INDEX

ablative TPS
AVCOAT, 234, 235f–236f
PICA, 234
absolute temperature, 66
acoustic Grüneisen parameters, calculation of, 430
acrylic crowns, green bodies of, 349, 349f
acrylic dendrite lattice and dispersed YSZ particles, 339f
acrylic micro lattices, 338
acrylic resin, 346
ADA. See azodicarbonamide (ADA)
aerocapture, 225
aerojet engines, SiC-matrix composites application in, 153, 154f
Aeronautical Sciences (AS), 189
aeronautic field, SiC-matrix composites application in, 152–156. See also SiC-matrix composites
aerothermal entry environment, boundary layer and, 226f
AETB. See alumina enhanced thermal barrier (AETB)
affordable, robust ceramic joining technology (ARCJoinT), 354
approach, 365–368
used to bond CVI C/SiC composite substrates, 365
against rise (AR), 316
Ag-Cu-Ti braze, 325, 357, 361
air separation unit (ASU), 410
alcoxides, 404
reaction of, 404f
ALD. See atomic layer deposition (ALD)
alkali metal thermoelectric converter, 60
alumina (Al₂O₃), 124
coated high modulus carbon fiber, tensile strength of, 396f
cylindrical hollow structure, images of the sintered, 348f
layer, contact angle measurement of, 397f
specimen, fractured surface of sintered, 347f
alumina enhanced thermal barrier (AETB) view of, 229f
aluminosilicate fibers, 229
aluminum oxide ring, 50
American Nuclear Society (ANS), 452–453
average leachability indices from, 453t
amplified terahertz wave, 335
anion conductors, 60
ANS. See American Nuclear Society (ANS)
ANSYS model, 53
anticlastic bend testing, 37
and edge-located tension, 36–37 (see also custom mechanical test methods)
antiphase boundaries (APB), 300
APB. See antiphase boundaries (APB)
applied voltage, 71
APU. See auxiliary power units (APU)
AR. See against rise (AR)
Archimedeans method, 332, 345
arc jets, 241
ARCJoinT. See affordable, robust ceramic joining technology (ARCJoinT)
Arcoce project, 155
Argonne National Laboratory, 446
ARL. See army research laboratory (ARL)
armor materials, 43–44
army research laboratory (ARL), 24–26
in extreme dynamic environments program, 24–26
artificial photosynthesis, 459
AS. See Aeronautical Sciences (AS)
INDEX

Ashby Diagram, 10
α'-SiAlON, formation of, 89
ASU. See air separation unit (ASU)
atomic layer deposition (ALD), 285
auxiliary power units (APU), 295
AVCOAT, 234, 235f–236f
Avogadro’s constant, 431
azodicarbonamide (ADA), 284

backscattered electron (BSE), 358f
images of the CVD SiC/Cusil ABA paste, 359f
images of the CVD SiC/Ticusil ABA paste, 359f
images of the CVD SiC/Ticusil paste/CVD SiC joint, 358f
Bain relationship, 300
ball-on-ring test method, 41
Ba-mica/Al_2O_3 composite
four-point flexure strengths of, 13f
microstructures of, 13f
thermal shock properties of, 14t
band gap modifications, 255
barium strontium aluminosilicate (BSAS), 151
BCC. See body-centered cubic (BCC)
Berry’s approach, 62
bimetallic interlayers, usage of, 325
biological scaffold with a graded lattice, 344–346
blanket, 155
body-centered cubic (BCC), 301
Boltzmann constant, 420, 431
boron carbide, unique signatures for, 6f
boron nitride, 146
Bragg deflection, 333
braking systems, SiC-matrix composites
application in, 155
braze alloys, for ceramic joining, 297, 298t
brazing
approach, 357–361
in SiC ceramics bonding, 322
usage of, 356
brillouin zones, 333
brittle material component, 30–31
custom mechanical test methods, 31–44
Brittleness Index, 19
Bruker D8 Discover Diffractometer, 374
BSAS. See barium strontium aluminosilicate (BSAS)
BSE. See backscattered electron (BSE)
C4. See co-continuous ceramic composites (C4)
CAD/CAM. See computer aided design/computer aided manufacturing (CAD/CAM)
calcium–magnesium–aluminosilicate (CMAS), 192
carbon
fiber, 145
reinforced metal matrix composite, 391–397
substrate microstructure, 237f
materials
electronic bonding and structures in, 208f
historical evolutions in, 206–207
matrix, pyrolytic structure in, 214f
nanomaterials, 209f
nanostructures, 203
nanotubes, application of, 203–204
ordered and disorderd, 208f
paste, usage of, 356
phenolic, usage of, 238 (see also woven TPS)
products
historical progress in, 207f
properties of, 210t
properties of, 203
structures, 207–208
carbonaceous bonding paste, 365
carbon and ceramic matrix composites, high performance, 205t
carbon/carbon (C/C) composites, 210
for aerospace and reentry vehicles, 203
evolution of, 211f
flexural properties of UD, 220f
phenolic resin/surface treated carbon fiber-derived, 217f
pitch-derived, 215–217
processing technologies for, 211f
thermosetting resin-derived, 214–215
joining, for thermal management, 317–319
joint microstructure, 319
joint strength, 321
thermal behavior, 321–322
INDEX

carbon composite materials
 carbon/fiber-reinforced carbon composites, 210–212
 fiber microstructure, 213
 macro-/microstructure of, 212–213, 212f
 matrix microstructure
 CVD-derived carbon matrix composite, 213–214
 pitch-derived C/C composites, 215–217
 thermosetting resin-derived C/C composites, 214–215
 mechanical properties of, 218–219
 properties of, 218
 thermal conductivity of, 219–221

carbon fiber-reinforced aluminum (C_f/Al), 296

carbon/fiber-reinforced carbon composites, 210–212. See also carbon composite materials

carbon/silicon carbide (C/SiC) composites, 327–328

carbothermal reduction reactions, 288
 of silica, 82

CARES. See Ceramics Analysis and Reliability Evaluation of Structures (CARES)

casting techniques, in metallurgical processing, 269

cation conductors, 60
 precipitation in, 74–75
CB. See conduction band (CB)

