Architects:
- benefits of data to, 5–12
- challenges with data for, 19–21
- changing role of, 238
- communication with, 67
- coordinating of data and information by, 228–229
- data as tool for, 104, 105
- data-driven design for, 207, 208
- data-intensive roles of, 230–232
- and data scientists, 295, 321
- education of, 99
- information, 230, 291
- as producers of knowledge, 211
- and programmers, 310
- understanding of databases by, 38, 39, 42–43

Architectural justification, xv
- and data-informed decision making, 27
- rationalization vs., 120
- using data for, 21, 109, 141, 241

Architecture. See also AEC industry; AECO industry
- computers in, 75
- data in, xiii, xiv, xviii–xix
- form in, xiii, 35–36
- information in, xiii, xiv
- Architecture 2030 Challenge, 60, 200, 299, 313
- Architecture programs, learning to use data outside of, 131, 132, 137
- AR.Drones, 118, 166
- Arduino microprocessors, 117, 118, 154–156
- Artec EVA, 170
- Artificial neural networks (ANNs), 235–236
- Arup, 109
- ASCE Journal of Computing in Civil Engineering, 250
- ASCE Journal of Construction, 250
- ASHRAE Journal, 14, 199
- Assumptions, testing, 186
- Astorino, 94, 110, 282–284
- Audience for data visualization, 302

Augmented reality, 253–255, 333–334
- AutoCAD, 64, 137, 231
- AutoCAD Architecture, 60
- Autodesk, 56, 65, 130, 262
- Autodesk University, 45
- AutoLISP, 137
- Automation:
 - of construction data collection, 255
 - of decision making, 17–19
 - in future of AECO industry, 334
- Awareness of data, 36, 301
- Azure, 83
- Backaitis, Virginia, 179
- Background:
 - and comfort with data, 113
 - and data aptitude, 124–125, 227, 265
 - and preparation for data-driven practice, 220
 - of project team members, 230–235, 321
 - and signal processing ability, 131, 132
- Barista, David, 243
- The Bartlett, UCL, 222
- Behavior, human:
 - analysis of, 198
 - and building performance, 114
 - changes in, 4
 - and data utilization, 239
 - predicting, 181, 197
- Belcher, Dan, 114
- Bergman, Jill:
 - on challenges with data collection, 176
 - on data-ready approaches, 97
 - on leadership, 238
 - on planning for data use, 215
 - on value of investing in data, 13
- Berners-Lee, Tim, 297
- BI (business intelligence), 32, 297–299
- Bias, in presentation of data, 328
- Big Data:
 - in AEC/AECO industries, 1–2, 14–15, 54, 115, 228, 282
 - applying, 216
 - in architecture, xiii
 - and business intelligence, 297
 - at CASE, 307, 308
 - defined, 52–55
 - firm/project size and integration of, 213
 - for governments, 195
 - and instrumentation, 71
 - interest in, 283
 - Evelyn Lee on working with, 295–296
 - at LMN/LMNts, 163
 - meaningful data vs., 54–55
 - at NBBJ, 91
 - Sukanya Paciorek on working with, 275
 - in planning process, 174–175
 - David Sawdey on, 327
 - Greg Schleusner on working with, 270
 - security/privacy of, 313
 - sharing of, 55–56
 - solving business problems with, 301
 - structuring, 227–228
 - and unstructured data, 71, 175, 232
 - wrangling, 97, 232
- BIM (building information modeling):
 - in architecture education, 129
 - benefits of, 280–281
 - Big Data in context of, 55, 56
 - collaboration and, 29–32
 - and computational design, xix, 271
 - construction data in, 247, 249, 251, 254
 - as database, 2–3, 8, 11, 215–216
 - data visualization with, 15, 286–288, 290
 - and data vs. information, 52
 - and data wrangling, 97
 - document-centric use of, 250
 - early uses of, 66
 - ERP data in, 301
 - and IMB approach, 83–84
 - improving efficiency of, 321–322
improving level of development in, 255–256
interacting with data via, 307
and interest in performance vs. form, 204
mining project data in, 165–167
and past experience, 209
and productivity, xvii, 269
and radar factor in data preparedness, 109, 110
real-time analysis in, 60
at SOM, 45–49
standards for, 269
supplemental data from, 50, 51
for sustainable design, 192
uses of, 285, 325–326
value of, xvi, 2
BIM and Integrated Design (Randy Deutsch), xvi
BIM Benchmark Tool, 30–31
BIM leaders, 231, 238
BIM objects, using, 239
BIM Standard, see United States National Building Information Modeling (BIM) Standard
BIPV (building integrated photovoltaic) systems, 207
Blender, 83
Böke, Jens, 131–133
Bowker, Geoffrey C., 331
Brain Hacking Studio, 128
Broughton, Jonathon, 225
on background and data aptitude, 124–125
on data-driven design approaches, 97–106
on data preparedness, 109–110
on data scientists, 231–232
on data visualization, 122
on data wrangling, 232
on decision making, 201–202
on demonstrating vs. explaining value of data, 20, 102
on fees and profitability, 298–299
on future of AECO industry, 333
on interoperability, 266–267
on intuition and data, xv, 9, 12, 103, 105
on “playing” with data, 123
Brown, Brené, 179
Brown University, 171, 172, 175, 201
bSa (buildingSMART alliance), 263
Buccellato, Aimee, 134–136, 325
Building Analytics dashboard, 10, 308
Building CATALYST, 284
Building construction courses, xvi
Building façade performance, 166, 168
Building information modeling, see BIM
Building integrated photovoltaic (BIPV) systems, 207
Building lifecycle, 179, 243, 266, 331
Building longevity, 279
Building management systems, 182, 277
Building owners, see Owners
Building performance: algorithms for improving, 65–66, 204
analyzing data to improve, 197–198
computational design for improving, 150
creating project teams to improve, 225
data for improving, 136
as factor in leveraging of data, 35–36
and geometry, 229
human behavior and, 114–115
human performance and, 191, 229
interest in form vs., 204, 205
optimizing, 63–64
organizational performance and, 191
in practice of design, 216–217
structure, skin and, 66–67
warehousing data to improve, 69
buildingSMART alliance (bSa), 265
buildingSMART data dictionary, 270
buildingSMART standards, 267, 268
Burke, Sean D.,
on building, human, and organizational performance, 191
on business intelligence, 298
on computer scientists, 230
on data, 55–61
on data generalists vs. specialists, 224, 225
on decision making, 200
