Contents

List of Contributors

Part One
Introduction: The Case for Concern about Mutation and Cancer Susceptibility during Critical Windows of Development and the Opportunity to Translate Toxicology into a Therapeutic Discipline

1 What Stressors Cause Cancer and When? 3
Claude L. Hughes and Michael D. Waters

1.1 Introduction 3
1.1.1 General Information about Cancer 5
1.1.2 Stressors and Adaptive Responses 8
1.2 What Stressors Cause Cancer and When? 8
1.2.1 Mutagenic MOAs 13
1.2.1.1 DNA Repair 14
1.2.2 Epigenetic MOAs 16
1.2.3 Nongenotoxic Carcinogens, ROS, Obesity, Metabolic, Diet, Environment, Immune, Endocrine MOAs 20
1.2.4 Tumor Microenvironment MOAs 25
1.3 Relevance of Circulating Cancer Markers 26
1.4 Potential Cancer Translational Toxicology Therapies 29
1.4.1 Well-Established/Repurposed Pharmaceuticals 31
1.4.2 GRAS/GRASE, Diet, and Nutraceuticals 34
1.4.2.1 Suppression of Cell Proliferation and Induction of Cell Death 35
1.4.2.2 Anti-Inflammatory Effects: Insights from Various Diseases 36
1.4.2.3 Upregulation of Tumor Suppressor MicroRNAs 38
1.4.2.4 Regulation of Oxidative Stress 38
1.4.2.5 Activation of Signal Transduction Pathways 39
1.4.2.6 Mitigating Inherited Deleterious Mutations 40
1.4.2.7 Mitigating Adverse Epigenetic States 42
2 What Mutagenic Events Contribute to Human Cancer and Genetic Disease? 61

Michael D. Waters

2.1 Introduction 61
2.1.1 Childhood Cancer, Developmental Defects, and Adverse Reproductive Outcomes 62
2.1.2 Newborn Screening for Genetic Disease 62
2.1.3 Diagnosis of Genetic Disease 63
2.1.4 Familial and Sporadic Cancer 65
2.2 Genetic Damage from Environmental Agents 67
2.3 Testing for Mutagenicity and Carcinogenicity 71
2.4 Predictive Toxicogenomics for Carcinogenicity 73
2.5 Germ Line Mutagenicity and Screening Tests 76
2.6 Reproductive Toxicology Assays in the Assessment of Heritable Effects 80
2.6.1 Segmented Reproductive Toxicity Study Designs 80
2.6.2 Continuous Cycle Designs 81
2.6.2.1 One-Generation Toxicity Study 81
2.6.2.2 Repeat Dose Toxicity Studies 82
2.7 Assays in Need of Further Development or Validation 82
2.7.1 Transgenic Rodent Gene Mutation Reporter Assay 82
2.7.2 Expanded Simple Tandem Repeat Assay 84
2.7.3 Spermatid Micronucleus (MN) Assay 85
2.7.4 Sperm Comet Assay 86
2.7.5 Standardization of Sperm Chromatin Quality Assays 86
2.8 New Technologies 87
2.8.1 Copy Number Variants and Human Genetic Disease 87
2.8.2 Next-Generation Whole Genome Sequencing 88
2.8.3 High-Throughput Analysis of Egg Aneuploidy in C. elegans, and Other Alternative Assay Systems 90
2.9 Endpoints Most Relevant to Human Genetic Risk 91
2.10 Worldwide Regulatory Requirements for Germ Cell Testing 94
2.11 Conclusion 95
Acknowledgments 96
References 96
3.2 Current Trends in Childhood Cancer 112
3.3 Potential Mechanisms of Prenatal Cancer Induction 113
3.4 Ontogeny of Xenobiotic Metabolizing Enzymes and DNA Repair Systems 113
3.5 The Developmental Origins of Health and Disease (DOHaD) Theory 115
3.6 Epigenetic Regulation during Development 115
3.6.1 Critical Periods for Epigenetic Regulation 116
3.7 Mechanisms of Cancer in Offspring from Paternal Exposures 117
3.8 Parental Exposures Associated with Cancer in Offspring 118
3.8.1 Radiation 118
3.8.2 Diethylstilbestrol 119
3.8.3 Tobacco Smoke 120
3.8.4 Pesticides 122
3.8.5 Arsenic 123
3.9 Models for the Developmental Origins of Selected Cancers 124
3.9.1 Breast Cancer 124
3.9.2 Leukemia 127
3.10 Public Health Agencies’ Views on Prenatal Exposures and Cancer Risk 129
3.10.1 The United States Environmental Protection Agency (US EPA) 129
3.10.2 The California Environmental Protection Agency (CalEPA) 131
3.10.3 Washington State Department of Ecology (WA DoE) 133
3.11 Conclusions 134
Acknowledgment 135
References 135