CBPC. See chemically bonded phosphate ceramics (CBPC)

C/C. See carbon/carbon (C/C)

CD/CAM/CAE. See computer-aided design, manufacturing, and evaluation (CD/CAM/CAE)

central paradigm of materials science and engineering, 8

ceramic bearings, types of, 128, 137
 composite systems, for high-end applications, 205t
 dendrite lattice, surface pressure on, 341f
 dental crown, 346–350
 fiber coatings, 388
 high-temperature stable, 390–391
 foams, coating of, 286–288

industry, small series in, 387 (see also ceramic technologies and systems)
 joining and integration, 297–299
 materials and ion-conducting properties, 60
 membranes
 asymmetric structure of, 401f
 for gas separation, 406–407
 microfiltration membranes
 application of, 403
 preparation of, 402–403
 micro sensors, manufacturing of, 389f
 microsystems, 399

 ceramic integration, for energy-related applications
 carbon/carbon, joining of, 317–319
 joint microstructure, 319
 joint strength, 321
 thermal behavior, 321–322
 future prospects for, 328
 heat exchangers and thermal energy storage systems
 joint microstructure, 315–316, 316f, 317f
 joint strength, 316
 thermal behavior, 317
 high-temperature energy systems, ceramics joining for
 carbon/silicon carbide composites, 327–328
 SiC based materials, 322–325
 silicon carbide/silicon carbide composites, 327
 silicon nitride ceramics, 326–327
 zirconium diboride, 327
 solid oxide fuel cells, 299–300
 interlayer composition, effect of, 300–301
 joint hermeticity, 314–315
 mechanical properties, 313–314
 microstructural evolution, 301–306
 oxidation behavior, 306–313

 ceramic matrix composite (CMC), 143, 188, 353, 388
 tailoring, 206f

 ceramic nanofiltration membranes
 application of ceramic, 405–406
 preparation of, 404–405

 ceramic or slurry routes, 143
ceramic phosphors
and labeled sheet metal, 398f
usage of, 398
ceramic process, integration of sensors in, 398
Ceramics Analysis and Reliability Evaluation
of Structures (CARES), 46, 51, 52
ceramic sensors, embedding of, 398–399
ceramics, freeform fabrication of, 253–259
ceramics in energy applications, 294–295, 294f
ceramic technologies and systems
ceramic filters and membranes, 384, 399–400
for gas separation, 406–407
for liquid filtration, 400–402
microfiltration membranes, 402–403
mixed ionic electronic conducting membranes, 407–410
nanofiltration membranes, 404–406
oxygen separation from air, 410–413
ultrafiltration membranes, 403–404
fiber-reinforced composites, 384, 387
carbon fiber-reinforced metal matrix composite, 391–397
high-temperature stable ceramic fiber coatings, 390–391
nonoxide ceramic matrix composites, 387–389
industry 4.0, 384–386
mass customization, 384, 386–387
self-diagnosis, 384, 397–399
ceramic to ceramic, comparison of the joining approaches for bonding, 355f
ceramic tubes, 33
ceramic ultrafiltration membranes
application of, 404
preparation of, 403–404
C/C-Al. See Carbon fiber-reinforced aluminum (C/C-Al)
char zone, 231
chemically bonded phosphate ceramics (CBPC), 446
chemically vapor deposited (CVD), 356
chemical sensor
oxide ceramics for, 418–422
working principle of, 420
chemical vapor deposition (CVD), 82, 385
chemical vapor infiltration (CVI), 143, 163, 188, 212, 327
chevron-notched beam (CNB), 109
Clarke’s model, 428
CMAS. See calcium–magnesium–aluminosilicate (CMAS)
CMC. See ceramic matrix composite (CMC)
CNB. See chevron-notched beam (CNB)
coalescence, of closed porosity, 85
Co-base brazes, 357
co-continuous ceramic composites (C4), 269
COD. See crack opening displacement (COD)
coefficient of thermal expansion (CTE), 295, 353
cold isostatic pressing, 248
Collaborative Research Alliance (CRA), 24
combustion synthesis, 249
compression double-notched shear tests, 367f
compression energy, determination of, 412
compression strength tests
fabricated compressive strength, 448–450
post water immersion test compressive strength, 450–451
compressive strengths, measurement of, 448
computer aided design/computer aided manufacturing (CAD/CAM), 253
computer-aided design, manufacturing, and evaluation (CD/CAM/CAE), 331
computer-controlled layer stacking process, 331
concurrent electric field and biaxial tension, 41–43, 42f
condution band (CB), 460
cone cracks, 132
convective heating, 225
CRA. See Collaborative Research Alliance (CRA)

CTE. See coefficient of thermal expansion (CTE)
Cu-Ag-Ti system, 354
Cu-Al-Si-Ti active braze (Copper ABA), 326
INDEX

