Index

A
a priori 236
Abdul-Rahman, A.
Spatial Data Modeling for 3D GIS 23
Accurately Controlled and Routinely Operated Signal System (ACROSS) 103
acoustic impedance 143, 230, 314
ACROSS (Accurately Controlled and Routinely Operated Signal System) 103
activation functions 53
activation/feature map 257
adaptive neuro-fuzzy logic systems 141
advanced analytical workflows 280
advanced geophysical methodologies about 69–70
case studies 72–78
clusters 70–72
advanced petrophysical methodologies about 69, 99
data collection 82–84
data quality 82–84
data types 78–82
extracting information from well reports 89–90
feature engineering in well logs 95–98
fundamental insights 92–95
integration with other technical domains 90–91
integration with other well information 90
integration with stratigraphic data 87–89
machine learning 98
stratigraphic information 86
use cases 98
well logging 78–82
well logging data 84–86
agglomerative clustering 190–192
AI (artificial intelligence) about 64–65, 241–243
data management 243
deep learning techniques 247–251
deep neural network architectures 251–268
machine learning methodologies 243–247
seismic feature identification workflow 268–274
Akaike’s Information Criterion (AIC) techniques 200–204
aligned-box criterion 274
altitude, weight, bias and 52
analysis
See also principal component analysis (PCA)
See also seismic attribute analysis
AVO 314
cluster 308–310
decline curve analysis (DCA) 108, 293, 315
 discriminant 46–47, 316
exploratory data analysis (EDA) 38, 113, 316
functional data analysis (FDA) 306–307
functional data analysis in reservoir management case study 306–311
functional principal component analysis (fPCA) 307
geophysical and petrophysical 3–4
latent class analysis (LCA) 185, 196–198
moving-window principal component 25–26
pressure transient analysis (PTA) 129
production gap 112–116
time series 37, 107–116, 289–292
wavelet 148–159
analytical building blocks, in workflow for data-driven concepts 29
analytical domain 12–13
analytics about 5–8
performing 10–13
ANNs (artificial neural networks) 147–148, 160–161, 185, 262–263, 269, 314
AR (autoregressive) processes 37
ARIMA (autoregressive integrated moving average) 109, 113–116, 165–166, 314
artificial intelligence (AI) about 64–65, 241–243
data management 243
deep learning techniques 247–251
deep neural network architectures 251–268
machine learning methodologies 243–247
seismic feature identification workflow 268–274
artificial neural networks (ANNs) 147–148, 160–161, 185, 262–263, 269, 314
ASCII 314
Asquith, G. B. 79
 atoms 271
 attributes coherence 179, 180
 contextual 107
 curvature 176
 envelope 180
 frequency 180
 geometrical 177
 geophysical 230
 Hilbert transform seismic 161
 phase 180
physical 177
rock solid 176
seismic 176–180
spectral decomposition 159–160, 180
autocorrelation 37
autoregressive integrated moving average (ARIMA) 109, 113–116, 165–166, 314
autoregressive (AR) processes 37
AVO analysis 314

B
bagging aggregation approach 48–49
Ball, W. 30–31
Bayes, T. 303
Bayes’ Theorem 46, 314
Bayesian Hierarchical Modeling (BHM) 236
Bayesian inference 303–305
Bayesian Maximum Entropy (MNE) 231–236
bed 88
behavioral attributes 107
Bengio, Y. 274
Bernoulli distribution error function 59
BHM (Bayesian Hierarchical Modeling) 236
bias, weight, altitude and 52
big data 241
binary variable 43, 314
binomial distribution error function, used for logistic regression analysis 45
boosting methodology 49
bootstrap forest 49
bootstrapping methodology 48–49
box filter 257
Brent Group 88

