, 287
earthing system, 294
impact on
transport infrastructure, 290
underground infrastructures, 294
measures against, 295
origin of, 288
protection systems, 293
three-level inverter, 87
flying-capacitor inverter, 92
three-phase inverter, 63
high-frequency oscillations, 73
square wave operation, 67
thyristor rectifier, 50, 121
average output voltage, 52
effect of real commutation, 53
phase control, 51
real and reactive power, 52
traction diagrams, 333
braking phase, 338
commercial speed, 339
equivalent mass, 335
inertial coasting, 338
start-up phase, 335
traction drive, performance of, 350
traction power substation (TPSS) for DC
systems, 103
braking energy recovery, 123, 133
conversion group, 116
DC busbars, 128
diode and thyristor TPSS, comparison
between, 125
disconnectors, 110, 132
electric diagram, 104
high-speed circuit breaker, 129
rectifier protection, 118
sizing of converter group, 119
substation busbars, 107
surge arresters, 131
thyristor based, 121
transformer group, 112
voltage source converter (VSC)
based, 127
voltage transformers, 109
traction power sustations (TPSSs), 99
connection to mains, 100
primary lines, 100
probabilistic methods for sizing, 166
lines of influence, 175
power supply
from several substations, 174
from single substation, 173
train absorption representation, 167
tractive effort diagram, 234
driving wheel, 326
mechanical characteristic, 327
transmission ratio, 327
train wheels, 15
elastic wheels, 16
steel wheels, 15
vehicular motion, 307
air resistance, 317
incidental resistance, 321
overall resistances, 324
resistance to motion, 314, 318
rolling resistance, 316
voltage source converters, 57
harmonic voltages, 59
PWM modulation, 57
wheel-ground kinematic pair, 307
adhesion coefficient, 312, 313
adhesion conditions, 310
adhesion factor, 308
wheelset, 15, 297
load, 330
pitching moments, 331