Cu-Al-Si-Ti braze (Cu-ABA), 326
Cusil-ABA, 325, 357, 358
Cusil-ABA braze, 359
Cusil-ABA joints
mean and standard deviation of, 360t
Cusil-ASA joints, 360
custom mechanical test methods. See also
brittle material component
anticlastic bend testing and edge-located
tension, 36–37
current electric field and biaxial
tension, 41–43
C-sphere specimen and exterior tangential
tension, 31–33, 31f, 32f
laser shock/laser spall and bulk intrinsic
tension, 43–44
sectored flexure specimen and
outer-diameter axial tension, 33–35
serpentine or many-point flexure bend
testing, 35–36
small bend bars and axial tension, 38–39,
41f
CVD. See chemical vapor deposition (CVD)
CVI. See chemical vapor infiltration (CVI)
CVI C/SiC joints
double-notched shear tests on, 367f
microstructure of reaction-formed, 366f
cyber physical systems, 384
characteristics of, 385
industry 4.0, 385
damageable elastic materials, 147
damage tolerance, 145
darcy’s law, 282
DCP. See displacive compensation of porosity
(DCP)
debonding cracks, 169. See also SiC-based
composites
Debye approximation, 428
Debye length, 420
Debye model, 429
Debye temperature
of Y₂SiO₅ and Lu₂SiO₅, 437
dendrite lattice structure, fluid flow velocity
distribution in, 340f
dendrite structures
sintered, 343f
streamlines in, 342f
surface variations of, 341f
dentritic lattice, 338, 340
stress distribution in, 342f
dental crown, 346–350, 347f, 348f. See also
ceramic
Department of Defense (DoD), 8
design for life, 175–177. See also SiC-based
composites
dielectric constant, of titania, 334
dielectric filters, 248
dielectric micro patterns, 333–338, 333f, 334f
diesel particulate filters, 33
differential binding energy (DBE), 94
differential thermal analysis (DTA), 267f
diffuse reflectance infrared Fourier
transformed spectroscopy (DRIFTS), 422
diffusion bonding, 354
approach, 361–365
in SiC ceramics bonding, 322
diffusion length, 463
digital micro mirror device, usage of, 331
digital optical microscope, 332
directed metal oxidation (DMO), 262, 266
displacive compensation of porosity (DCP),
269
3DMAT. See 3D Multifunctional Ablative
Thermal Protection System (3DMAT)
DMO. See directed metal oxidation (DMO)
3D Multifunctional Ablative Thermal
Protection System (3DMAT),
238–239, 239f
DoD. See Department of Defense (DoD)
double notch compression test, 366
double-notch shear tests, 368
Dreamchaser vehicle, 232
DRIFTS. See diffuse reflectance infrared
Fourier transformed spectroscopy
(DRIFTS)
DTA. See differential thermal analysis (DTA)
Duramin-A 300 machine, 360
dynamic environments program
army research laboratory materials in,
24–26
dynamic stress environment
characterization of materials and unique
signatures, 5–7
crystal structure, 4
manuscript, scope of, 4–5
total energy dissipation, 17–21
Earth entry, radiative and convective heat flux for, 228f

EBC. See environmental barrier coating (EBC)

EDS. See energy dispersive spectroscopy (EDS); energy dissipative x-ray spectrometry (EDS)

efficiency, defined, 228

EFT1. See experimental flight test 1 (EFT1)

electric field, intensity profile of, 337f
electrochemical precipitation, of oxygen, 70–73, 71f
electrolysis, of water, 458
electrolyte dendrites designing, computer graphic application in, 338
electrolyte failures, nature of, 60–64, 61f.
See also ion-conducting materials, failure of

Enabling Propulsion Materials (EPM) Program, 189

defined, 174–175. See also SiC-based composites

energy applications, ceramics in, 294–295, 294f

energy consumption

from fuels in US, 293
in quadrillion BTU, world-wide, 292f
in steel production processes, 293
in titanium refining, 293
energy demand, by 2050, 292
energy dispersive spectroscopy (EDS), 300, 357
energy dissipative x-ray spectrometry (EDS), 130
energy-related applications, ceramic integration for
carbon/carbon, joining of, 317–319
joint microstructure, 319
joint strength, 321
thermal behavior, 321–322
future prospects for, 328
heat exchangers and thermal energy storage systems
joint microstructure, 315–316, 316f, 317f
joint strength, 316
thermal behavior, 317
high-temperature energy systems
carbon/silicon carbide composites, 327–328

SiC based materials, 322–325
silicon carbide/silicon carbide composites, 327
silicon nitride ceramics, 326–327
zirconium diboride, 327
solid oxide fuel cells, 299–300
interlayer composition, effect of, 300–301
joint hermeticity, 314–315
mechanical properties, 313–314
microstructural evolution, 301–306
oxidation behavior, 306–313
environmental barrier coating (EBC), 162, 173–174, 187, 188, 388. See also
SiC-based composites

bond coat development, 192
consists of, 189
NASA 3000 °F, 189–192
in NASA system development, 187
NASA turbine airfoil and combustor, 192–195, 195f, 196f
for next generation gas turbine engines, 187
oxidation kinetics of the 2700 ° RE-Si-(O), 194f
in protection of SiC/SiC CMCs from volatilization, 188
role in advanced gas turbine engines, 200
technology evolutions, 189
thermomechnical durability testing of advanced, 197–199, 198f–199f

Environmentally Responsible Aviation (ERA), 189

environment barrier coating (EBC), 153
EPM Program. See Enabling Propulsion Materials (EPM) Program

ERA. See Environmentally Responsible Aviation (ERA)

Eulerian beam-bending theory, 35
eutectic phase bonding, 368
eutectic refractory metal powders, 327
experimental flight test 1 (EFT1), 234
flight, 241
external pressure infiltration, 269–270.
See also reactive melt infiltration