on energy analysis, 191, 192, 299
on human resources, 34
on interoperability, 271
on learning to work with data in practice, 137
on monitoring organizational performance, 299
on multi-factor analysis, 7
on simulations, 191
on teaching data-driven design, 129, 130
Business case for leveraging data, 297–329
and business intelligence in AEC industry, 297–299
David Fano and Daniel Davis on, 300–310
Mark Frisch on, 312–323
David Sawdey on, 325–329
and security/privacy concerns, 310–313
and sharing of data between firms, 324–325
Business intelligence (BI), 32, 297–299
CAD (computer-aided design), 39, 44, 269, 326
CAD managers, 231
CAD standards, 268
California College of the Arts, 203
Capacity, utilization and, 170, 294
Capturing data. See also Collecting data; Mining project data
Mark Frisch on, 312–317
Brian Ringley on, 117–118
at USGBC, 200
with visual sensing, 259
CarbonBuzz, 235
Card-swipe readers, 156–157
Carnegie Mellon University, 149
INDEX

CASE Inc., 246
Big Data at, 282, 307, 308
Building Analytics dashboard of, 10, 308
data analysis at, 179
database work of SOM and, 37–41, 48
data-enabled design and technology at, 300, 305–307
data mining in BIM by, 165, 166
data preparedness at, 109, 110
FM Data Manager of, 303–306
noncompensated learning at, 137
predictive analysis with dashboards at, 180, 182
Project Dashboard of, 56–57, 298
skills of job candidates at, 249
CASE Pro Apps, 114
Certainty, 21, 180–181
CFD (computational fluid dynamics) modeling, 146, 147, 149
Chameleon, 114
Change, advocating for, 59–60
Change management, 247–248
Charles Street Car Park (Sheffield, United Kingdom), 103–105
Chicago, Illinois, 195
Christenson, Clayton, 76
Citi Bike, 157
City Tech, CUNY, 63, 113, 114, 137
Clients:
communication with, 8, 10, 67
direction on data use from, 278
as drivers of data-driven design, 106
planning for data use by, 215
project data from, 153
promoting data-informed design to, 278–279
use of data by, 328–329
using data to persuade, xv–xvi
views of data by, xxi
Client data marts, 326
Climate analysis, 192, 194–196
Climate change, 195–196
Cloud computing:
at Aditazz, 83
as factor in leveraging of data, 32, 33
project data in, 187
at Sefaira, 184–185
Cloud Lab, 126–128
COBie (Construction Operations Building information exchange), 262–266
CodeBook, 56
Coders, 230
Cognitive data, collecting, 128
Collaborations:
of computers and design professionals, 334–335
of design and management, 322
Collecting data:
benefits of, 170
from clients, 153
in construction industry, 245, 248–249
from field, 154–157
at Sasaki Associates, 176
strategy for, 169–170
by technical coordinators, 317–318
Collins, Mark, 126
Columbia University, 63, 126, 127
Comfort, 193
Communication:
at Astorino, 283
with clients, 8, 10, 67
high fidelity, 229
Comparison Engine, 42
Compatibility, software, 271
Compilation of data, 203
Complexity, 5, 177
Compromises, designers’, 76, 77
Computational design:
and BIM, xix, 271
intuition in, 147, 148
leveraging data with, 309
at NBBJ, 150, 153, 190–191, 213
predicting human behavior with, 197
Computational fluid dynamics modeling, see CFD modeling
Computers:
in architecture and construction, 75
and automation of decision making, 17–19
collaborations of design professionals with, 334–335
data mining with, 294
hardware limitations of, 17
Computer-aided design, see CAD
Computer scientists:
in AEC industry, 232–234
emerging professionals vs., 231
hiring, 65, 230–232
Computer vision, 257–259
Concrete problems, 216
Confidence, 6, 305
Confidentiality, 313
Connected systems, 320
Consensus building, 180
Conservation, energy, 194, 281
Construction industry, 243–272. See also AEC industry; AECO industry
awareness of data in, 36
computers in, 75
data use in, 91, 92, 244–245
Bill East on, 262–266
Billie Faircloth on, 220
Mani Golparvar-Fard on, 250–259
Tyler Goss on, 246–250
interest in technology in, 244
interoperability of AEC software with, 266–267, 271–272
linking data in design, operations, and, 259–262
owners as drivers of data use in, 296
risk aversion in, 250
Greg Schleusner on, 267–270
standards for, 266
Construction Operations Building information exchange (COBie), 262–266
Construction phase, 243–245, 247–248
Consumption, energy, 196, 208, 278
Contextualizing data, 16–17, 284
Contractors:
benefits of data to, 12
challenges with data for, 21, 23, 24
data collection by, 245
interest in data by, 246
ConXtech, 72
Cooling tower (Doha, Qatar), 22
CORE Studio, 63
computer science background of members in, 234
data visualization at, 64
project with Property Loss
Consulting Group, 66, 67
research at, 234
revision history interface project of, 261
TTX at, 114
Corporate real estate (CRE), 327–329
Cost estimation, 259–260, 284
Cost savings, data visualization for, 275, 276
CRE (corporate real estate), 327–329
Creativity, 75–77
Crissy Field Center (San Francisco, California), 292
Critical thinking, 20, 58–59, 120
Cross-checking datasets, 120
Crossing the Chasm (Geoffrey A. Moore), 45
Cross-referencing datasets, 17
Cross-ventilation experiment in Dhour, 209–210
Culture:
AECO industry, 199
corporate real estate, 244, 246–247
firm, 20, 33, 34, 239, 280
school, 120–122
CUNY, see City Tech, CUNY
D3 approach, see Data-driven design approach
D3 program, 99
D4AR technology, 253–255
Daily construction photolog, 23
Daily Construction Reports (DCRs), 251
Dashboards. See also Project Dashboard
Building Analytics, 10, 308
data visualization with, 307
Zero Net Energy Design, 7
Data, 29–69
in AEC industry, xvi–xix
in architecture, xiii, xiv, xviii–xix
benefits of using, 4–13
in building construction courses, xvi
Sean D. Burke on, 55–61
challenges with using, 13–17
definition of, 50–54
demonstrating value of, 20, 102
design professionals’ view of, 1–4
documents vs., 61–63
future of, in AEC industry, 331–335
and information, 228–229
interest in form vs., 44, 115–117,
130, 188, 189, 196–197, 282–283
justifying use of, 141
as means to an end, 201–203
mindset for using, 2–3, 239,
322–323
persuading clients to follow