4 The Mechanistic Basis of Cancer Prevention 147
Bernard W. Stewart
4.1 Introduction 147
4.2 A Mechanistic Approach 147
4.2.1 Specifying Carcinogens 148
4.2.2 Cancer Risk Factors Without Carcinogen Specification 148
4.3 Preventing Cancer Attributable to Known Carcinogens 149
4.3.1 Involuntary Exposure 149
4.3.1.1 Infectious Agents 149
4.3.1.2 Occupation 150
4.3.1.3 Drugs 151
4.3.1.4 Pollution 152
4.3.1.5 Dietary Carcinogens 152
4.3.2 Tobacco Smoking 153
4.3.2.1 Measures to Limit Availability and Promotion 154
4.3.2.2 Product Labeling, Health Warnings, and Usage Restrictions 154
4.3.2.3 Smoking Cessation 155
4.3.3 Alcohol Drinking 155
4.3.4 Solar and Ultraviolet Radiation 156
4.4 Prevention Involving Complex Risk Factors 157
4.4.1 Workplace Exposures 157
4.4.2 Diet and Overweight/Obesity 157
4.5 Prevention Independent of Causative Agents or Risk Factors 158
4.5.1 Screening 158
4.5.2 Chemoprevention 159
4.6 Conclusion 160
References 160

Part Two Exposures that Could Alter the Risk of Cancer Occurrence, and Impact Its Indolent or Aggressive Behavior and Progression Over Time 171

5 Diet Factors in Cancer Risk 173
Lynnette R. Ferguson
5.1 Introduction 173
5.2 Obesity 174
5.3 Macronutrients 175
5.3.1 Protein 176
5.3.2 Lipids 177
5.3.3 Carbohydrates 178
5.4 Micronutrients 181
5.4.1 Vitamins 181
5.4.2 Minerals 184
5.5 Phytochemicals 184
5.5.1 Phytoestrogens 185
5.5.2 Other Phytochemicals 186
5.6 Conclusions 188
References 188

6 Voluntary Exposures: Natural Herbals, Supplements, and Substances of Abuse – What Evidence Distinguishes Therapeutic from Adverse Responses? 199
Eli P. Crapper, Kylie Wasser, Katelyn J. Foster, and Warren G. Foster
6.1 Introduction 199
6.1.1 Alcohol 200
6.1.2 Cigarette Smoking 201
6.1.3 Herbals and Supplements 202
6.1.3.1 Melatonin 202
6.1.3.2 Resveratrol 204
6.1.3.3 Dong Quai 205
6.1.3.4 Eleutherococcus 206
6.1.3.5 Saw Palmetto 206
6.1.3.6 Stinging Nettle 207
6.2 Summary and Conclusions 207
References 207

7 Voluntary Exposures: Pharmaceutical Chemicals in Prescription and Over-the-Counter Drugs – Passing the Testing Gauntlet 213
Ronald D. Snyder
7.1 Introduction 213
7.2 Testing of New Drug Entities for Genotoxicity 214
7.3 Relationship between Genotoxicity Testing and Rodent Carcinogenicity 217
7.4 Can Drug-Induced Human Cancer Be Predicted? 218
7.5 What Can Rodent Carcinogenicity Tell Us about Human Cancer Risk? 220
7.6 Genotoxicity Prediction Using “Traditional” In Silico Approaches 222
7.7 Covalent versus Noncovalent DNA Interaction 223
7.8 Use of New Technologies to Predict Toxicity and Cancer Risk: High-Throughput Methods 224
7.9 Transcriptomics 225
7.10 Single-Nucleotide Polymorphisms (SNPs) 226
7.11 Conclusions 227
Appendix A 228
References 253