fabricated flat photonic crystals, 338
fabrication, waste form, 447–448

FAP. See Fundamental Aeronautics Program (FAP)
INDEX

Faraday constant, 66, 409
fatigue and environmental degradation, 172–173. See also SiC-based composites
feed, defined, 400. See also liquid filtration, ceramic membranes for ferroelectric capacitors, 248
FGM. See functionally graded materials (FGM)
FIAT. See Fully Implicit Ablation and Thermal response program (FIAT)
fiber–matrix (FM) bonding, 143
fiber-reinforced composites, 384, 387
carbon fiber-reinforced metal matrix composite, 391–397
high-temperature stable ceramic fiber coatings, 390–391
nonoxide ceramic matrix composites, 387–389
fibrous ceramic composites, 160
fibrous grain alignment control, of Si$_3$N$_4$, 100–107
course grain control, 100–105
fine grain control, 105–107
Fick’s rule, 410
figure of merit (FoM), 6, 7, 8, 15
for an armor ceramic material, 19f
fine pattern exposing stereolithography, 350
finite volume method (FVM), 338
flexure testing, 33
flight-testing, 241
foam properties, 297t
Focus Ion Beam, 422
FoM. See figure of merit (FoM)
fractography, 30, 372
fracture toughness, 113
Fraunhofer IKTS, 384
freeform fabrication of ceramics, 253–259
techniques, 255
freeform system, 253
Fully Implicit Ablation and Thermal response program (FIAT), 240
functionally graded materials (FGM), 248, 252–253
Fundamental Aeronautics Program (FAP), 189
FVM. See finite volume method (FVM)
gadolinia-doped ceria (GDC), 423
Galileo mission, 238
gas pressure infiltration, 396
gas-pressure sintered silicon nitride (GPSSN), 80, 116
gas-pressure sintering (GPS), 128
gas separation, ceramic membranes for, 406–407
gas turbine applications, nonoxide ceramic matrix composites for, 387–389
SiC-matrix composites application in, 153
GCR. See giant chemo-resistance (GCR)
GDC. See gadolinia-doped ceria (GDC)
GE HiPerComp II SiC/SiC substrates, 369
optical micrographs of, 375f
gelatin–gelation–freezing method, flowchart for fabrication process by, 280f
gelation-freezing method, unidirectional pore channels created by, 279–283
GEL Laboratories, 454
GE Power Systems, 356
giant chemo-resistance (GCR), 421
glass bottles, 33
glass powder, usage of, 347
Glenn Research Center (GRC), 354
Goodrich Corporation, 356
Goodrich 3-D C/C, bonding of, 371, 371f
Goodrich SiC/SiC materials, 356
GPS. See gas-pressure sintering (GPS)
GPSSN. See gas-pressure sintered silicon nitride (GPSSN)
GrafTech carbon foams, 316
grain boundary control, of Si$_3$N$_4$, 107–111
fracture toughness, 107–108
properties at high temperatures, 108–111, 109f
grain boundary engineering, 85
grain morphology control, of Si$_3$N$_4$, 99–100
graphene, 208, 209
Young’s modulus of, 209
GRC. See Glenn Research Center (GRC)
green test specimens, 49
Grüneisen parameters, 429
Hasteloy, 327
hazardous metal concentrations, in in-house prepared waste simulants, 455t
heat exchangers and thermal energy storage systems
 joint microstructure, 315–316, 316f, 317f
 joint strength, 316
 thermal behavior, 317
heating, sources of, 225–226. See also thermal protection materials and systems (TPS)
Heatshields for Extreme Entry Environments (HEEET), 238
HEEET. See Heatshields for Extreme Entry Environments (HEEET)
hematite, 470
HER. See hydrogen–evolution–reaction (HER)
Hermes European space shuttle project, 152, 153f
hermetic seals, 313
hermetic test samples, 314
Hertzian
 contact damage, 133
 contact radial tensile stresses, 37
 ring, 31
 type mechanisms, of radial, 17
high-resolution TEM (HRTEM), 136, 136f
high-temperature energy systems, ceramics joining for
 carbon/silicon carbide composites, 327–328
 SiC based materials, 322–325
 silicon carbide/silicon carbide composites, 327
 silicon nitride ceramics, 326–327
 zirconium diboride, 327
Hi-Nicalon SiC fibers, 356
Hi-Nicalon Type-S, 356
HIP. See hot isostatic pressing (HIP)
HIPSN. See hot isostatically pressed silicon nitride (HIPSN)
Hitachi S-4700-II, 357
hole-electron transport, in 1D structures, 465f
hot isostatically pressed silicon nitride (HIPSN), 80
hot isostatic pressing (HIP), 248, 262
 novel synthesis of, 248–251
hot pressed silicon nitride (HPSN), 80
HPSN. See hot pressed silicon nitride (HPSN)
HRTEM. See high-resolution TEM (HRTEM)
hydrogen energy, 294
hydrogen–evolution–reaction (HER), 460f, 462
hydrogen, production of, 458
hydrothermal synthesis, 248
hydroxyapatite artificial bones, 331
hydroxyphlogopite, 12
Hyper-Therm CVI SiC/SiC substrates, 370
Hyper-Therm High-Temperature Composites, 356
i-3A. See infiltrated alumina-aluminide alloys (i-3A)
i-BN interphase, 147
ICP-MS. See induction-coupled plasma–mass spectrometry (ICP-MS)
ideal gas constant, 66
IEA. See International Energy Agency (IEA)
immersion test compressive strength, post water, 450–451
Incident Photon to Current Efficiency (IPCE), 468
Inconel 600, 253
 in diffusion bonding of SiC, 361
Inconel-625, 327
induction-coupled plasma–mass spectrometry (ICP-MS), 452
industry 4.0, 384–386. See also ceramic technologies and systems
infiltrated alumina-aluminide alloys (i-3A), 269
in situ infiltrated alumina-aluminide alloy (isi-3A), 269
integrated strategy
 intrinsic lattice thermal conductivity, 429–432
 material parameters, calculation of, 432–434
 thermal conductivity, experimental determination of, 434
interlayer, in diffusion process, 361
International Energy Agency (IEA), 293
International Organization for Standardization, 33
International Space Station, 234
intrinsic lattice thermal conductivity, evaluation of, 429–432
iodine, leachability indices for, 453
INDEX

ion-conducting materials, failure of, 59–60
cation conductors, precipitation in, 74–75
ceramic materials, 60
cracks occurrence at multiple locations, 73–74

crack surface, local pressure on, 64–70
electrochemical precipitation of oxygen, 70–73, 71f
electrolyte failures, nature of, 60–64, 61f
ionic conductors, 61
IPCE. See Incident Photon to Current Efficiency (IPCE)
isi-3A. See in situ infiltrated alumina-aluminide alloy (isi-3A)
ISO carbon. See isotropic (ISO) carbon
isothermal compressibility, of liquid, 69
isotropic (ISO) carbon, 214