design direction with, xv–xvi
Jonatan Schumacher on, 63–69
time and effort for working with,
21–24 as tool for architects, 104,
105
unstructured, 17–21
value of, 13, 279
Robert Yori on, 37–49
Data analysis, see Analyzing data
Data analytics:
accomplishments of, 202
data analysis vs., 179–180
predictive, 180–182, 332
Data approach to buildings, 39, 40
Data aptitude, 124–125, 227
Data architects, 230
Data-backed decision making, 174
Database(s):
architects’ understanding of work
on, 38, 39, 42–43
BIM as, 2–3, 8, 11, 215–216
Display Energy Certificate, 236
document-based, 302
drawings as, 62
at Gehry Technologies, 289–291
OpenAsset, 319
of SOM and CASE Inc., 37–41, 48
SQL, 160
Data centers, 165, 280, 281
Data-centric thinking:
document-centric vs., 62, 302
improving firms’, 87–88, 174, 218
shifting to, 249–250
Data coordinators, 315
Data-driven construction, 246
Data-driven decision making, 33,
183–184
Data-driven design:
in AEC industry, 198
for architects, 207, 208
building owners as drivers of, 296
future of, 331–333
teaching, 129–133
Data-driven design (D3) approach,
71–106
Jonathon Broughton on, 97–106
clients as drivers of, 106
continuum for, 84–86, 94–95
data-informed vs., 236, 237
Andrew Heumann on, 86–92
hybrid, 96
and ideal firm approach, 44
at LMN Architects tech studio,
157–158
Zigmund Rubel on, 75–84
at Sefaria, 185
and trends in AECO industry,
71–74
Data-enabled approach, 44, 85, 305
Data-enabled project teams,
222–226
Data-informed approach:
at AHR, 236, 237
data-driven vs., 87, 96
defined, 85
as ideal firm approach, 44
professionals/firms using, 94–95
at Sasaki Associates, 171
Data-informed decision making, 27,
304, 321
Data-inspired approach, 44
Data literacy, 87
Data marts, client, 326
Data-nimble approach, 223
defined, 85
at Sasaki Associates, 171
Data-ready approach, 96
Data scientists:
and architects, 295, 321
Jonathon Broughton on, 99
on project teams, 231–232
Datasets, 17, 120
Datatization, 71–73
Data visualization (data viz):
as AECO industry trend, 74
in architecture workplace, 138
audience considerations in, 302
with BIM, 15, 286–288, 290
at CASE, 307, 308
cost savings related to, 275, 276
with Dhour, 209–210
and documents, 62
flexibility in, 204, 205
importance of, 206, 207
learning to work with data via,
119–120, 122–123
Evelyn Lee on, 294
at LMNts, 161
monitoring, 298
by owners, 285–293
portfolio strategy and, 326
Revit for, 286–291
at Thornton Tomasetti, 68–69
tools for, 206–208
Data wrangling, 97, 232
Davis, Daniel:
on behavior change, 4
on business case for leveraging
data, 300–310
on computer scientists in AEC
industry, 232–233
on data analysis for decision
making, 200
on future of AECO industry, 333
on insight, 51
DC Bridge project, 256
DCRs (Daily Construction Reports),
251
DeBono, Edward, 124
DEC (Display Energy Certificate)
database, 236
Decision making:
in AEC industry, 79–80
analyzing data for, 200–203
by architects, 6–9
automation of, 17–19
collecting data for, 313
data analysis for, 171, 172
data-backed, 174
data-driven, 33, 183–184
data-informed, 27, 304, 321
data visualization for, 326
format of data and, 307, 309
improving, with data, 45–49,
88–91, 116, 199, 207–209, 237,
280, 293
justifying, 241
office data for, 323
using data in, 2, 6–8
DEC (Display Energy Certificate)
ratings, 237
Deltas, 248–249
Deming, W. Edwards, 143
Department of Transportation
(DOT), 169
Deproductization, 72
Design:
collaboration of management
and, 322
data as compliment to, 3, 12
data in, 91, 92
data in construction vs., 244–245
as filter, 233
linking data in construction,
operations, and, 259–262
as search, 127–128
Design computation, see
Computational design
Design direction, xv–xvi, 170
Designers:
compromises by, 76, 77
data-intensive roles of, 230
Design phase, 186
Design professionals:
arbitrary justification by, 141
collaborations of computers with,
334–335
data as must-have for, 3
interest in form vs. building
performance for, 204, 205
interest in form vs. data for, 44,
188, 189, 196–197, 282–283
leveraging of data by, 176
use of data by, 91–94
views of data by, 1–4, 200
Design teams, 183
Deutsch, Randy, xvi, xx
Dhour, 204, 206, 209–210
Differentiation factor, data as, 101–102
Digital-data referees, 229
Digital Project, 65, 245
Digitization, 71, 72
DlKW progression, 5, 6, 50–52, 304
Diller Scofidio + Renfro, 66
Display Energy Certificate (DEC)
database, 236
Display Energy Certificate (DEC)ratings, 237
Distrust, of data, 19–20
DIVA:
applying data from, 117, 118
data on façade performance in,
166
noncompensated learning about,
137
and physical models, 120
referencing environmental data
in, 116, 333
Diversity, project team, 226
Document-centric thinking, 62,
249–250, 302
Documents:
data in, 144, 145
as output of architects, 61–63
DOT (Department of
Transportation), 169
dRofus, 56, 269–270
Dynamic area analysis, 314
Dynamic data, 169–170
Dynamic thermal simulation, 193
Dynamo, 58, 137
DynaRobo, 112
East, Bill, 262–266
Easy data, 13
EBD (evidence-based design), 202,
277
Ecotect simulation, 60
Education:
of architects, 99
and data in school culture,
120–122
learning to work with data during,
110–111, 128–133, 137
security/privacy of data in, 310
EEG (electroencephalography), 128
EES (Engineering Equation Solver),
196
Efficiency:
of BIM, 321–322
energy, 274–276
Effort:
for collecting data, 176–178, 248
for working with data, 16, 21–24
Eisenman, Peter, 120
Electroencephalography (EEG), 128
Elk, 116, 333
Emerging professionals, 231
End users, 296. See also Tenants
Energy analysis:
Sean D. Burke on, 191, 192, 299
data in, 59
at Transsolar, 194
Energy benchmarking, 194
Energy conservation, 194, 281
Energy consumption, 196, 208, 278
Energy efficiency, 274–276
Energy generation, 208
Energy monitoring systems, 74
Energy Star Portfolio Manager®, 273
Engineering, see AEC industry; AECO industry
Engineering Equation Solver (EES), 196
Enterprise Resource Planning (ERP), 156, 298, 301
Environmental impact, comfort and, 193
Erwin, Kim, 156
Estimation, cost, 259–260, 284