8 Children’s and Adult Involuntary and Occupational Exposures and Cancer 259
Annamaria Colacci and Monica Vaccari
8.1 Introduction 259
8.2 Occupational Exposures and Cancer 262
8.2.1 Occupational Cancer in the Twenty-First Century 262
8.2.2 Past and Present Occupational Exposure to Asbestos 263
8.2.3 Toxicology of Fibers: What We Have Learned from the Asbestos Lesson 265
8.2.3.1 Mechanism and Mode of Action of Asbestos and Asbestos-Like Fibers in Carcinogenesis: The Role of Inflammation and Immune System to Sustain the Cancer Process 268
8.2.4 Occupational Exposures and Rare Tumors 270
8.3 Environmental Exposures and Cancer 271
8.3.1 Environmental Exposures and Disease: Is This the Pandemic of the Twenty-First Century? 271
8.3.2 The Complexity of Environmental Exposures 272
8.3.3 Environmental Impact on Early Stages of Life: Are Our Children at Risk? 274
8.3.4 Environmental Endocrine Disruptors: The Steps Set Out to Recover Our Stolen Future 277
8.3.5 From Occupational to Environmental Exposures: Asbestos and Other Chemicals of Concern 279
8.3.5.1 Asbestos 279
8.3.5.2 Arsenic and Arsenic Compounds 280
8.3.5.3 Phthalates 282
8.3.5.4 Pesticides 283
8.3.5.5 Mycotoxins 286
8.3.6 Air Pollution and Airborne Particulate Matter: The Paradigmatic Example of Environmental Mixtures 288
8.3.6.1 Characteristics of PM and PM Exposures 289
8.3.6.2 PM Exposures and Cancer 291
8.3.6.3 Possible Mechanisms of PM Toxicity 293
8.3.6.4 The Role of PM Exposures in the Fetal Origin of the Disease 294
8.4 Conclusions and Future Perspectives 296
References 299

Part Three Gene–Environment Interactions 317

9 Ethnicity, Geographic Location, and Cancer 319
Fengyu Zhang
9.1 Introduction 319
9.2 Classification of Cancer 320
9.2.1 Classification by Histology 320
9.2.2 Classification by Primary Location 322
9.3 Ethnicity and Cancer 323
9.3.1 Cancer Death and Incidence 323
9.3.2 Site-Specific Cancer Incidence 326
9.3.3 Site-Specific Cancer Incidence between the United States and China 328
9.4 Geographic Location and Cancer 331
9.4.1 Mapping Human Diseases to Geographic Location 331
9.4.2 Geographic Variation and Cancer in the United States 332
9.5 Ethnicity, Geographic Location, and Lung Cancer 334
9.5.1 Ethnic Differences 334
9.5.2 Geographic Variation 335
9.5.3 Individual Risk Factors 335
9.6 Common Cancers in China 338
9.6.1 Liver Cancer 339
9.6.1.1 Geographic Variation 339
9.6.1.2 Urban Residence and Sex 340
9.6.1.3 Hepatitis B Virus Infection 340
9.6.1.4 Familial Aggregation and Genetic Variants 341
9.6.2 Gastric Cancer 342
9.6.2.1 H. pylori 342
9.6.2.2 Familial Aggregation 343
9.6.2.3 Genetic Susceptibility Factors 343
9.6.3 Esophageal Cancer 344
9.6.3.1 Geographic Variation 344
9.6.3.2 Viral Infections 344
9.6.3.3 Familial Aggregation 345
9.6.3.4 Genetic Susceptibility Factors 345
9.6.4 Lung Cancer 346
9.6.5 Genetic Susceptibility Factors 347
9.6.6 Cervical Cancer 348
9.7 Cancer Risk Factors and Prevention 348
9.7.1 Environmental Chemical Exposure 348
9.7.2 Infectious Agents 349
9.7.3 Psychosocial Stress and Social Network 349
9.7.4 The Developmental Origin of Adult-Onset Cancer 350
9.7.5 Cancer Prevention and Intervention 351
References 353

10 Dietary/Supplemental Interventions and Personal Dietary Preferences for Cancer: Translational Toxicology Therapeutic Portfolio for Cancer Risk Reduction 363
Sandeep Kaur, Elaine Trujillo, and Harold Seifried
10.1 Introduction 363
10.2 Gene Expression and Epigenetics 364
10.3 Environmental Lifestyle Factors Affecting Cancer Prevention and Risk 366
10.3.1 Obesity 366
10.3.2 Weight Loss 368
10.3.3 Physical Activity 369
10.4 Dietary Patterns 370
10.5 Complementary and Integrative Oncology Interventions/Restorative Therapeutics 373
10.6 Special and Alternative Diets 377
10.7 Popular Anticancer Diets 378
Contents

