Index

References to figures are given in italic type. References to tables are given in bold type.

air gap membrane distillation (AGMD), 295
Air Liquide, 271
Air Products, 94–6
air separation unit (ASU), 232–4
alkaline fuel cell (AFC), 313, 316
alkanes, 10, 154
alkenes, 165–6
alumina, 41, 153
ammonia, 145–6
 partial oxidation, 90–3
 synthesis, 188–9
applications, 4
auto-thermal reforming (ATR), 52, 61

Baran Industrial Complex Fuel Cell Facility, 321
batchwise catalysis, 37–8
BCFT, 77
BCTb, 83
BCZGD membranes, 87
benzaldehyde, 121
benzene, OT-ME yields, 92
benzene oxidation, 10
benzyl alcohol, 113
bifunctional membranes, 126–7
biofuels, 129, 148
biological membranes, 5–6
biomimetic membranes, 16
blood oxygenation, 292
breakthrough pressure, 288
Brownmillerite, 77
butadiene, 113
1,3-butadiene, 116
butane, 114
1-butene, 115
BZCY membranes, 86–7

Capillary condensation, 7
carbide catalysts, 42
carbon dioxide separation, 14, 156
carbon nanotubes (CNT), 15
CARENA, 166, 173, 181
catalysts, 37
deactivation mechanisms, 43
heterogeneous, 38–9, 39
homogeneous, 29
metal, 42
preparation, 42–3
propane dehydrogenation, 177–9
Index 329

reactant segregation, 47
shapes, 39–40, 39
honeycomb, 39, 40–1
supports, 41
catalytic membrane reactors, 44, 45, 45, 50, 140
catalytic partial oxidation (CPO), 188, 244, 253
Celgard, 109
cellulose acetate, 112, 124, 127
ceramic membranes, 138–9
applications
methane dehydro-aromatization (MDA), 88–90
methane steam reforming, 143–4
water gas shift, 144–5
dual-phase, 80–2, 81, 86–8
mixed-ion-electron conducting, 150–1
perovskites, 82–3
principles, 140–2
rare-earth tungstates, 83–6
silica, 142–6
single-phase, 76–80, 82–6
zeolite, 146–50
Cercer membranes, 87–8
ceria, 41
Cermet membrane, 86–7
chemical potential gradient, 282
Chieti Scalo, 244
chitosan, 293
ClearEdge Power, 317
CoMETHy project, 226–8
commercial viability, 17
computational fluid dynamics (CFD), 263
computational modelling, 261–8
centrating solar power see solar power
concentration polarization, 23–6, 33–4, 301
costs of production, 237
CPO reactor, 252–3
Cyanex272, 294
cyclohexane, 10, 145
cyclohexene, 113
cyclopentadienene, 113, 114
dehydration, 148, 281
dehydrogenation, 13, 53, 145, 145, 146–7
alkanes, 154
cyclohexane, 114
propane, 171–81
membrane-based, 173–6
thermodynamics, 171–3
density, 6
desalination, 303
di-2-ethylhexyl phosphoric acid (D2EHPA), 294
diesel fuels, 129
diethanolamine, 292
dimerization, 125–6
direct methanol fuel cells (DMFC), 55, 319
direct normal irradiance (DNI), 214
dissipative particle dynamics, 262
distributive membrane, 45–6, 46
dynamic density functional theory (DDFT), 262
effective mass transfer coefficient, 24
electrolyte membrane reactor, 140
electrospinning, 110–11
enzyme reactors, 12
epoxidation reactions, 120–3
esterification, 126
ethylene, 113, 116
evaporation-induced phase separation (EIPS), 108–9
export power, 230–1
extractive membrane, 46
finite element (FE) methods, 272
Fischer-Trops process, 144–5, 148
FISR, 244
fixed-bed reactor (FBR), 90
fluidized bed membrane reactor (FBMR), 48–9, 49, 140
fluorites, 80
flux, 3–4
foams, 41–2
fouling, 43
fuel cell stack, 320
fuel cells, 54, 129, 313–14
applications, 315
direct methanol, 55
high-temperature, 319–23
low-temperature, 316–19
proton exchange, 54
gas permeation (GP), 5
gas separation, 258–60
applications, 270–2
computational modelling, 262–70
gas-to-liquid (GTL) processes, 94–6
genetic algorithms, 268
global warming, 145
grand canonical Monte Carlo (GCMC) simulations, 263, 265
Green-Kubo formulation, 264
Gusev–Suter TST, 265
halogenated hydrocarbons, 116–17
heteropolyacid (HPA) catalysts, 128
high-temperature shift reactor (HYS), 195, 196
homogeneous catalysts, 39
honeycomb catalysts, 39, 40–1
hydrocarbons, 116
catalytic partial oxidation, 188
hydroformylation, 135–6
hydrogen production, 119–20
hydrogen recovery factor, 228
hydrogen separation, 7, 8, 259–60
hydrogenation, 1-octene, 115
hydrophilic membranes, 286–7, 288
hydrophobic membranes, 288
inert membrane reactors, 44, 140
Integrated Gasification Combined Cycle (IGCC), 13, 195
Integrated Membrane Reactor, 9–10, 60, 70–1
interfacial polymerization, 109
ionic liquids, 14–15, 204, 225–8
isomerization, 125, 149–50
Knudsen mechanism, 6, 69
lanthanum tungstates, 83–6
layer-by-layer (LbL) deposition, 112
Le Chatelier’s principle, 174
limonene, 122
liquid-channel grain-boundary structure (LGBS), 81–2
magnesia, 41
mass transfer effects, 26–8
membrane contactors, 280, 288–94
membrane distillation, 294–302
membrane emulsifiers, 292–3
membrane strippers/scrubbers, 291–3
osmotic distillation, 289–91
supported liquid membranes, 293–5
membrane development, 261–8
membrane distillation, 294–5
applications, 303–4
heat and mass transport, 296–302
membrane emulsification, 292–3
membrane microreactor, 140
membrane modules, 268–70
membrane permeation flux, 43
membrane reactors, 48–51
concept, 60–1
configurations, 62–4, 70–1
design criteria, 64–5
modelling, 65–70
assumptions, 65
energy balance, 66–7
high pressure zone, 68
low pressure zone, 68
material balances, 66
reaction kinetics, 69
types, 140
membrane reforming reactor (MRR), 188
membrane strippers/scrubbers, 291–2
metal catalysts, 41
methane
dehydro-aromatization (MDA), 88–90
oxidative coupling, 152–3
partial oxidation (POM), 76, 151–2
methane steam reforming (MSR), 22, 30–5, 60–1, 143–4, 203
KT pilot plant, 247–51
reactor design, 185–9
solar-powered, 203–6
methanol, fuel resulting, 76
methanol steam reforming, 143–4
methyl-tert-butyl ether (MBTE), 127–9
methylene-cyclohexane, 113
microbial fuel cells (MFC), 319
microfiltration (MF), 4
mixed ion-electron conducting (MIEC), 139, 150–6
mixed matrix membranes (MMM), 14
mixed oxygen ionic and electronic conductor (MIEC)-EC, 80
molecular dynamics (MD), 263
molecular sieve, 7
molten carbonate fuel cell, 313, 319–20
molten nitrates, 202
molten salts, 14, 14–15, 204, 225–8
Monte Carlo technique, 265
multi-effect distillation (MED), 226
multi-layer diffusion, 7
multiscale modelling, 261–2
Nafion, 106, 120, 122
nano-membranes (NM), 15
napthahlene, OT-MR yields, 92
natural gas, 152–3, 166
natural gas steam reforming, 11
natural gas steam reforming (NGSR), 12, 12–13, 60–1, 184–90
molten salts with export power, 230–1
molten salts with no export power, 231–2
reaction kinetics, 207–8
reactor model, 208–9
solar-powered
air firing of retentate, 233
economic assessment, 234–9
optimization, 215–21
oxy firing of retentate, 232–3
pilot plant, 226–8
plant unit costs, 220–1
reformer pressure, 221
stoichiometry, 207
new CO₂ fuels (NCF) process, 96–8
Newton’s second law, 264
Next-GTL, 244
nickel-barium membranes, 85–6
nitrates, 116
nitric oxide, 90–3
nitrogen, 271
nitrogen oxides, 154–5