Evidence-based design (EBD), 202, 277
Expectations, owners’, 303
Experimentation with data, 123–124
Exploration, in design process, 161, 186
External generative data, 50, 51
Facility performance evaluation (FPE), 332
Faircloth, Billie, 239
on application of project data, 216–221
on data-enabled project teams, 222, 224
on data in construction phase, 245
on data-nimble approaches, 96
on data synthesis, 211
False positives, 12
Fano, David:
on business case for leveraging data, 300–310
on business decisions, 7–8
on business intelligence, 297–298
on certainty in AECO industry, 21
on computer scientists in AEC industry, 233
on data mining in BIM, 165
on data missed by firms, 156
on data preparedness, 109
on data strategies from other industries, 32, 33
on datatization, 72
on data visualization, 62
on data vs. information, 50–52
on defining Big Data, 53
on direction for data use, 278
on documents, 61
on extracting and transferring meaningful data, 261
on fabrication of tools by students, 111–112
on future of AECO industry, 333
on information management, 247
on integrated vs. nonintegrated project teams, 226
on interoperability, 267
on quality of data, 16
on Quantified Self movement, 156
on school culture, 121
on social media, 157
on validation, 74
Fear of working with data, 77, 103, 295
Fees, productivity and, 298–299
Field data, collecting, 154–157
Field inspections, 256
Firefly, 117, 154
Firm culture:
as challenge in working with data, 20
as factor in leveraging of data, 33, 34
and leadership in data use, 239
Peter Pellerzi on importance of, 280
Firms:
data applications and size of, 15–16, 213–214
data-centric, 87, 174
as data intermediaries, 281–282
research at large, 234
sharing data between, 324–325
small, 136, 162, 231, 234
Fletcher, Paul, 27
Flexibility:
of buildings, 149, 150
in data visualization, 204, 205
of technology, 309
FlexSim Healthcare, 191
Flux, 334
FM Data Manager, 303–306
Form:
in architecture, xiii, 35–36
as driver of design, 65–66
interest in building performance vs., 204, 205
interest in data vs., 44, 115–117, 130, 188, 189, 196–197, 282–283
and performance optimization, 63–64
Format, data, 307, 309
Forsyth, David, 259
Founders Effect, 137, 227
4Adaptive, 154, 294
4D modeling, BIM for, 251
FPE (facility performance evaluation), 332
Frisch, Mark, 299
on business case for leveraging data, 312–323
on construction industry, 36
on data-informed approaches, 95
on data mining in BIM, 165
on hiring computer scientists, 230–231
on learning to work with data, 111, 129
on sharing data, 324–325
Fuel3D, 170
Fuse Lab, 113, 114, 118
Fusion Tables, 234
importance of data-driven design to, 106
research at, 234
Google Bay View campus
(Mountain View, California),
145–149, 153
Google Docs, 234, 260, 261, 297
Google Spreadsheets, 234
Goss, Tyler:
on challenges with data
collection, 176–177
on construction industry,
246–250
on documents, 62
on learning to work with data in
school, 128–129
on leveraging data in
construction phase, 243–244
on owners as drivers of data use,
296
on predictive analytics, 182
on risk aversion, 23
Governments, Big Data for, 195
Grasshopper:
analysis for decision making with,
200
carbon calculator in, 192
data handling by, 64–65, 114
design analysis in, 309
frit pattern analysis with, 67
IFCs for transferring data from,
262
learning to work with data in, 99
leveraging data with, 309
optimizing performance with, 63
prototyping visualization for, 204
referencing environmental data
in, 116, 333
revision history interface for, 261
at small firms, 234
students’ knowledge of, 62, 129,
249
TTX vs., 324
Green building design, 183–184, 199
Green Building Information
Gateway, 198, 199
Green Building Studio, 60, 299
Green Group, LMN, 157
Green Permit Program, 193
Green roof vegetation study,
220–221
GreenScale Tool, 134–135
Griffin, Duncan, 145
Grimshaw Architects, 95
GT, see Gehry Technologies
GTeam, 227–229, 271–272
Hacker mentality, 222, 225, 238,
269
Hadoop, 297
Hamer Andy, 20
Hangzhou Stadium (Hangzhou,
China), 12, 88–93, 130
Haot, Rachel, 195
Happold Consulting, 109
Hardware, limitations of, 17
Harvard University, 227
Harvests (SOM), 41
Hasegawa, Toru:
on background factors in data
aptitude, 125
on learning to work with data,
126–128
on security of data, 310
HDR (high dynamic range)
photography, 208
Healthcare projects:
data-driven design for, 106
mining project data for, 166, 168
predictive analytics for, 181
Heumann, Andrew, 145
on Big Data, 54
on card-swipe data, 156
on data-driven design
approaches, 86–92
on data-enabled project teams,
224
on data sources for healthcare
projects, 166, 168
on roles of designers, 230
on security/privacy of data, 310
on teaching data-driven design,
129
High dynamic range (HDR)
photography, 208
High fidelity communication, 229
Hiring:
candidates with data application skills, 232–235
computer scientists, 65, 230–231
data scientists vs. architects, 321
HOAR FM Data Manager, 303–306
HOK, 267
Big Data at, 282
buildingSMART standards at, 268
data preparedness at, 110
and dRofus, 269–270
Holland, Nate, 89
Homogenization, data, 271–272
Honeybee, 67
Horizon Cloud, 36
Hudson Yards Culture Shed (New York, New York), 66
Human intervention, in future of design, 334–335
Human performance:
algorithms for improving, 229
and building performance, 191, 229
cross-validating, 258–259
and geometry, 229
and organizational performance, 191
in practice of design, 216–217
Human resources, 33, 34, 108
Hurricane Sandy, 66, 67, 196
Hybrid data-driven design approaches, 96
IES, 299
IFCs, see Industry Foundation Classes
IFM (Integrated Facilities Management), 327, 328
IIT Institute of Design, 156
Ikenberry Commons project, 251
IMB approach, 83–84
IMMERSIVx, 176
Implementation of data strategies, business case for, see Business case for leveraging data
Industry Foundation Classes (IFCs):
data models using, 261–262
Bill East on, 265, 265
Mani Golparvar-Fard on, 261, 263–266
and Revit, 58
with standards, 269
and TTX, 65
Information:
in architecture, xiii, xiv
coordination of data and,