10.7.1 Macrobiotic Diet 378
10.7.2 The Ketogenic Diet 382
10.7.3 Fasting Diet 383
10.8 Conclusion 384
Acknowledgment 384
References 385

11 Social Determinants of Health and the Environmental Exposures: A Promising Partnership 395
Lauren Fordyce, David Berrigan, and Shobha Srinivasan
11.1 Introduction 395
11.1.1 Conceptual Model 397
11.1.2 Difference versus Disparity 398
11.2 Social Determinants of Health 399
11.2.1 Race/Ethnicity 399
11.2.2 Social Determinants of Health: “Place” and Its Correlates 402
11.2.3 Gender and Sexuality 405
11.3 Conclusions: Social Determinants of Health and Windows of Susceptibility 407
Acknowledgments 408
References 408

Part Four Categorical and Pleiotropic Nonmutagenic Modes of Action of Toxicants: Causality 415

12 Bisphenol A and Nongenotoxic Drivers of Cancer 417
Natalie R. Gassman and Samuel H. Wilson
12.1 Introduction 417
12.2 Dosing 420
12.3 Receptor-mediated Signaling 421
12.4 Epigenetic Reprogramming 422
12.5 Oxidative stress 424
12.6 Inflammation and Immune Response 425
12.7 BPA-Induced Carcinogenesis 426
12.8 Fresh Opportunities in BPA Research 428
References 429

13 Toxicoepigenetics and Effects on Life Course Disease Susceptibility 439
Luke Montrose, Jaclyn M. Goodrich, and Dana C. Dolinoy
13.1 Introduction to the Field of Toxicoepigenetics 439
13.1.1 The Epigenome 440
13.1.2 Epigenetic Marks are Heritable and Reversible 440
13.1.3 DNA Methylation 441
13.1.4 Histone Modifications and Chromatin Packaging 442
13.1.5 Noncoding RNAs 443
13.1.6 Key Windows for Exposure-Related Epigenetic Changes 443
13.1.7 Evaluation of Environmentally Induced Epigenetic Changes in Animal Models and Humans 444
13.2 Exposures that Influence the Epigenome 444
13.2.1 Air Pollution 445
13.2.2 Metals 447
13.2.3 Endocrine Disrupting Chemicals (EDCs) 448
13.2.4 Diet 451
13.2.5 Stress 453
13.3 Intergenerational Exposures and Epigenetic Effects 454
13.4 Special Considerations and Future Directions for the Field of Toxicoepigenetics 456
13.4.1 Tissue Specificity 456
13.4.2 The Dynamic Nature of DNA Methylation 458
13.5 Future Directions 459
13.6 Conclusions 460
Acknowledgments 461
References 461

14 Tumor-Promoting/Associated Inflammation and the Microenvironment: A State of the Science and New Horizons 473
William H. Bisson, Amedeo Amedei, Lorenzo Memeo, Stefano Forte, and Dean W. Felsher
14.1 Introduction 473
14.2 The Immune System 475
14.2.1 Innate Immune Response 475
14.2.2 Adaptive Immune Response 478
14.3 Prioritized Chemicals 482
14.3.1 Bisphenol A 482
14.3.2 Polybrominated Diphenyl Ethers 483
14.3.3 4-Nonylphenol 485
14.3.4 Atrazine 485
14.3.5 Phthalates 486
14.4 Experimental Models of Carcinogenesis through Inflammation and Immune System Deregulation 487
14.5 Antioxidants and Translational Opportunities 493
14.6 Tumor Control of the Microenvironment 495
Acknowledgments 497
References 497
15 \hspace{0.5em} \textbf{Metabolic Dysregulation in Environmental Carcinogenesis and Toxicology} \hspace{0.5em} S11
\textit{R. Brooks Robey}

15.1 Introduction \hspace{0.5em} S11

15.2 Metabolic Reprogramming and Dysregulation in Cancer \hspace{0.5em} S13
15.2.1 Carbohydrate Metabolism in Cancer \hspace{0.5em} S15
15.2.2 Lipid Metabolism in Cancer \hspace{0.5em} S19
15.2.3 Protein Metabolism in Cancer \hspace{0.5em} S21