C
Caers, J. 311
capital expenditures (CAPEX) 314
carbon capture and sequestration (CSS) 103
case studies
advanced geophysical methodologies 72–78
deep learning 277–311
deep learning applied to well data 293–297
estimated ultimate recovery 288–293
functional data analysis in reservoir management 306–311
geophysical feature extraction deep neural networks 298–301
geostatistics 214–224
seismic facies 189–190
seismic profile analysis 280–288
time series analysis 129–138
well log data-driven evaluation for petrophysical insights 302–305
categorical variable 42, 314
category 42
CCC (Cubic Clustering Criterion) 71
CDNN (convolutional deep neural network) 253–260, 299–301
CDP (common reflection point at depth) 315
CEP (complex event processing) 315
channel 255
Chen, J. 25
Chilès, J. P. 233
Christakos, G. 233
chronological data, in workflow for data-driven concepts 21–23
class variable 42, 315
classification, as a critical algorithm in CDNN 255
classification tasks 45–48
cluster analysis 308–310
clusters
agglomerative 190–192
determining number of 70–72
hierarchical clustering 185, 190–192
\(k\)-means clustering 93, 185, 193–194, 282–283
coherence attribute 179, 180
co-kriging 224–229
combination functions 52
common reflection point at depth (CDP) 315
“Competing on Analytics” (Davenport & Harris) 6
complementary log-log, used for logistic regression analysis 45
completions evaluation 118–119
complex event processing (CEP) 315
contextual attributes 107
continuous data 107
continuous monitoring about 103–104
advanced time series prediction 108–116
case studies 129–138
completions evaluation 118–119
digital signal processing theory 117
distributed acoustic sensing 122–123
distributed temperature sensing 123–129
hydraulic fracture monitoring and mapping 117–118
machine learning techniques for temporal data 105
in reservoir 104–105
reservoir monitoring 119–122
spatiotemporal perspectives 106–107
time series analysis 107–108
convolution, as a critical algorithm in CDNN 255, 256–257
convolutional deep neural network (CDNN) 253–260, 299–301
convolved function 257
Courville, A. 274
covariance 211–214
Cressie, N. 233
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRM (customer relationship management)</td>
<td>315</td>
</tr>
<tr>
<td>cross-validation methodology</td>
<td>49–50</td>
</tr>
<tr>
<td>CSS (carbon capture and sequestration)</td>
<td>103</td>
</tr>
<tr>
<td>Cubic Clustering Criterion (CCC)</td>
<td>71</td>
</tr>
<tr>
<td>curvature attributes</td>
<td>176</td>
</tr>
<tr>
<td>curve detection filter</td>
<td>257</td>
</tr>
<tr>
<td>customer relationship management (CRM)</td>
<td>315</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Da Silva, C.</td>
<td>311</td>
</tr>
<tr>
<td>DAS (distributed acoustic sensing)</td>
<td>104, 122–123, 107</td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
<tr>
<td>big</td>
<td>241</td>
</tr>
<tr>
<td>chronological data</td>
<td>21–23</td>
</tr>
<tr>
<td>continuous</td>
<td>107</td>
</tr>
<tr>
<td>description of</td>
<td>208–209</td>
</tr>
<tr>
<td>discrete</td>
<td>107</td>
</tr>
<tr>
<td>first arrival</td>
<td>160–161</td>
</tr>
<tr>
<td>master</td>
<td>20–21</td>
</tr>
<tr>
<td>measurement</td>
<td>20–21</td>
</tr>
<tr>
<td>operational</td>
<td>42</td>
</tr>
<tr>
<td>residual permeability</td>
<td>216</td>
</tr>
<tr>
<td>seismic imaging</td>
<td>22, 38</td>
</tr>
<tr>
<td>spatial</td>
<td>23–24</td>
</tr>
<tr>
<td>stratigraphic</td>
<td>86, 87–89</td>
</tr>
<tr>
<td>supervised</td>
<td>185, 280–281</td>
</tr>
<tr>
<td>test</td>
<td>41</td>
</tr>
<tr>
<td>training</td>
<td>41</td>
</tr>
<tr>
<td>unsupervised</td>
<td>185, 280–281</td>
</tr>
<tr>
<td>validation</td>
<td>41</td>
</tr>
<tr>
<td>well</td>
<td>36, 90–91</td>