228–229
from data, 202, 203
data vs., 50–52
honoring in on key, 17
sharing, 229, 263
sharing of, 229
Information architects, 230, 291
Information intermediaries, 223
Information specialists, 230–231, 319
Inherent geometrical data, 50, 51
Insecurity in working with data, 109
Insight, 51
Instrumentation, 71, 72
Integrated Facilities Management (IFM), 327, 328
Integrated project teams, 225–226
Intelligence, business, 32, 297–299
Intergovernmental Panel on Climate Change, 198
Intermediaries:
data, 281–282
information, 223
Internet of Things (IoT), 71, 331
Interoperability, 17, 114
and access, 36
in AEC and construction industries, 266–267, 271–272
and buildingSMART data dictionary, 270
and extracting/transferring meaningful data, 261
repositories for improving,
260–261
in simulations, 163
Brian Skripac on, 262
and TTX platform, 65
and workflow, 160
Intuition:
Jonathon Broughton on data and,
xv, 9, 12, 103, 105
in computational design, 147, 148
in data-driven approaches, 158
at Sefaria, 186
IoT (Internet of Things), 71, 331
Iterative design process, 158–161, 163, 185
Janks, Gregory:
on applying data analysis, 180
on bad data, 211
on data generalists vs. specialists, 224
on data-informed approaches, 94
on data visualization, 292
on decision making, 201
on mining project data, 170–176
on preparing to apply data, 214
Jensen, Mads:
on analyzing data, 182–190
on Big Data, 53
on cloud computing, 32
on data analysis vs. analytics, 179–180
on data as means to an end, 203
on data preparedness, 109
on diversity of project teams, 226
on risk aversion, 14
on technology, 33, 107
Job captains, 250
Johns Hopkins University, 175
Johnson, Jennifer:
on analyzing data, 202, 203
on contextualizing data, 16
on data collection strategies, 169
on data in documents, 144, 145
on honing in on key information, 17
on technology, 234–235
Jones Lang LaSalle:
clients’ use of data at, 328–329
improving service with data at, 326–327
use of BIM at, 325–326
Keynsham Town Hall (Keynsham, England), 237
Kieran, Stephen, 220
KieranTimberlake, 216
culture at, 239
data application at, 220–221
data-driven approach at, 85
data-nimble approach at, 96, 216
project teams at, 222, 224
research at, 217, 218
Kilkelly, Michael:
on information architects, 230
on "playing" with data, 124
on Revit for data visualization, 286–291
Kimpian, Judit, 235
King’s Cross Central Master Plan
(London, England), 106, 122–123
Knight Frank, 109
Knowledge, producers of, 211
Koo Foundation (Taipei, Taiwan), 149, 168
Ladybug, 67, 116, 333
Large firms, research at, 234
Leadership:
apPLICATION of project data by, 238–239
at Sasaki Associates, 173
Learning:
how to learn, 112–113
noncompensated, 137
speed of, 6
Learning to work with data, 107–139
and background factors in data aptitude, 124–125
Jonathon Broughton on, 99
Aimee Buccellato on, 134–136
for contractors, 21
and data preparedness factors, 107–110
data visualization in, 122–123
with existing tools, 111–113
Toru Hasegawa on, 126–128
in practice, 137
Brian Ringley on, 113–120
and school culture, 120–122
in schools, 128–133, 137
in workplace, 137–139
Le Corbusier’s Modulor, xiii
Lee, Evelyn:
on analytical approach to
building, 4
on architect’s views of data, 20
on benefits of collecting data, 170
on Big Data vs. meaningful data, 54
on building owners, 293–296
on collecting field data, 154–155
on data-enabled approach, 85
on data mining, 143
on diversity of project teams, 226
on field data, 154
on future architecture firms, 332
LEED certification, 199, 276
LEEDOnline, 143–144
Leonhardt, Anne, 137
Level of development (LOD), 255–256
Leveraging data. See also
Business case for leveraging data
in AECO industry, 29–36, 87
Big Data, 53, 115
in construction phase, 243–244
by design professionals, 176
mindset for, 45, 88, 301
over building lifecycle, 243
Levitt, Brendon, 209, 285
on analyzing data, 197, 203–209
on data sources for building
façade performance, 165–167
on decision making, 6
on simulations, 182
Liability with sharing data, 310–311
Liebsch, Peter, 95, 121
Lifecycle, building, 179, 243, 266, 331
Light, David, 29
Literacy, data, 87
LMN Architects, 157
acceptance of data at, 162
Big Data at, 163
data-driven approach at, 85, 158
data-informed approach at, 95
data visualization at, 286
energy monitoring system of, 74
simulations at, 163–164
LMN Architects tech studio
(LMNts):
Big Data at, 163
data-driven approach at, 157–158
Lyrebird project at, 114
research project with Thornton Tomasetti, 67–68
technology at, 160
tools used by, 160–161
Local data, using, 194
Local Law 11, 145
Location-based analytics, 169
LOD (level of development), 255–256
LOISOS + UBBELOHDE, 6, 203, 206
Longevity, building, 279
Lyrebird, 114
Machine learning, 257, 258
Mcinturf, Michael, 120
MacLeamy graph, 16
Magnetic resonance imaging (MRI), 128
Management, collaboration of
design and, 322
MapReduce, 297
Marble Fairbanks Architects, 126
MARS (Mobile Augmented Reality
System) platform, 62–63
Materials, tracking, 243
Mathematicians, 183
MATLAB, 236
Maya, 114
Meaningful data, 54–55, 261
Mechanization, 318, 319
Meerkat, 117, 333
Metrics factor (data preparedness), 108–109
Microsoft Access, 297
Microsoft Excel:
handling of project data in, 64, 114
Michael Kilkelly on Revit and, 288, 290
potential of, 215
project data in, 43
as report card vs. database, 224
Microsoft Office, 83, 297
Miller, Lee, 268
Miller, Nathan, 137
Miller, Sam:
on changing role of architects, 238
on construction industry, 259
on data and sped of learning, 6
on data-informed approaches, 95
on data visualization, 286
on firm size, 16
on interoperability, 266
on leveraging data over building lifecycle, 243
on mining project data, 157–165
Mindset:
for addressing complex building problems, 265
of AECO industry, 14
for leveraging data, 45, 88, 301
and school culture, 121
and technology, 45, 190, 190, 199
for using data, 2–3, 239, 322–323
for working with data, 77, 88, 160, 190, 199, 218, 220, 283–284
Mining project data, 143–178
benefits of, 170
in BIM, 165–167