15.3 Moonlighting Functions \hspace{0.5em} S23

15.4 Cancer Metabolism in Context \hspace{0.5em} S23
15.4.1 The Gestalt of Intermediary Metabolism \hspace{0.5em} S23
15.4.2 Cancer Tissues, Cells, and Organelles as Open Systems \hspace{0.5em} S27
15.4.3 The Endosymbiotic Nature of Cancer \hspace{0.5em} S27
15.4.4 Catabolic and Anabolic Support of Cell Proliferation \hspace{0.5em} S28
15.4.5 Cancer Heterogeneity \hspace{0.5em} S29
15.4.6 Phenotypic Relationships between Cancer Cells and Their Parental Cell Origins \hspace{0.5em} S32
15.4.7 Evolutionary Perspectives of Metabolic Fitness and Selection in Cancer Development \hspace{0.5em} S33

15.5 Dual Roles for Metabolism in Both the Generation and Mitigation of Cellular Stress \hspace{0.5em} S36
15.5.1 Metabolism and Oxidative Stress \hspace{0.5em} S37
15.5.2 Metabolism and Hypoxic Stress \hspace{0.5em} S39
15.5.3 Nutritional Stress and Metabolism \hspace{0.5em} S39
15.5.4 Metabolism and Physical Stress \hspace{0.5em} S40
15.5.5 Metabolism and Other Forms of Cellular Stress \hspace{0.5em} S41

15.6 Models of Carcinogenesis \hspace{0.5em} S41
15.6.1 Traditional Multistage Models of Cancer Development \hspace{0.5em} S42
15.6.2 Role of Replicative Mutagenesis in Cancer Development \hspace{0.5em} S43
15.6.3 Acquired Mismatch Model of Carcinogenesis \hspace{0.5em} S43

15.7 Potential Metabolic Targets for Environmental Exposures \hspace{0.5em} S46
15.7.1 Conceptual Overview of Potential Metabolic Targets \hspace{0.5em} S46
15.7.2 Identification of Key Targetable Contributors to Metabolic Dysregulation and Selection \hspace{0.5em} S49
15.7.2.1 Glycolysis \hspace{0.5em} S55
15.7.2.2 Lipogenesis, Lipolysis, and the PPP \hspace{0.5em} S55
15.7.2.3 Citric Acid Cycle \hspace{0.5em} S56
15.7.2.4 Organizational or Compartmental Targets \hspace{0.5em} S56
15.7.2.5 Metabolite Transport Mechanisms \hspace{0.5em} S57
15.7.2.6 Signal Transduction Effectors \hspace{0.5em} S58

15.8 Metabolic Changes Associated with Exposures to Selected Agents \hspace{0.5em} S59
15.8.1 Selected Agents Classified by the World Health Organization’s International Agency for Research on Cancer (IARC) 559

15.8.1.1 IARC Group 1 (Carcinogenic to Humans) 560
15.8.1.2 IARC Group 2A (Probably Carcinogenic to Humans) 564
15.8.1.3 IARC Group 2B (Possibly Carcinogenic to Humans) 565
15.8.1.4 Other Agents 565

15.8.2 Environmentally Relevant Combinatorial Exposures 567

15.8.2.1 Occupational and Common Environmental Exposures 567
15.8.2.2 Environmentally Relevant Low-Dose Combinatorial Exposures 568

15.8.2.3 The Halifax Project 570

15.9 A Conceptual Overview of Traditional and Emerging Toxicological Approaches to the Problem of Cancer Metabolism: Implications for Future Research 571

15.9.1 General Experimental Considerations in the Study of Metabolism In Vitro 571
15.9.2 Systems Biology and Current Approaches to In Vitro Toxicology Screening 573

15.10 The Nosology of Cancer and Cancer Development 577

15.11 Discussion 579
Acknowledgments 583
References 583

Part Five Biomarkers for Detecting Premalignant Effects and Responses to Protective Therapies during Critical Windows of Development 607