Jänecke triangular prism, 87, 88f
for the Y-Si-Al-O-N system of all phases, 88f
for the Y-Si-Al-O-N system with glass-forming region, 90f

Kingery’s liquid-phase sintering model, 83
Kingery’s model, 88
Kirchhoff’s laws, 71
Knoop hardness, 20
knoop microindenter, usage of, 360
Kolsky Bar, 18
Koyo Seiko, 138
laser flash analyzer, 434
laser scanning stereolithography, 331, 344, 345, 350
laser shock/laser spall and bulk intrinsic tension, 43–44. See also custom mechanical test methods
lattice thermal conductivity, 429
of Y_2SiO_5 and Lu_2SiO_5, 437f
lattice thermal diffusivity, 432
leachability index (LI), 452
for iodine, 453
leach testing, ANS 16.1 procedure, 452–453, 453t
LI. See leachability index (LI)
light-chopping chronoamperometry, 485
light-induced photo polymerization, 331
light water reactors (LWR), 156
Linde® process, 410
liquid filtration, ceramic membranes for, 400–402
lithium–metal dendrites, 74
low-temperature cofired ceramics (LTCC), 385
low thermal conductivity materials, 428–429
advantages of, 428
challenges and future trends for, 442–443
qualitative guidelines for, 428
low thermal conductivity, silicates with, 434–441
LTCC. See low-temperature cofired ceramics (LTCC)
LWR. See light water reactors (LWR)

Mach 8 space plane, 252
macroporous ceramics, 277
magnesia (MgO), 128
hot pressing of Si_3N_4, 128 (see also silicon nitride (Si_3N_4) ceramics)
manufacturing, stereolithography additive, 331–332, 332f
Mars entry, radiation spectrum for, 227f
Mars Science Lander (MSL), 234
mass customization, 384, 386–387. See also ceramic technologies and systems
material index (M), 8
materials performance requirements for, 204
problems with applications, 204
materials by design (MbD), 4
conceptual approach to using, 9f
historical emergence of, 8–10
in quasi-static mechanical environments, 10–17
on strategic basic research, 21–24
Materials Design Science and Engineering (MDS&E), 9
materials engineering, 7
Materials in Extreme Dynamic Environments (MEDE), 5
materials research and development, flow chart for, 7f
materials science, 6
and engineering, three-link chain model of, 8f
matrix, 210
matrix microstructure. See also carbon composite materials
CVD-derived carbon matrix composite, 213–214
pitch-derived C/C composites, 215–217
thermosetting resin-derived C/C composites, 214–215
Mbd. See materials by design (MbD)
MDS&E. See Materials Design Science and Engineering (MDS&E)
mean sound velocity, 432
calculation of, 434
mechanical behavior, of SiC-matrix composites, 147–149. See also SiC-matrix composites
mechanical fuse function, 146
mechano-chemical dry mixing technique, in Si₃N₄ fabrication, 134–137, 135f.
See also silicon nitride (Si₃N₄) ceramics
MEDE. See Materials in Extreme Dynamic Environments (MEDE)
medical implants, 386
melt infiltrated (MI), 188, 356
SiC matrix composites, 188
menger sponge fractal, stage 3, 257f
Mescal zone, 17
mesophase, defined, 215
metal matrix composite, carbon fiber-reinforced, 391–397
MI. See melt infiltrated (MI)
micro aluminum mirrors, usage of, 331
microfiltration membranes, 402–403
application of ceramic, 403
preparation of ceramic, 402–403
micrometer, 331
micro stereolithography, usage of, 344
MIEC. See mixed ionic electronic conductors (MIEC)
minimum thermal conductivity, calculation of, 431
mixed ionic electronic conducting membranes, 407–410. See also ceramic technologies and systems
mixed ionic electronic conductors (MIEC), 407
MLCC. See multilayer ceramic capacitors (MLCC)
Mo-B. See molybdenum-boron (Mo-B)
Model 4505 Instron Universal Testing System, 448
molecular sieving, 407
molybdenum-boron (Mo-B), 361
Morgan Advanced Ceramics, 357
Mott–Schottky measurements, 485
MSL. See Mars Science Lander (MSL)
MSME. See Multiscale Modeling of Electronic Materials (MSME)
multilayer ceramic capacitors (MLCC), 4, 11
multilayer technology, 385
multiple pin loading configuration, 35
Multiscale Modeling of Electronic Materials (MSME), 24
nanocarbons, 208–209
nanofiltration (NF), 400
membranes, 404–406
application of ceramic, 405–406
preparation of ceramic, 404–405
nano-particles, enlarged necking promoted by sintering, 278–279
nanostructured materials and water-splitting, 463–465
nanowires (NW), 278
NASA
EBC technology evolutions, 189
EBC technology for SiC/SiC ceramic matrix composites, 190t
3000°F environmental barrier coating systems, 189–192
Glenn Research Center, 354
high pressure burner rig testing for advanced EBC-CMC developments, 196f–197f
mission on Mars, 240
turbine airfoil and combustor environmental barrier coatings, 192–195
use space vehicles, 225
National Academy Materials Advisory Board, 5
National Materials Genome Initiative, 4
Nernst equation, 338
Nernst voltage, 66
Neumann–Kopp rule, 439
Newtonian fluid, 345
NF. See nanofiltration (NF)
INDEX

Ni-base brazes, 357
Nicalon fibers, 368
Nimonic alloys, 319
Nitridation, of silicon powder, 82
Ni-YSZ test specimen, 53
Nongraphitizable hard carbons, 214
Nonoxide ceramic matrix composites,
387–389. See also fiber-reinforced
composites
Nuclear irradiation effect, on SiC-matrix
composites, 152. See also SiC-matrix
composites
NW. See nanowires (NW)