on building façade performance, 166, 168
challenges with, 176–178
from clients, 153
collecting field data, 154–157
with computers, 294
Mark Frisch on, 323
for healthcare projects, 166, 168
Gregory Janks on, 170–176
Sam Miller on, 157–165
Ryan Mullenix on, 145–153
at NBBJ, 88–89, 91
from private sources, 153–157, 165–168
from public sources, 143–145
Brian Ringley on, 115–118
strategy for, 169–170
Mirtschin, Jon, 269
MKThink, 4
data for owners at, 293–296
field data at, 154–155
requirements for job candidates at, 111
Mobile Augmented Reality System (MARS) platform, 62–63
Mobile devices:
data collection with, 177–178
private data from, 154–155, 176
Model-based Visual Sensing, 257–259
Moore, Geoffrey A., 45
Moran, Daniel Keys, 273
Morgareidge, David L.: on future of AECO industry, 332, 334
on organization performance, 298, 299
on predictive analytics, 180–181
on technology for construction firms, 244
Morpholio Project, 126
Motivation, for using data-driven design, 78–79
MRI (magnetic resonance imaging), 128
Mulhern, Tom:
on Big Data, 55
on client data, 153
on defining projects with data, 5
on human performance, 198
on instrumentation, 71
on public sources of data, 144
on Quantified Self movement, 156
Mullenix, Ryan:
on building longevity, 279
on computational design, 190–191
on mining project data, 145–153
on value of data, 50
Multi-factor analysis, 7, 17, 18, 181
Murphy/Jahn, 321
MyBuilding tool, 175
MyCampus tool, 175
MyCommunity tool, 175
National Center for Supercomputing Applications (NCSA), 255
National experiments, buildings as, 199, 201
Natural ventilation analysis, 315
Nature Conservancy, 170
The Nature Conservancy (TNC), 294
NBBJ, 55, 86
Big Data at, 56, 91
capabilities of, 145–147
capturing data at, 89
computational design at, 150, 153
190–191, 213
data-driven approach at, 85, 87, 148
data for improved decision-making at, 88–91
mining project data at, 89, 89
monitoring organizational performance at, 299
simulations at, 191
use of data at, 92–92, 149
validation of data at, 59
NCSA (National Center for Supercomputing Applications), 255
Netflix, 278
New York, New York, 195, 196, 274–276
New York City College of Technology, see City Tech, CUNY
New York Times, 62, 302
New York University (NYU), 37, 119, 138
Nike Fuel, 156
N Maeda Atelier, 126
Noise problem with data, 16, 17, 131, 132, 227, 277
Noncompensated learning, 137
Nonintegrated project teams, 225–226
Non-siloed approach to data use, 322–323
Notre Dame University Sustainable Data Community, xvi–xvii, 134
NREL, 60
NYC Open Data initiative, 145
NYU, see New York University
Oakland, California, 205
Oasys MassMotion, 198
Occupancy, utilization and, 182, 243
Office data:
- applying, 316–317
- decision making based on, 323
- relationship of project data and, 315, 316
- sources of, 165, 167
Ohio State University, 262, 282, 285
Okumura, 255
Olsen, Erik:
- on analyzing data, 193–197
- on card-swipe readers, 156
- on data visualization, 286
- on form and performance in architecture, 35
- on open data, 145
- on sustainable design, 192
- on technology, 202
OpenAsset database, 319
Open data, 145, 195
Open-source software, 83
Operations, linking data in design, construction, and, 259–262
Operators, 275–276
Organizational data, 173
Organizational performance:
- integration of building and human performance with, 191
- monitoring, 298, 299
- in practice of design, 216–217
Outsourcing, of data mining, 176, 333
Overall View Analysis Diagram, 8
Owners, 273–296. See also AECO industry and AECO firms as data intermediaries, 281–282
benefits of data for, 21, 273
- closing performance gap for, 278–279
data analytics for, 202
data visualization by, 285–293
demand for construction data by, 249
direction on data use from, 277–278
- as drivers of data-driven design, 296
- expectations of, 303
Evelyn Lee on, 293–296
Sukanya Paciorek on, 274–277
Peter Pellerzi on, 279–281
- planning for data use by, 215
- promoting data-informed design to, 278–279
- Revit for data visualization by, 286–291
Brian Skripac on, 282–285
- views of data by, xxi, 295
P3 projects, 332
Paciorek, Sukanya:
- on building owners, 273–277, 296
- on contextualizing data, 17
- on defining projects with data, 5
Pascal, 125
Past experiences:
- benefits of data vs., 105
- in BIM, 8, 11, 209
decisions based on data vs., 20
- mining data from, 165–167
- warehousing data on, 69
Paterson, Grieg:
- on application of project data, 235–237
- on building performance gap, 278
- on data-enabled project teams, 222, 223
Pellerzi, Peter:
- on building owners, 279–281
- on data centers, 165
- on data-driven design for Google, 106
Performance, see specific types, e.g:
- Building performance
- Performance-based design, 185, 190, 190
Performance gap, closing, 278–279
Performance wheel, 9
Petronas Towers (Kuala Lumpur, Malaysia), 66
Photos, construction data in, 251, 253–255
Physicists, on design teams, 183
Planning:
- Big Data in, 174–175
- for use of data, 215
- of work at Sasaki Associates, 171
Plato, 78
"Playing" with data, 123–124
POE (post-occupancy evaluation), 332
Point cloud models, 253–256
Portfolio strategy, 326
Post-occupancy evaluation (POE), 332
Power usage effectiveness (PUE), 281
Pratt Institute, 113
Predictive analytics, 180–182, 332
Preferences, data and, xvi, 27
Prescribed reliability, 284
Presenting data, 328
Privacy, 284–285, 310–311
Private data sources, 153–157, 165–168, 176
Private good, 311
Problem solving:
- as critical process, 318, 324
- and focus of data application, 214–216
- working with data for, 301
Processing (program), 236
Productivity:
- in AEC industry, 78–79
- and BIM, xvii
- in construction industry, 247, 269
- and data, 2
Productization, 72
Profitability, 298–299
Programmers, 230, 310
Progress monitoring, 251–255
Projects:
- application of data and size, 213–214
- defining, 5
Project conception phase, 244
Project cQ, 145
Project Dashboard:
- of CASE Inc., 56–57, 298
- of Skidmore, Owings and Merrill, 11, 38, 40, 41, 43, 45–47
Project data:
- at Allies and Morrison Architects, 99