1-octene, 115, 124
olefine conversion technology, 165
oleflex process, 172–3
open architecture, 198–9
organophilic membranes, 286, 287
osmotic distillation, 289–91, 290
Ostwald process, 90–3
oxidation reactions, 120–3, 149
oxygen, 117
oxygen surface-exchange reaction (OSER), 80, 97
oxygen-transporting membranes (OTM), 98
packed bed membrane reactor (PBMR), 48, 140
palladium, 7, 87
partial oxidation of methane (POM), 76, 151–2
permeability, 43–4, 258
perovskite, 77, 77–8, 82–4, 93
pervaporation (PV), 4, 126, 280, 281–7
applications, 285–7
fundamental process, 282–4
transport process, 283–4
pervaporation separation index (PSI), 283
phase inversion polymerization, 107–9
phenol, 10
phosphoric acid fuel cell (PAFC), 313, 316–17
photocatalysis, 117, 118
[alpha]-pinene, 113, 123
platinum catalysts, 55
plug flow reactors, 114
plug-flow, 65
Poiseuille flow, 5
poisoning, 43
polyacrylonitrile (PAN), 112, 116, 116–17, 125, 126
polyamide-imide (PAI), 125
polyamides, 112
polybenzimidazole, 319
polybenzimidazoline, 112
polydimethylsiloxane (PDMS), 106, 116–17, 121, 123, 287
polyetherimid (PEI), 116
polyethylene, 287
polymer dope, 269, 285–6
polymer electrolyte membrane fuel cell (PEMFC), 313
polymeric membranes, 104–5
applications, 112, 113
dehydrogenation, 114
dimerization, 125
hydration, 123
hydroformylation, 123–4
hydrogenation, 114–16
isomerization, 125
MBTE decomposition, 127–9
oxidation/epoxidation, 120–3
applications
esterification, 126
gas separation, 258–60, 270–2
pervaporation, 285–6
water decomposition, 119–20
water treatment, 116–19