</tr>
<tr>
<td>data collection</td>
<td></td>
</tr>
<tr>
<td>data quality and 82–84</td>
<td></td>
</tr>
<tr>
<td>extracting from well reports</td>
<td>89–90</td>
</tr>
<tr>
<td>data domain</td>
<td>11–13</td>
</tr>
<tr>
<td>data engineering</td>
<td>18–19</td>
</tr>
<tr>
<td>data management, artificial intelligence and 243</td>
<td></td>
</tr>
<tr>
<td>data mining (DM)</td>
<td>7, 242, 315</td>
</tr>
<tr>
<td>data profiling, in workflow for data-driven concepts</td>
<td>26–28</td>
</tr>
<tr>
<td>data quality</td>
<td></td>
</tr>
<tr>
<td>data collection and 82–84</td>
<td></td>
</tr>
<tr>
<td>real-time</td>
<td>119–122</td>
</tr>
<tr>
<td>data science</td>
<td></td>
</tr>
<tr>
<td>about 5–8</td>
<td></td>
</tr>
<tr>
<td>components of upstream team</td>
<td>13–15</td>
</tr>
<tr>
<td>defined</td>
<td>315</td>
</tr>
<tr>
<td>performing</td>
<td>10–13</td>
</tr>
<tr>
<td>data smoothing</td>
<td>112</td>
</tr>
<tr>
<td>data types</td>
<td></td>
</tr>
<tr>
<td>petrophysical</td>
<td>78–82</td>
</tr>
<tr>
<td>in workflow for data-driven concepts</td>
<td>21</td>
</tr>
<tr>
<td>data-driven concepts</td>
<td></td>
</tr>
<tr>
<td>applying analytical approaches</td>
<td>4–5</td>
</tr>
<tr>
<td>core activities of 15</td>
<td></td>
</tr>
<tr>
<td>current approaches to 2–3</td>
<td></td>
</tr>
<tr>
<td>process of 186–187</td>
<td></td>
</tr>
<tr>
<td>study timeline</td>
<td>15–18</td>
</tr>
<tr>
<td>workflow for 19–29</td>
<td></td>
</tr>
<tr>
<td>datasets</td>
<td></td>
</tr>
<tr>
<td>scaling issues with large 292</td>
<td></td>
</tr>
<tr>
<td>seismic facies</td>
<td>188–189</td>
</tr>
<tr>
<td>spatial</td>
<td>36–37</td>
</tr>
<tr>
<td>temporal</td>
<td>37–38</td>
</tr>
</tbody>
</table>
Davenport, T. H. 65, 277
“Competing on Analytics” 6
DCA (decline curve analysis) 108, 293, 315
decision trees 43–44, 315
decline curve analysis (DCA) 108, 293, 315
decomposition, spectral 159–160
deduction
 compared with induction 29–32
 defined 315
deep forward neural network 251–253
deep learning (DL)
 about 30, 40, 64–65, 247–249
 case studies 277–311
 defined 316
 influence of 104
 semi-supervised learning 249–250
 supervised learning 250
 for time series modeling 289–292
 unsupervised learning 250–251
deep learning applied to well data case study 293–297
deep neural network architectures
 convolutional deep neural network 253–260
 deep forward neural network 251–253
 recurrent deep neural network 260–261
 stacked denoising autoencoder 262–268
deep neural networks (DNNs) 269
Delfinger, P. 233
density 230–231
deployments, typical for continuous subsurface monitoring 75
depth 257
DHI (direct hydrocarbon indicator) 298, 316
dictionary, representing patches with a 271–272
didactic aspect 232
Digital Oilfield of the Future (DOFF) 242, 316
digital signal processing (DSP) 117
direct hydrocarbon indicator (DHI) 298, 316
discontinuity 179
discovery-style study, workflow gateways for 16–17
discrete data 107
discrete wavelet transformation (DWT) 157
discriminant analysis 46–47, 316
distributed acoustic sensing (DAS) 104, 122–123, 315
distributed temperature sensing (DTS) 104, 123–129, 316
DL (deep learning)
 about 30, 40, 64–65, 247–249
 case studies 277–311
 defined 316
 influence of 104
semi-supervised learning 249–250
supervised learning 250
for time series modeling 289–292
unsupervised learning 250–251
DM (data mining) 7, 242, 315
DML (dynamical machine learning) 105
DNNs (deep neural networks) 269
DOFF (Digital Oilfield of the Future) 242, 316
Donoho, D. L. 152–153
drilling information 91
DSP (digital signal processing) 117
DTS (distributed temperature sensing) 104, 123–129, 316
Duda, R. O. 186
DWT (discrete wavelet transformation) 157
dynamical machine learning (DML) 105