- application of, see Application of project data
collecting, 313
mining, see Mining project data
relationship of office data and, 315, 316
technologies for handling, 43–44, 114, 187
Projections of Reality, 333
Project Model Page (SOM Dashboard), 47
Project Page (SOM Dashboard), 46
Project teams, 222–226
application of project data by, 222–226
data-backed decision making by, 174
data-enabled, 222–226
data-intensive roles on, 230–235
data specialists vs. generalists on, 224–225
diversity of, 226
integrated vs. nonintegrated, 225–226
use of data by, 313
Prototyping visualization, 204
Proxy Design Studios, 126, 127
Proxy models, 18, 116, 117
Public data sources, 143–145, 176, 294
Public good, private and, 311
PUE (power usage effectiveness), 333
Python, 137, 209
Quality:
data, 16
project, 164
Quantified Self movement, 156
R (programming language), 297
Radar factor (data preparedness), 109–110
Rapid Serial Visual Presentation (RSVP), 127–128
Rationalization, 120, 327–328
Readiness factor (data preparedness), 107–108
Real-time analysis, 60, 248
Redfin, 227
Reed Construction Data, 144, 145, 169, 234
Referees, digital-data, 229
Reliability, 16, 284, 310
Remapping data, 118–119
Remote solving, 67–68
Repositories, 260–261
Research:
at KieranTimberlake, 217, 218
at large firms, 234
by Grieg Paterson, 235–236
on practice of programmers vs. architects, 310
on technology in building industry, 300
Resilient cities, 196
Return on investment (ROI), 284
Revision history interface, Grasshopper, 261
Revit:
in architecture education, 129
carbon query tools in, 192
for data visualization, 286–291
document-centric use of, 62, 250
and efficiency of BIM, 322
as introduction to databases, 38, 39, 42
limitations of, 58
project data in, 43, 44
reasons for using, 268
at small firms, 162
at SOM, 45–49
transferring meaningful data in, 261
and TTX, 65, 324
using IFCs to transfer data into, 262
Rhinoceros, 113, 114, 309, 333
Ringley, Brian:
on challenges with data collection, 176
on collecting data, 154, 170
on concrete problems, 214
on critical thinking, 20
on data preparedness, 107, 108
on firm/project size and data application, 213–214
on future of AECO industry, 333
on IFC, 261
on integrated vs. nonintegrated project teams, 225–226
on interoperability, 271
on learning how to learn, 112–113
on learning to work with data, 113–120, 138
on linking data, 266
on noncompensated learning, 137
on school culture, 120–122
on security/privacy of data, 310
on teaching data-driven design, 130
on types of data, 50
Risk, transparency and, 311
Risk aversion:
as challenge with using data, 14–15
in construction industry, 244, 250
of contractors, 23
and validation, 74
Risk management, 4, 5
Rogers Place Arena (Edmonton, Canada), 64
ROI (return on investment), 284
Roudsari, Mostapha, 63, 67
Roundhouse One, 154, 155
RSVP (Rapid Serial Visual Presentation), 127–128
RTKL, 86, 154
Rubel, Zigmund, 293
on abstract nature of data, 113
on automation of decision making, 18
Rubel, Zigmund (continued)
on client data, 153
on confidence, 6
on construction industry, 244
on data-driven design approaches, 75–84, 86, 106
on documents, 63
on future of AECO industry, 334
on human behavior, 181
on instrumentation, 71
on productization, 72
on project teams, 222, 226
on validation, 73–74
Rules-based design processes, 128–129
Saarinen, Eero, 307
Safety, on construction sites, 256, 257
Sajda, Paul, 127
Samsung, 150–152
Sangenjaya residence (Tokyo, Japan), 126
SAP, 65, 262
Sasaki Associates, 170
Big Data at, 175
data analysis for decision making at, 171, 172
data collection at, 176
data-informed approach at, 94, 171
leadership at, 173
Sasaki Strategies in, 173
tools for working with data at, 175
Sawdey, David:
on business case for leveraging data, 325–329
on business intelligence, 298
on data visualization, 292, 293
Scan data, collecting, 170
Scarangello, Tom, 66
Scenario planning, 181, 298
Scene design approach, 204
Schlesner, Greg, 267–270
Schmoker, Mike, 71
School culture, 120–122. See also Education
Schumacher, Jonatan:
on computer scientists in AEC industry, 234
on construction industry, 244, 245
on data, 63–69
on data visualization for owners, 285–286
on future of AECO industry, 334
on IFCs, 262
on open data, 145
on sharing data, 310–311, 324
on software compatibility, 271
on sustainable design, 192
on TTX, 260–261
Search, design as, 127–128
Security, 284–285, 310–311
Sefaira, 182
cloud computing at, 184–185
comparing design options in, 14, 34, 35
data analysis vs. analytics at, 179–180
data-driven analysis at, 185, 186
design teams at, 183
green building goals of, 182, 183
intuition at, 186
outputs from, 33
Sefaira for SketchUp plug-in, 189
Sensors:
private data from, 154–155, 176
wireless sensor network, 218, 219
Service, improving, 326–327
Shade 3D, 126
Shading analysis, 61
Shading tests, 32
Sharing data:
barriers to, 187
Aimee Buccellato on, 134–136
Sean D. Burke on, 55–56
concerns about, 18, 19, 284–285, 310–311
between firms, 324–325
Mark Frisch on, 318
and privacy/security, 284–285, 310–311
Andrew Witt on, 227
Sharing information, 229, 263
ShoP daylight study, 160
ShoP Architects, 129
Shron, Max, xvi
Sim City, 33, 185
Simulations:
and cloud computing, 185
data analysis for, 191
dynamic thermal, 193
Ecotect, 60
at LMN Associates, 163–164
and predictive analytics, 181, 182
at Transsolar, 193, 194, 196
Site selection, 55, 144
SketchUp, 83, 114
Skidmore, Owings and Merrill (SOM), 37
Big Data at, 282
confidentiality of project data at, 311
database work of CASE Inc. and, 37–41
data-informed approach at, 94
data preparedness at, 110
hiring at, 233
Project Dashboard at, 11, 38, 40, 41, 43, 45-47
Revit and BIM standards initiative at, 45–49
Skin, building, 66–67
Skripac, Brian:
on AECO firms as data intermediaries, 281–282
on analytics, 202
on applying Big Data, 214
on computer scientists vs. emerging professionals, 231
on cost estimation in construction, 260
on data-informed approaches, 95
on data preparedness, 110
on easy data, 13
on interoperability, 262