inert, 130
membrane modules, 268–70
modelling, 257–8
modification, 111–13
preparation
electrospinning, 110–11
interfacial polymerization, 109
phase inversion, 107–9
stretching, 109–10
track-etching, 110

polyols, 112
polyphenols, 112
polyphenylene oxide (PPO), 114, 128
polyphthazineethersulfoneketone (PPESK), 112
dopolyhydrozine, 112
polypropylene, 112, 117, 287
polysulfone, 112, 114, 318
polytetrafluorethylene, 112
polyvinyl alcohol (PVA), 126, 286–7
polyvinyl butyral, 112
polyvinylidene fluoride (PVDF), 112
porosity, 6, 38, 289
PraxAir, 98
pressure swing adsorption (PSA), 184–5, 256
principal components analysis (PCA), 268
Processi Innovati, 236
propane
dehydrogenation, 22, 53, 171–81
membrane-based, 173–81
membrane/reactor integration, 173–6
thermodynamics, 171–3

oxygenation, 10
propene, 116
propolis, 293
propylene, 53, 113, 116, 169–71
applications, 167–8
market and production, 167–9, 168
propyne, 10, 116
proton exchange membrane fuel cell, 54, 54, 317–18
proton-electron mixed conducting materials, 82–6
purification, 115
pyrochlore, 77
quantitative structure property/quantitative
structure activity (QSPR/QSAR), 266, 267
rare-earth tungstens, 83–6
reaction trajectory, 265
reactor modelling, 206–13
reformer and membrane module (RMM), 188, 189, 190–4, 192
reforming reactions, 143–4
renewable energy sources, 201–2
reverse osmosis, 226, 302
rhodium catalysis, 124
rotational isomeric state (RIS), 267
seawater purification, 303
selective permeation, 44
selectivity, 3–4, 59–60, 258
separator behavior, 28–30
shale gas, 166
shift effect, 142, 216
Sieverts’ law, 23, 24, 69, 247
Sieverts–Fick law, 8
silica, 41, 139, 142–6
silicalite, 287
sintering, 43
solar power, 201–2, 202
cost effects, 220–1
plant modelling, 214–15
reactor modelling, 206–12
reaction kinetics, 207–8
stoichiometry, 207
solid oxide fuel cells (SOFC), 313, 321–3
Soret effect, 297
soybean oil, 129
Staged Membrane Reactor, 10, 60, 63–4, 63, 70–1
steam cracking, 166
steam reforming, 51, 60–1
solar power, 202–3
steam to carbon (S/C) ratio, 30
stretching polymerization, 109
structured catalyst membrane reactor, 50
sulfide catalysts, 41
supported liquid membranes (SLM), 293–4
supported liquid membranes (SLMs), 15, 293–5
surface diffusion, 6–7
sweeping gas membrane distillation
(SGMD), 295
synthesis gas, 75–6, 97–9, 123–4, 151–2
fuels resulting, 76
reformer and membrane module
architecture, 19, 190–4
table oil wastewater, 303–4
temperature polarization, 302
tert-butyl alcohol (TBA), 123
tetrahydrofuran (THF), 286
thermal degradation, 43
thermally induced phase separation (TIPS), 107
thin film nanocomposite (TFN) membranes, 17
titania, 15–16, 41, 117
Tokyo Gas, 11, 250
toluene, OT-ME yields, 92
Toyota Mirai, 314, 318
transition state theory (TST), 263, 265
tungstes, 83–6
ultrafiltration (UF), 4
ULTRAFORE process, 11
United Envirotech, 11
United Technology Corp, 317
vacuum membrane distillation (VMD), 295
vapor formation, 43
vapor permeation (VP), 5
vapor-induced phase separation (VIPS), 108
Veolia Water Solutions, 11
viscous flow, 6–7
washcoating, 42
water, decomposition, 119–20, 154–5
water gas shift (WGS), 12, 30, 52–3, 61, 129, 144–5, 195–8
reformer and membrane module (RMM), 195–8
open architecture model, 198
water treatment, 11, 12, 116–19
dissolved oxygen, 117
halogenated hydrocarbons, 116–17
membrane distillation, 303–4
Wehrle Umwelt, 11
Weizmann Institute of Science, 96–8
Wei–Iglesia reaction kinetics, 209
xylene, 149–50
Z-scheme, 119, 120
zeolite membranes, 10, 16, 17, 41, 122, 139, 146–50
dehydration reactions, 146–7
dehydrogenation reactions, 146–7
isomerization, 149–50
oxidative reactions, 149
pervaporation, 287
zirconia, 41, 153