E
EC (evolutionary computing) 62–64
EDA (exploratory data analysis) 38, 113, 316
edge detection filter 257
efficient pattern recognition approach 268–270
enhanced oil recovery (EOR) 123, 316
ensemble methodology 48–50, 316
entropy error function 59
envelope attribute 180
EOR (enhanced oil recovery) 123, 316
E&P (exploration and production) model 8, 36–37, 316
error functions 52, 58–59
estimated ultimate recovery (EUR) 251, 288–293, 316
evolutionary computing (EC) 62–64
experimental variogram 213
exploration and production (E&P) model 8, 36–37, 316
exploratory data analysis (EDA) 38, 113, 316
exponential function 53
extrapolation 42

F
facades segmentation 69–70
factorization machine (FM) 62
factorized machine learning 62, 316
Fagan, D. K. 159–160
fast Fourier transform (FFT) 149, 316
fault volumes 143
faults 143
FDA (functional data analysis) 306–307
feature engineering
in well logs 95–98
in workflow for data-driven concepts 28–29
feedback delays 260–261
feedforward networks 51
FFT (fast Fourier transform) 149, 316
first arrival data 160–161
F-K filtering 163
FL (fuzzy logic) 316–317
FM (factorization machine) 62
focused analytical workflows 280
formation 88
Fourier transform 180
fPCA (functional principal component analysis) 307
fracture maps 143
fractures 143
frequency attribute 180
frequency-wavenumber domain 149
fully connected layer 259–260
functional data analysis (FDA) 306–307
functional data analysis in reservoir management case study 306–311
functional principal component analysis (fPCA) 307
functions
activation 53
combination 52
convolved 257
entropy error 59
exponential 53
Gamma distribution error 59
Huber M-estimator error 58
hyperbolic tangent 53
identity 53
linear 53
linear combination 52
logistic tangent 53
multiple Bernoulli error 59
multiple entropy error 59
multiple logistic 53
normal distribution error 45, 58
Poisson distribution error 59
radial combination 52
reciprocal 53
redescending M-estimator error 58
sigmoid 53
value 53
fuzzy logic (FL) 316–317
G
GA (genetic algorithms) 62–64, 317
Gamma distribution error function 59
gas-oil contact (GOC) 318
Gaussian blur filter 257
genetic algorithms (GA) 62–64, 317
geochemistry 143
geomechanics 143
geometrical attributes 177
geophysical and petrophysical analysis, crises in 3–4
geophysical attributes 230
geophysical feature extraction deep neural networks case study 298–301
geophysics 317
geostatistical inversion 229–231
geostatistics
about 207–208
Bayesian Maximum Entropy (BME) 231–236
case study 214–224
covariance 211–214
data description 208–209
estimation 210–211
geostatistical inversion 229–231
interpretation 210
kriging/co-kriging 224–229
variogram 211–214
GOC (gas-oil contact) 318
gradient boosting 60, 317
gradient descent 60–62
grayscale image 256
ground roll 163, 165
group 88
Grujic, O. 311

H
Hall, P. 274, 282, 287
Harris, J. G.
“Competing on Analytics” 6
He, J. 236
hidden layers 56–57
hidden units 51
hierarchical clustering 185, 190–192
Hilbert transform seismic attributes 161
Holt-Winters 109
Huang, S. C. 55
Huang, Y. F. 55
Huber M-estimator error function 58
Huijbregts, C. 233
hydraulic fracture monitoring and mapping 117–118, 129–138
hyperbolic tangent function 53

I
identity functions 53
identity link function, used by linear regression 45
induction
compared with deduction 29–32
defined 317
inference 303–305
input delays 260–261
input units 51
International Organization for Standardization (ISO) 22
International Stratigraphic Commission (ISC) 88
Internet of Things (IoT) 317
interpolation 42
interval variable 43, 317
inverse distance interpolation 233
IoT (Internet of Things) 317
ISC (International Stratigraphic Commission) 88
ISO (International Organization for Standardization) 22

J
Johnstone, I. M. 152–153
Journel, A. 233

K
kerogen richness 143
key parameters 141–147
key performance indicators (KPIs) 72–73, 307–308
k-fold cross-validation 49–50
k-means clustering 93, 185, 193–194, 282–283
knowledge synthesis (KS) 231–236, 280
Kohonen, T. 195
Kolovos, A. G. 236
KPIs (key performance indicators) 72–73, 307–308
kriging 224–229
Krygowski, D. 79
KS (knowledge synthesis) 231–236, 280
Kullback-Leibler divergence 59
Kuo, A. H. 72

