Contents

Foreword xv

Preface xxi

Acknowledgments xxiii

Chapter 1 Introduction to Data-Driven Concepts 1
 Introduction 2
 Current Approaches 2
 Is There a Crisis in Geophysical and Petrophysical Analysis? 3
 Applying an Analytical Approach 4
 What Are Analytics and Data Science? 5
 Meanwhile, Back in the Oil Industry 8
 How Do I Do Analytics and Data Science? 10
 What Are the Constituent Parts of an Upstream Data Science Team? 13
 A Data-Driven Study Timeline 15
 What Is Data Engineering? 18
 A Workflow for Getting Started 19
 Is It Induction or Deduction? 30
 References 32

Chapter 2 Data-Driven Analytical Methods Used in E&P 34
 Introduction 35
 Spatial Datasets 36
 Temporal Datasets 37
 Soft Computing Techniques 39
 Data Mining Nomenclature 40
 Decision Trees 43
 Rules-Based Methods 44
 Regression 45
 Classification Tasks 45
 Ensemble Methodology 48
 Partial Least Squares 50
 Traditional Neural Networks: The Details 51
 Simple Neural Networks 54
CONTENTS

The Covariance and the Variogram 211
Case Study: Spatially Predicted Model of Anisotropic Permeability 214
 What Is Anisotropy? 214
 Analysis with Surface Trend Removal 215
Kriging and Co-kriging 224
Geostatistical Inversion 229
 Geophysical Attribute: Acoustic Impedance 230
 Petrophysical Properties: Density and Lithology 230
Knowledge Synthesis: Bayesian Maximum Entropy (BME) 231
References 237

Chapter 8 Artificial Intelligence: Machine and Deep Learning 240
Introduction 241
Data Management 243
 Machine Learning Methodologies 243
 Supervised Learning 244
 Unsupervised Learning 245
 Semi-Supervised Learning 245
Deep Learning Techniques 247
 Semi-Supervised Learning 249
 Supervised Learning 250
 Unsupervised Learning 250
Deep Neural Network Architectures 251
 Deep Forward Neural Network 251
 Convolutional Deep Neural Network 253
 Recurrent Deep Neural Network 260
 Stacked Denoising Autoencoder 262
Seismic Feature Identification Workflow 268
 Efficient Pattern Recognition Approach 268
 Methods and Technologies: Decomposing Images into Patches 270
 Representing Patches with a Dictionary 271
 Stacked Autoencoder 272
References 274

Chapter 9 Case Studies: Deep Learning in E&P 276
Introduction 277
Reservoir Characterization 277
Case Study: Seismic Profile Analysis 280
 Supervised and Unsupervised Experiments 280
 Unsupervised Results 282
CONTENTS

Case Study: Estimated Ultimate Recovery 288
 Deep Learning for Time Series Modeling 289
 Scaling Issues with Large Datasets 292
 Conclusions 292
Case Study: Deep Learning Applied to Well Data 293
 Introduction 293
 Restricted Boltzmann Machines 294
 Mathematics 297
Case Study: Geophysical Feature Extraction: Deep
 Neural Networks 298
 CDNN Layer Development 299
Case Study: Well Log Data-Driven Evaluation
 for Petrophysical Insights 302
Case Study: Functional Data Analysis in Reservoir
 Management 306
References 312

Glossary 314

About the Authors 320

Index 323