OER. See oxygen–evolution–reaction (OER)
Oil crises (1970), 248
Olson paradigms, 14
Orion project, 234
Oxidation resistance, of SiC-matrix
composites, 149–151. See also
SiC-matrix composites
Oxide ceramics
Applications of, 415
For chemical sensors, 418–422
Perspectives, 422
For solid oxide fuel cells, 422–424
For surge protectors, 416–418, 417f
Oxygen
Electrochemical precipitation of, 70–73,
71f
Recovery, 412
Separation from air, 410–413 (see also
ceramic technologies and systems)
Oxygen–evolution–reaction (OER), 460f, 462
Oxygen–ion conductor, 60, 62, 70
Oxyhydrogen, formation and separation
Issues of, 465
Oxynitride glasses, 89–91
Thermomechanical properties of, 79
Palladium, in TLP bonding of ceramics, 300
Particulate dispersion ceramic matrix, 4
PCS. See polycarbosilane (PCS)
PEC. See photoelectrochemical (PEC)
Permeate, defined, 400. See also liquid
filtration, ceramic membranes for
Phenolic Impregnated Carbon Ablator
(PICA), 234
Conformal, 238f
Phonon–phonon Umklapp scattering, 431
Photoanode
Ceramics, for PEC applications, 466–476
Materials and photocurrent densities, metal
oxide-based, 477t–479t
Photocathode
Ceramics, for PEC applications, 476,
483–487
Materials and photocurrent densities, metal
oxide-based, 480t–482t
Photoelectrochemical (PEC), 459
Applications, photoanode ceramics for,
466–476
Applications, photocathode ceramics for,
476, 483–487
Coordinate system positioning
Photocatalysts, 489f
Energy diagrams of n-type photoanode,
464f
Materials challenges for, 460–462
Water splitting, 458, 459–460
Photonic band gap frequency range, 335
Photonic crystal, 254, 333
dielectric micro pattern of, 336, 336f
Photonic fractals, 257
Photosensitive acrylic resin, 331, 345
Slurry, 344
Photosensitive liquid resin, 331
Photosynthesis and water-splitting reactions,
Comparison of, 459f
Physically vapor deposited (PVD), 356
PICA. See Phenolic Impregnated Carbon
Ablator (PICA)
Piezoactuators, 41
Application of, 41
Piezoceramic actuators, 41–43
Piezoelectric actuators, 331
PIP. See polymer impregnation and pyrolysis
(PIP)
Plank's constant, 434
PMPS. See poly(methyl phenyl
silsesquioxane) (PMPS)
Poisson's ratio, 113, 431
Of silicon nitride, 93
Polycarbosilane (PCS), 283
Polyethylene terephthalate, 404
Polymer impregnation and pyrolysis (PIP),
143
Polymer sol–gel technique, 405
poly(methyl phenyl silsesquioxane) (PMPS), 286
polyurethane sponge, usage of, 277
porosity variation, defined, 345
porous ceramics, for industrial applications, 277
porous electrode with ordered structure, 338–344, 338f, 339f
positive temperature coefficient (PTC), 248
power-law equation, 20
precursor polymer, 232, 288
spherical pores produced by, 283–286
precipitation, in cation conductors, 74–75
principle of independent action, 52
product labeling, 398
proportional limit, defined, 165
prosthetics mimic bones, 344
proton conductors, 410
proton exchange membrane fuel cell, 299
PTC. See positive temperature coefficient (PTC)
PVD. See physically vapor deposited (PVD)
pyrocarbon, 146
pyrolysis, 231
pyrolysis zone, 231
quasi-Gaussian distribution, 54
quasi-plasticity, 17, 19
quasi-static and dynamic stress impact environments, simplified differences between, 16t
quasi-static mechanical environments, MbD in
designed particulate dispersion composites, 11–14
MLCC, 11
RADOME materials, 10–11
structural Mbd, 14–17
radiative heating, 225
RADOME materials, 4
Rayleigh wave, 15
RBAO. See reaction bonding of aluminum oxide (RBAO)
RBSN. See reaction-bonded silicon nitride (RBSN)
RCG. See reaction cured glass (RCG)
RCRA. See Resource Conservation and Recovery Act (RCRA)
R–curve behavior, 99, 105
REABond. See refractory eutectic assisted bonding (REABond)
reaction-bonded silicon nitride (RBSN), 80, 127
reaction bonding of aluminum oxide (RBAO), 262–264
modifications
fiber-reinforced oxide matrix composites, 265, 266f
reaction-bonded aluminum niobate, 265
reaction-bonded mullite, 264–265, 264f
reaction cured glass (RCG), 229
reactive forging (RF), 269
reactive hot pressing (RHP), 269
reactive melt infiltration, 269
external pressure infiltration, 269–270
in situ pressure infiltration, 270–272
reactive melt infiltration (RMI), 143, 144
reactive metal penetration, 268–269
reduced graphene oxide (r-GO), 473
refractory eutectic assisted bonding (REABond), 354 approach, 368–372
refractory metal (RM) phase, 354
regenerative thermal oxidizer (RTO), 412
reliability, defined, 47
residual porosity, 144
RE_2SiO_5 silicate, crystal structure of, 437f
Resource Conservation and Recovery Act (RCRA), 447
reusable or insulative materials, 229
reusable TPS, recent advances in, 232.
See also thermal protection materials and systems (TPS)
Reuss approximation, 433
reverse osmosis (RO), 400
reversible hydrogen electrode (RHE), 467
RF. See reactive forging (RF)
r-GO. See reduced graphene oxide (r-GO)
RHE. See reversible hydrogen electrode (RHE)
RHP. See reactive hot pressing (RHP)
ring-on-ring configuration, 50–51
ring-on-ring test method, 49
RL. See rough laminar (RL)
RMI. See reactive melt infiltration (RMI)
RM phase. See refractory metal (RM) phase
RO. See reverse osmosis (RO)
rough laminar (RL), 214
pyrocarbon, 146
RTO. See regenerative thermal oxidizer (RTO)
saccharide or protein molecules, 333
SA-THX. See SA-Tyrannohex (SA-THX)
SA-Tyrannohex (SA-THX), 323, 356, 361
parallel, 361
perpendicular, 361
substrates, 363
optical micrographs of perpendicularly oriented, 375f
SA-Tyrannohex SiC ceramics, 322
SBS. See submerged bed scrubber (SBS)
scanning electron microscopy (SEM), 108, 130, 278, 300, 332
backscattered image of a CVD SiC/Ticusil/CVD SiC joint, 323f
BSE images
of the CVD SiC/Ticusil ABA paste, 359f
of the CVD SiC/Ticusil ABA paste, 359f
of CVD SiC diffusion, 362f
of Fe₂O₃ films, 469f
of GE HiPerComp II SiC/SiC substrates, 369f
of Hyper-Therm CVI SiC/SiC substrates, 370f
image of an electrode surface, 343f
images of steel/YSZ joints, 311f
images of TiO₂ films, 468f
of SA-THX, 363f, 364f
of SA-Tyrannohex SiC substrates joined with REABond tapes, 369f
scanning transmission electron microscopy (STEM), 94
Schottky barriers, 417
model of, 418f
Science Mission Directorate (SMD), 238
SDI. See short-distance infiltration (SDI)
seal-coating, of C/SiC, 147
second stone age, 248
seebeck-type devices, for solid-state coolers, 38
self-diagnosis, 384, 397–399
self-healing matrix, 151
self-propagating high-temperature synthesis (SHS), 248, 249, 262
novel synthesis of, 248–251
SEM. See scanning electron microscopy (SEM)
semiconductor die, 36
SEPB. See single-edge precracked-beam (SEPB)
serpentine bend testing, 35–36. See also custom mechanical test methods