L
labeled 244
LAS (Log ASCII Standard) 317
latent class analysis (LCA) 185, 196–198
lateral extent 143
Laughlin, K. 150
LCA (latent class analysis) 185, 196–198
learning step, as a critical step when applying neural networks to seismic data 54
LeChun, Y. 255
Leo computer system 5
Li, Y. 162
linear combination functions 52
linear fitting method, for discriminant analysis 47
linear functions 53
linear regression 109
lithology 230–231
loadings plot 200
Log ASCII Standard (LAS) 317
logging while drilling (LWD) 253
logistic regression 46, 47–48
logistic tangent function 53
logit, used for logistic regression analysis 45
LWD (logging while drilling) 253
Lyons Tea Company 5

M
MA (moving average) processes 37
machine learning (ML) about 40, 64–65, 98, 243–244, 277
defined 317
influence of 104
methodologies 243–247
semi-supervised learning 245–247
supervised learning 244–245
for temporal data 105
unsupervised learning 245
magnetic moment 305
making data useable, in workflow for data-driven concepts 25–26
MANNs (modular artificial neural networks) 147–148
Markov Chain Monte Carlo (MCMC) 124, 229
master data, in workflow for data-driven concepts 20–21
maturity 143
Maxwell, J. C. 246
McCarthy, J. 241
McCormack, M. D. 161
MCMC (Markov Chain Monte Carlo) 124, 229
measurement 42
measurement data, in workflow for data-driven concepts 20–21
measurement level 43
measurement while drilling (MWD) 253
mechanical earth models (MEMs) 279
member 88
MEMs (mechanical earth models) 279
metadata, in workflow for data-driven concepts 20–21
MetaPhase 235
method of indivisibles 31
methodologies 180
See also specific methodologies
mineralogy 143
ML (machine learning)
about 40, 64–65, 98, 243–244, 277
defined 317
influence of 104
methodologies 243–247
semi-supervised learning 245–247
supervised learning 244–245
for temporal data 105
unsupervised learning 245
MLP (multilayer perceptron) 56, 57–58, 253
MNE (Bayesian Maximum Entropy) 231–236
model 40
modular artificial neural networks (MANNs) 147–148
Moray, R. 30–31
moving average (MA) processes 37
moving-window principal component analysis 25–26
Mueller, D. W. 71
multidimensional variables 142, 209
multidisciplinary methodology 279
multilayer perceptron (MLP) 56, 57–58, 253
multiple Bernoulli error function 59
multiple entropy error function 59
multiple logistic function 53
multivariant variables 142, 209
multivariate variables 142, 209
MWD (measurement while drilling) 253

N
Naive Bayes 46
network layers 53
neural networks
about 44
modular artificial 147–148
neural networks, simple
about 54–55
error functions 58–59
hidden layers 56–57
multilayer perceptrons (MLPs) 57–58
perceptrons 55–56
neural networks, traditional
activation functions 53
combination functions 52
network layers 53
neural networks, traditional (Continued)
predicted values and error functions 52
units and connections 51
weight, bias, and altitude 52
NMO 317
NMR (nuclear magnetic resonance) 304–305
noise 41
noise suppression 161–171
nominal variable 43, 317
nonlinear regression 109
nonlinearity, as a critical algorithm in CDNN 255, 257–258
nonparametric dimension reduction methods 93
nonparametric time series analytical methods 37
nonproductive time (NPT) 317
normal distribution error function 45, 58
normal mixtures 185, 195–196
normal moveout 177
NPT (nonproductive time) 317
nuclear magnetic resonance (NMR) 304–305

O
OCR (optical character recognition) 253
Oil and Gas industry about 8–10
systems in 36
oil-water contact (OWC) 318
Olea, R. A. 233
OOIP (original oil in place) 317
opening data step, in workflow for data-driven concepts 19–20
operating expense (OPEX) 318
operational data 42
operational information 91
OPEX (operating expense) 318
optical character recognition (OCR) 253
ordinal variable 43, 318
original oil in place (OOIP) 317
output units 51
OWC (oil-water contact) 318