16 Circulating Molecular and Cellular Biomarkers in Cancer 609
Ilaria Chiodi, A. Ivana Scovassi, and Chiara Mondello
16.1 Introduction 609
16.2 Proteins in Body Fluids: Potential Biomarkers 610
16.2.1 Diagnostic Protein Biomarkers 612
16.2.2 Prognostic Protein Biomarkers 613
16.2.3 Protein Biomarkers of Drug Response 615
16.3 Circulating Cell-Free Nucleic Acids 615
16.3.1 Circulating Cell-Free Tumor DNA 616
 16.3.1.1 Cf-DNA Integrity, Microsatellite Instability, and LOH 617
16.3.1.2 Tumor-Specific Genetic Alterations 617
16.3.1.3 Tumor Genetic Alterations and Therapy Resistance 619
16.3.1.4 Tumor Epigenetic Alterations: DNA Methylation 620
16.3.2 Circulating Cell-Free RNA 621
 16.3.2.1 Circulating Cell-Free microRNA 621
16.4 Extracellular Vesicles: General Features 624
16.4.1 Classification of EVs 624
16.4.2 EVs and Cancer 625
16.4.3 EVs as Mediators of Cell-To-Cell Communication 627
16.5 Circulating Tumor Cells 628
16.5.1 Two-Step Processing of Blood Samples: Enrichment and Identification of Circulating Tumor Cells 628
16.5.1.1 CTC Number as a Cancer Biomarker 630
16.5.2 Characterization of CTCs 630
16.5.2.1 Molecular Characterization of CTCs 630
16.5.2.2 Functional Characterization of CTCs 632
16.5.3 Single CTCs versus CTC Clusters 634
16.5.4 In Hiding Before Getting Home, the Long Journey of CTCs 635
16.6 Conclusions 635
References 637

17 Global Profiling Platforms and Data Integration to Inform Systems Biology and Translational Toxicology 657
Barbara A. Wetmore
17.1 Introduction 657
17.2 Global Omics Profiling Platforms 659
17.2.1 Genomics 659
17.2.2 Epigenomics 661
17.2.3 Transcriptomics 662
17.2.4 Proteomics 665
17.2.5 Metabolomics 668
17.3 High-Throughput Bioactivity Profiling 669
17.3.1 High-Throughput Bioactivity and Toxicity Screening 669
17.3.2 In Vitro–In Vivo Extrapolation 671
17.4 Biomarkers 672
17.5 Exposomics 673
17.6 Bioinformatics to Support and Data Integration and Multiomics Efforts 674
17.7 Data Integration: Multiomics and High-Dimensional Biology Efforts 676
17.8 Conclusion 679
References 679

18 Developing a Translational Toxicology Therapeutic Portfolio for Cancer Risk Reduction 691
Rebecca Johnson and David Kerr
18.1 Introduction 691
18.2 The Identification of Novel Predictors of Adverse Events 693
18.2.1 Candidate Gene Studies 693
18.2.2 Genome-wide Associations 694
18.2.3 Next-Generation Sequencing 695
18.3 Proof of Principle Toxgnostics 696
18.4 Proposed Protocol 698
18.4.1 Integration within Randomized Control Trials 698
18.4.2 Biobanking and Future-Proofing Samples 699
18.4.3 Data Protection and Full Consent 702
18.4.4 The Need for a Collaborative Approach 703
18.4.5 Open Access to Results 704
18.4.6 Translation from Bench to Bedside 705
18.5 Fiscal Matters 706
18.6 The Future of Toxgnostics 706
References 707

19 Ethical Considerations in Developing Strategies for Protecting Fetuses, Neonates, Children, and Adolescents from Exposures to Hazardous Environmental Agents 711
David B. Resnik and Melissa J. Mills
19.1 Introduction 711
19.2 What Is Ethics? 712
19.2.1 Some Fundamental Ethical Values 712
19.2.1.1 Benefits and Costs 712
19.2.1.2 Individual Rights and Responsibilities 713
19.2.1.3 Justice 713
19.2.2 Value Conflicts and Ethical Decision-Making 713
19.3 Ethical Considerations for Strategies Used to Protect Fetuses, Neonates, Children, and Adolescents from Exposures to Harmful Environmental Agents 715
19.3.1 Education 715
19.3.2 Testing/Screening/Monitoring 717
19.3.3 Worker Protection 720
19.3.4 Government Regulation 722
19.3.5 Taxation 725
19.3.6 Civil Liability 726
19.3.7 Criminal Liability 729
19.4 Research with Human Participants 730
19.4.1 Return of Individualized Research Results 732
19.4.2 Protecting Privacy and Confidentiality 733
19.4.3 Interventional Studies 734
19.4.4 Intentional Exposure Studies 736
19.4.5 Protecting Vulnerable Participants 739
19.5 Conclusion 742
References 742

Index 751