SET Joining. See single-step elevated temperature joining (SET Joining)
SEVNB. See single-edge V-notched beam (SEVNB)
short-distance infiltration (SDI), 269
SHS. See self-propagating high-temperature synthesis (SHS)
SiAlON ceramics, 80, 86–89, 87f, 88f
discovery of, 124
SiC. See Silicon carbide (SiC)
SiC-based composites
cracking, sources of design for life, 175–177
end of life, 174–175
environmental barrier coatings, 173–174
fatigue and environmental degradation, 172–173
fatigue mechanisms, 167–172, 168f
intermediate temperature oxidation, 166–167, 166f
macro-cracking, creep ratcheting, 163–164
micro-cracking, inevitability of local, 164–165
nature of degradation, 162–163
SiC fiber/SiC matrix (SiC/SiC), 356
SiC joining, particulate-reinforced brazes for, 322
SiC-matrix composites
applications of space and aeronautic field, 152–156
material design, 144–147
processing, 143–144
properties of effect of nuclear irradiation, 152
mechanical behavior, 147–149
oxidation resistance, 149–151
thermal conductivity, 149
SiCp. See SiC particulates (SiCp)
SiC particulates (SiCp), 322
SiC/SiC. See SiC fiber/SiC matrix (SiC/SiC)
SiC/SiC HiPerComp™ Gen II, 356
Sierra Nevada Corporation, 232
SI-HP. See slurry infiltration and hot pressing (SI-HP)
silica (SiO₂), 125, 162
carbothermal reduction nitridation of, 127
silicates with low thermal conductivity, 434–441
silicon carbide (SiC), 162
based ceramics, 353
applications for, 353
based materials, 322–325
silicon carbide/silicon carbide (SiC/SiC) composites, 327
silicon di-imide precipitation, 82
silicon nitride (Si₃N₄) ceramics, 79–81, 326–327
for antifriction bearings, 124
crystal structure and transformations, 81–82, 81f
dense, 128
in engineering applications, 125
fabrication of, 134–137
fracture strength and fracture toughness
fibrous grain alignment control, 100–107
grain boundary control, 107–111
grain morphology control, 99–100, 101f
porous structure control, 111–114, 112f
gas turbine components of, 249f
historical background of, 127–128
imide-decomposition method and, 127
long-crack fracture toughness of, 100
microstructure–property relationships in, 91–94
powder, 127
precursors, 82–83
properties of, 125
sintering and microstructural development, 83–85
sintering techniques for
highly reliable by of TiO₂, 130–134
high-strength by Y₂O₃ addition, 128–130
hot-pressing with MgO, 128
structures and properties of, 125–127, 126f, 126t
synthesis methods of, 127
TEM image of the grain-boundary of, 250f
thermal conductivity
approaches for high, 114–117, 115f
fracture resistance of high, 117–118, 118f
tribological applications of, 137–140
usage of, 99
used in turbine components, 326
wear rate of, 133f
siloxane (Si-O-Si) bonds, 288
single-edge precracked-beam (SEPB), 100
single-edge V-notched beam (SEVNB), 106
single-fiber push-out test, 393f
single-step elevated temperature joining (SET Joining), 354
approach, 372–375
single wall carbon nanotubes (SWCNT), 210
sintered alumina aluminate alloys, 266–268
sintered reaction bonded silicon nitride (SRB-SN), 80, 115
Sintered silicon nitride (SSN), 80
sintering temperature, 347
Si-Ti eutectic alloys, 368
Slack’s model, 428
slicing pitches, defined, 331
slurry infiltration and hot pressing (SI-HP), 143
small bend bars and axial tension, 38–39, 41f.
See also custom mechanical test methods
SMD. See Science Mission Directorate (SMD)
sodium-β″-alumina, 60
sodium–ion conductors, 70
sodium leaching, diffusivity of, 454f
sodium–sulfur batteries, 65
SOFC. See solid oxide fuel cells (SOFC)
solar-to-hydrogen (STH), 459
sol–gel technique and ceramic UF membranes, 404
solid oxide fuel cells (SOFC), 46, 299–300, 338
interlayer composition, effect of, 300–301
joint hermeticity, 314–315, 315f
mechanical properties, 313–314, 314f
microstructural evolution, 301–306, 301f–310f
oxidation behavior, 306–313
oxide ceramics for, 422–424
thermoplastic pitches, 212. See also carbon
 composite materials
thermosetting resin, 212. See also carbon
 composite materials
THz-TDS. See terahertz wave time domain
 spectroscopy (THz-TDS)
TiAl-based alloy, in diffusion bonding of SiC,
 361
ticusil, 325, 357
braze, 359
joints, mean and standard deviation of, 360t
Ti interlayers, types of, 361
TiN. See titanium nitride (TiN)
titania (TiO$_2$), 124
dielectric constant of, 334
micro photonic crystals, 331
microstructure of, 334f
and Si$_3$N$_4$
evaluation of, 132–133
fabrication and characterization of,
 130–132
R-curve behavior, 133–134
titanium dioxide, band gap energy in, 462f
titanium, in diffusion bonding of SiC, 361
titanium nitride (TiN), 391
titanium refining, energy consumption in, 293
TLM. See transmission line modeling (TLM)
TLP. See transient liquid phase (TLP)
total energy dissipation, 17–21. See also
dynamic stress environment
Toughened Unipiece Fiber Reinforced
Oxidation Resistant Composite (TUFROC), 232, 233f
toughened unipiece fibrous insulation,
 229–230
Toughened Unipiece Fibrous Insulation
(TUFI), 230
toxicity characteristic leaching procedure
(TCLP), 454–455, 455t
TPB. See triple phase boundary (TPB)
TPS. See thermal protection materials and
 systems (TPS)
Transformational Tools and Technologies
(TTT) Project, 189
transient liquid phase (TLP), 300
transitional velocity (TV), 20
transmission amplitude, of terahertz wave,
 337f
transmission electron microscopy (TEM),
 130, 300
analysis of the steel/65Ag-20Cu-15Pd
interface, 312f
transmission line modeling (TLM), 335
tribological applications, silicon nitride for,
 124, 137–140. See also silicon nitride
(Si$_3$N$_4$) ceramics
triple phase boundary (TPB), 340
TTT Project. See Transformational Tools and
 Technologies (TTT) Project
TUFI. See Toughened Unipiece Fibrous
Insulation (TUFI)
TUFROC. See Toughened Unipiece Fiber
Reinforced Oxidation Resistant
Composite (TUFROC)
TV. See transitional velocity (TV)
two dimensional photonic crystals and band
gaps, 335
Tyranno-SA SiC fibers, 356
Ube Industries, 356
UEET Program. See Ultra Efficient Engine
 Technology (UEET) Program
UF. See ultrafiltration (UF)
UHTC. See ultra-high-temperature ceramics
(UHTC)
Ultra Efficient Engine Technology (UEET)
Program, 189
ultrafiltration (UF), 400
membranes, 403–404 (see also ceramic
 technologies and systems)
application of ceramic, 404
preparation of ceramic, 403–404
ultra-high-temperature ceramics (UHTC),
 239–240
Umklapp phonon scattering, 428, 429,
 441
unique signature
concept, 4
of material, 6
Universal Treatment Standard limits (UTS),
 455
upper molar tooth, dental-crown model of,
 349, 349f
US air force X37B orbiter, 232, 233f
UTS. See Universal Treatment Standard
 limits (UTS)
INDEX