P
parametric time series analytical methods 37
partial least squares (PLS) 50–51, 318
patches decomposing images into 270–271
representing with a dictionary 271–272
PCA (principal component analysis) 93, 106–107, 146, 165, 169, 185, 198–200, 318
PDF (Probability Density Function) 230, 235
PEF (prediction error filter) 163
perceptrons 55–56
permeability 143
petrophysical data types, well logging and 78–82
petrophysical properties 230–231
petrophysics 318
phase attribute 180
physical attributes 177
Pilouk, M.
Spatial Data Modeling for 3D GIS 23
planning information 91
PLS (partial least squares) 50–51, 318
PLT (production logging tool) 118
Poisson distribution error function 59
Poisson’s Ratio (Vp/Vs) 143, 318
porosity 143
Posterior Phase 235
predicted values, error functions and 52
prediction error filter (PEF) 163
predictive modeling, tools for 40
preprocessing 189–190
pressure transient analysis (PTA) 129
principal component analysis (PCA) 93, 106–107, 146, 165, 169, 185, 198–200, 318
Probability Density Function (PDF) 230, 235
problem domain 11–13
process 180
production gap analysis 112–116
production information 91
production logging tool (PLT) 118
PTA (pressure transient analysis) 129
Q
QA (quality assurance) 119–122
quadratic fitting method, for discriminant analysis 47
qualitative prediction method 108–109
quality assurance (QA) 119–122
quantitative prediction method 108–109
R
radial combination functions 52
Rahman, L. 96
random forests 59, 318
ratio variable 43, 318
Rayleigh waves 164
RBMs (restricted Boltzmann machines) 252–253, 294–297
RDNN (recurrent deep neural network) 260–261
real-time data quality 119–122
reciprocal function 53
rectified feature map 258–259
recurrent deep neural network (RDNN) 260–261
redescending M-estimator error function 58
reflection parameters 188
regression 45, 318
regularized fitting method, for discriminant analysis 47
reservoir
coloration of 131–138, 277–280
continuous monitoring in 104–105
geology of 143
monitoring 119–122
as a system used in Oil and Gas industry 36
residual permeability data 216
residuals, as component of data sets 109–110
restricted Boltzmann machines (RBMs) 252–253, 294–297
RMS (root mean square) 203
road to data science
perfection, in workflow for data-driven concepts 26
rock solid attributes 176
Romeo, G. 54
root mean square (RMS) 203
Royal Society 30–31
rules-based methods
about 44
artificial intelligence 64–65
classification tasks 45–48
defined 319
ensemble methodology 48–50
evolutionary computing and
genetic algorithms 62–64
factorized machine learning 62
gradient boosting 60
gradient descent 60–62
partial least squares 50–51
random forests 59
regression 45
traditional neural networks 51–53
Rutledge, J. 159–160
S
SAGD (steam-assisted gravity drainage) 319
Sample, Explore, Modify, Model, and Assess (SEMMA) 180–182
Sankey, M. H. 131–138
Sankey diagrams 131–132
Sarle, W. S. 71, 72
Savelyeva, E. 233–234
Sawitzki, G. 71
SAX (Symbolic Aggregate Parser) 96
scaling issues, with large datasets 292
scalograms, wavelet 157–159
Schaack, C. 71
score plot 200
scoring 41
seasonality, as component of data sets 109–110
seismic attribute analysis
about 175–176
seismic facies classification 183–204
type of attributes 176–180
workflows 180–182
seismic facies classification about 183–187
hierarchical clustering 190–192
k-means clustering 193–194
latent class analysis 196–198
normal mixtures 195–196
principal component analysis (PCA) 198–200
seismic facies dataset 188–189
seismic facies study 189–190
self-organizing maps (SOMs) 194–195
statistical assessment 200–204
seismic feature identification workflow
efficient pattern recognition approach 268–270
methods and technologies 270–271
representing patches with a dictionary 271–272
stacked autoencoder 272–274
seismic imaging data 22, 38
seismic profile analysis case study 280–288
seismic reservoir characterization about 141
first arrival data 160–161
key parameters 141–147
modular artificial neural networks 147–148
noise suppression 161–171
spectral decomposition 159–160
wavelet analysis 148–159
selection step, as a critical step when applying neural networks to seismic data 54
self-organizing maps (SOMs) 135–138, 146–147, 185, 194–195, 319
semi-supervised learning 245–247, 249–250
SEMA (Sample, Explore, Modify, Model, and Assess) 180–182
SGD (stochastic gradient descent) 284
sharpen filter 257
sigmoid functions 53
signal 41
signal-to-noise (S/N) ratio 161
simple neural networks See neural networks, simple skillsets, required 11–12
smoothing data 112
S/N (signal-to-noise) ratio 161
soft computing technologies about 39–40
data mining nomenclature 40–43
decision trees 43–44
defined 319
softmax functions 53
SOMs (self-organizing maps) 135–138, 146–147, 185, 194–195, 319
spatial data, in workflow for data-driven concepts 23–24
Spatial Data Modeling for 3D GIS (Abdul-Rahman & Pilouk) 23
spatial datasets 36–37
spatiotemporal perspectives 106–107
spectral decomposition attribute 159–160, 180
stacked autoencoder 272–274
stacked denoising autoencoder 262–268
stacking methodology 49
statistical assessment 200–204
statistical process control 25–26
steam-assisted gravity drainage (SAGD) 319
stochastic 143–146
stochastic gradient descent (SGD) 284
stochastic variables 209
Stock Tank Original Oil in Place (STOOIP) 317
stratigraphic data about 86
integration with 87–89
stress maps 143
stress regimes 143
stride 257
sub-sampling, as a critical algorithm in CDNN 255, 258–260
Sui, W. 124
supergroup 88
supervised data 185, 280–281
supervised learning 244–245, 250
Support Vector Machines (SVMs) 46, 48, 185, 319
surface facilities, as a system used in Oil and Gas industry 36
surface trend removal, analysis with 215–224
SVMs (Support Vector Machines) 46, 48, 185, 319
Symbolic Aggregate Parser (SAX) 96
T
Taner, M. T. 161, 177
temporal datasets 37–38, 105
test data 41
textual data, in workflow for data-driven concepts 24–25
Theoretical Foundation 231
thickness extent 143
Thiessen polygons 233
thresholded detail 154
time series analysis about 107–108
advanced prediction 108–116
components of data sets 109
data smoothing 112
deep learning for 289–292
families of analytical methods 37
time-offset domain 149
total organic compound (TOC) 143, 319
traditional neural networks See neural networks, traditional
trained model 40
training 40
training data 41
Transductive Support Vector Machines (TSVM) 250
trends and cycles, as component of data sets 109–110
TSVM (Transductive Support Vector Machines) 250
Tukey, J. 131–138
Tukey diagrams 131–138