on owners, 282–285
Small firms, 136, 162, 231, 234
SmartGeometry, 333
Smart objects, 331
Smartphones, 177–178, 182
Snohetta office (Oslo, Norway), 200, 309
Social media, 157, 267
Sociometrics, 153
Software. See also Interoperability and diversity of project teams, 226
as factor in leveraging of data, 29 fluency in multiple types of, 138–139
learning to use, 121–122 open-source, 83 for sharing data, 187
Software developers, 183
Solar isolation, 116
SolidWorks, 114
Solomon Cordwell Buenz:
data collection system at, 313, 315
design and management at, 322 infrastructure of, 312
SOM, see Skidmore, Owings and Merrill
Specialists:
data, 224–225
information, 230–231, 319
visualization, 231
SQL databases, 160
Stable Center, 126–127
Stakeholders:
expectations of, 278
transparency and risk for, 311
Standard Data Exchange Format, 262
Standardization, 271
Starchitects, 35
Starr, Clayton:
on Big Data, 54
on collecting field data, 154
on data-driven approaches, 86
on data generalists vs. specialists, 224, 225
on data preparedness, 108
on data sources for healthcare projects, 166
on focus for data application, 214
Static data, 169
Steinfeld, Kyle, 209
Stevens Institute of Technology, 63, 234, 271
Storytelling:
with data, 132, 327–328
data visualization for, 292–293
Strategies for working with data, 2 applications of data analysis, 180 big vs. meaningful data in, 54–55 in construction stage, 247 creating a data collection strategy, 169 and data as means to an end, 203 in decision making, 201 demonstrating value of data, 20 and determining data preparedness, 73 for emerging professionals, 231 in energy analysis, 191 experimentation/play in, 123–124 extracting and transferring meaningful data, 261 and firm culture, 280 honing in on key information, 17 to improve service, 326–327 with integrated vs. nonintegrated teams, 225–226 making firms data-centric, 87–88, 174 and mindset for working with data, 88 from other industries, 32, 33 planning for data use, 217 and preparing to apply data, 214 to solve business problems, 301 in sustainable design, 192 technology in, 202 Strategy (program), 293–295 Structure, building, 66–67 Students. See also Education fabrication/manipulation of tools by, 111–113 interest in form vs. data for, 115–117, 130 necessary skills of graduating, 118–120 preparing, for non-siloed approach to data use, 322–323 teaching data-driven design to, 129–133 Studio Klashka, 109 SunSys Pavilion project, 131–133
adoption of, 106, 187 and business intelligence, 297–298 at CASE Inc., 300 in construction industry, 244, 250 emergent, 267 flexibility of, 309 for handling project data, 43–44, 114, 187 Jennifer Johnson on, 234–235 for leveraging data, 29–33, 45, 88 and mindset, 45, 190, 190, 199 for working with data, 160, 190, 199, 202 Teicholz, Paul, xvi, 78 Tekla, 192, 245 Tenants, 274–277 Thermal heat transfer, analysis of, 317, 318 Thornton Tomasetti, 63. See also CORE Studio automation at, 334 compatibility of software at, 271 Construction Support Services at, 244, 245 data visualization at, 68–69 Property Loss Consulting Group, 66, 67 research at, 234 research project with LMNts, 67–68 sharing data at, 324 TTX at, 114, 260 warehousing of data at, 69
3DS Max, 64, 83
Timberlake, James, 220
Time:
 for collecting data, 176–178
 as data preparedness factor, 107
 for working with data, 21–24
Tisch School of the Arts, NYU, 119, 138
TMY3 (Typical Meteorological Year, version 3) data, 218
TNC (The Nature Conservancy), 294
TRACETM simulation, 60
Training, see Learning to work with data
Transparency:
 of AECO practices, 18, 19
 Mark Frisch on, 318, 324–325
 and risk with sharing data, 311
Transsolar, 193, 194, 196, 286
Trelligence Affinity, 56
TRNSYS software, 193, 194
TTX:
 as interoperability platform, 260–262
 Brian Ringley on, 114
 Jonatan Schumacher on, 65, 69, 324, 334
Tucker, Patrick, 145
Turner Construction, 246, 249, 251, 253–255
Twitter, 63, 241, 267
Typical Meteorological Year, version 3 (TMY3) data, 218
UCL (University College London), 222
U.S. Army Corps of Engineers Laboratory, 263
United States Green Building Council (USGBC), 198
data analysis at, 199, 200
data collection strategy of, 169–170
data-informed approach at, 95–96
 public data from, 143
United States National Building Information Modeling (BIM) Standard, 262, 265, 266
University College London (UCL), 222
University of California, Berkeley, 203
University of Chicago, 156
University of Illinois at Urbana-Champaign, 250
Unstructured data:
 and Big Data, 71, 175, 232
 challenge of working with, 17–21
 structuring, 227–228
Utilization:
 and capacity, 170, 294
 improving, 294–295
 and occupancy, 182, 243
Validation:
 with data, 20, 305
 of data use, 59
 as trend in AECO industry, 73–74
Vandezande, James, 269
Vasari, 284
Video data:
 collecting, 177
 in construction industry, 249, 251, 256–259
 Video games, 33, 185
 Vilkiner, Gregor, 271
Vision, computer, 257–259
Vision-based quality monitoring, 256
Visualization specialists, 231
Visual programming, 309
Visual sensing, 259
ViziCalc, 124
Vornado Realty Trust, 5, 274
Warehousing data, 69
Warnings functionality (SOM Dashboard), 48–49
Weather data, 195
Whitney, Carin, 239
Wind velocity analysis, 316
Wireless sensor network, 218, 219
Witt, Andrew:
 on application of project data, 226–229
 on background factors in data aptitude, 125
 on Big Data, 55
 on collaboration and BIM, 29, 32
 on data-enabled approach, 85
 on data mining, 144
 on interoperability, 271–272
 on learning data outside of architecture programs, 131, 132, 137
 on performance algorithms, 197
 on sharing data, 324, 325
Woods Bagot, 113
Workplace, learning to work with data in, 137–139
Wyatt, Scott, 145
Yori, Robert:
 on applying data, 214
 on background factors in data aptitude, 125
 on confidentiality, 311
 on data, 37–49
 on data-informed approaches, 94
 on documents, 62
 on hiring at SOM, 233
 on learning to work with data in the workplace, 138–139
 on selecting tools, 217
Zero Net Energy Design Dashboard, 7
Zillow, 227