vacuum process, scheme of, 411f
valence band (VB), 462
vanadium ion-implanted ZnO nanorods, 470
Van der Waal’s equation of state, 65
vapor depositions, 248
VB. See valence band (VB)
Vickers indentation, 104
Voigt approximation, 433
Voigt–Reuss–Hill (VRH), 433
VRH. See Voigt–Reuss–Hill (VRH)
Wagner equation, 408
waste forms, compressive strength of, 451f
waste simulant formulations, 446–447, 447t
water-splitting
and nanostructured materials, 463–465
reactor types, 465–466
wedge effects, 110
Weibull
distribution, 51
of strengths, 51t
failure stress distributions, 35
modulus, 104
plot, 136
statistics, 30, 49
whisker orientations, 102
with-rise (WR), 316
woven TPS, 238–239. See also thermal
protection materials and systems (TPS)
WR. See with-rise (WR)
XAS. See x-ray absorption spectroscopy
(XAS)
XPS. See x-ray photoelectron spectroscopy
(XPS)
x-ray absorption spectroscopy (XAS), 422
x-ray diffraction (XRD), 130, 374
pattern of sintered composite of YSZ and
nickel oxide, 344f
x-ray photoelectron spectroscopy (XPS),
422
XRD. See x-ray diffraction (XRD)
Y:Al ratio
on residual stresses, 94f
on Young’s modulus, 91f
Young’s modulus, 8, 62, 113, 147
and nitrogen content, 91f
Y-Si-Al-O-N glass properties, 79
Y₂SiO₅ and Lu₂SiO₅
directional Young’s modulus of, 436f
lattice parameters of, 435t
lattice thermal conductivities of, 437t
theoretical elastic constants, 435t
thermal diffusivities of, 438f
YSZ. See yttria stabilized zirconia (YSZ)
yttria stabilized zirconia (YSZ), 60, 299, 331,
423
acrylic dendrite lattice and, 339f
microstructure of, 340
sintered dendrite lattice of, 339f
yttria (Y₂O₃), 124
in high-strength Si₃N₄ ceramics, 128–130,
129f, 130f
yttrium aluminum garnet (YAG), 88
yttrium–aluminum ratios, 108
zirconia, 62
in solid oxide fuel cells, 299
zirconium diboride, 327