type-2 fuzzy logic systems 141

U
UCM (unobserved components model) 113–116, 165–166, 319
universal approximators 58
unobserved components model (UCM) 113–116, 165–166, 319
unsupervised data 185, 280–281
unsupervised learning 245, 250–251
unsupervised results 282–288
upstream data science team, components of 13–15
use cases 98

V
validation data 41
value function 53
van Wijk, K. 159–160
VAR (vector autoregressive) 109
variables
binary 43, 314
categorical 42, 314
class 42, 315
interval 43, 317
multidimensional 142, 209
multivariant 142, 209
multivariate 142, 209
nominal 43, 317
ordinal 43, 318
ratio 43, 318
stochastic 209

variogram 211–214
vector autoregressive (VAR) 109
Veezhinathan, J. 161
Vincent, P. 274
Vp/Vs (Poisson’s Ratio) 143, 318

W
WAG (water-alternating-gas) 182, 248, 319
water contact 318
water-alternating-gas (WAG) 182, 248, 319
wavelet analysis about 148–156
wavelet scalograms 157–159
weights
bias, altitude and 52
defined 40
well data
integration with other technical domains 90–91
integration with other well information 90
used in Oil and Gas industry 36
well log data-driven evaluation for petrophysical insights case study 302–305
well logging
feature engineering in 95–98
petrophysical data types and 78–82
uses for data 84–86
well reports, extracting data from 89–90
wide linear fitting method, for discriminant analysis 47
Wong, M. A. 71
workflows
advanced analytical 280
for data-driven concepts 19–29
focused analytical 280
seismic attribute 180–182
seismic feature identification 268–274
Y
Young’s Modulus 143, 319
Z
zero-padding 257
Zhang, X. 162
Zhuoyi, L. 124