INDEX

A
Abstract learning moving from concrete learning to, 25–27 of operations, 173
Abundant numbers, 381
Achievement students’, evaluating, 62 and use of calculators, 200
Achievement tests, 16 standardized, 74
Active involvement of English-language learners, 5 of students, 23, 24–25
Acute triangles, 315
Adaptations, lessons, 53
Adding to 10 and beyond strategy, 186–187
Additive property, 149
B

COPYRIGHTED MATERIAL
Index

Benchmarks (continued)
 fractions, 254–255
 percent, 274
Binomials, foil method for, 231–232
Brownell, William A., 3, 20
Bruner, Jerome, 20–22, 25

C
Calculator-based laboratories (CBLs), 89, 369
Calculator-based rangers (CBRs), 89
Calculators, 89
 checking computations with, 238
 computation with, 199–201
 counting and pattern recognition with, 160–161
 graphing, 89, 199, 355, 360, 369, 375
 incorrect beliefs about, 200–201
 and learning place value, 160–162
 math skill development and use of, 5
 mental computation vs., 201
 multiplication with, 232
 teaching the use of, 198–199
Cardinal numbers, 141
Central tendency, measures of, 363–366
Children’s books
 as lesson enhancements, 38–39
 types of, 39
China
 Chinese, symbols and number names, 144
 number symbols/names in Chinese, 167
 patterns on doors in, 323
Circles, 26, 310
Clock arithmetic, 390
Clocks, 337–338
Closed sentences, 289, 297
Cognitive developmental stages, 22–23
Cognitively Guided Instruction (CGI)
 program, 90
Combination problems
 (multiplication), 176
Combinations-to-10 addition strategy, 186
Common Core State Standards for Mathematics (CCSSM), 5–6
 algebraic thinking, 299
 algorithms, 219
 area comparisons, 331
 basis for, 20
 calculators, 199
 computations, 197
 counting, 136
 data analysis, statistics, and probability, 350–351, 355, 360–361
 decimals, 246, 256, 258
 detailed information, 219
 even and odd numbers in, 383
 factors and multiples in, 383
 fractions, 242–247, 256, 258
 geometric transformations, 319
 geometry, 302
 on importance of connections, 93
 measurement, 326–327, 342
 notation, 6
 operations, 171
 patterns, 282
 percents, 272
 place value and ordering numbers, 147
 problem solving, 287
 protractor skills, 338
 ratios, proportions, and percents, 264
 recommendations for basic fact mastery, 179
 standards for mathematical practice
 (See Mathematical practice standards) technology recommendations in, 41
Communication, 13. See also Language; Talking
 about calculator use, 199
 of assessment results, 77
 in group instructions, 120
 with parents/guardians, 39, 77
 in patterning activities, 130
 of statistical investigation results, 369
 students, encouraging, 35–37
 and understanding, 27
 written, 27, 173
Communication Standard (NCTM), 82, 92–93
Commutative property, 178
 in addition, 184
 in multiplication, 188–189, 259
Comparison(s)
 developing number sense, 132–134
 of fractions, 254
 in measurement, 327–332
 in multiplication, 175–176
 of objects to units of measurement, 332–334
 of ratios, 264–267
 in subtraction, 174
Compatible numbers
 in estimation, 209–210, 223
 in mental computation, 202
Composite numbers, 385
Computational alternatives, 205
Computational fluency (computational proficiency)
 balance of conceptual understanding and, 219
 and calculators, 200
 cultural differences in, 213–214
 helping development of, 172–173
 knowledge of basic facts for, 179
 and methods of computing, 220–221
 and understanding of operations, 173
Computation(s), 197–223. See also
 Mental computation
 balancing instruction in, 198–199
 with calculators, 199–202
 choosing appropriate methods for, 198
 recommendations for teaching of, 219–220
 speed in, 200
 written, 198, 213–214
Concavity, 314–315
Conceptual knowledge
 acquisition of, 17–18
Concrete learning
 moving to abstract learning from, 25–27
 of operations, 173
Concrete operational thinking, 21
Concrete representations of algebraic problems, 289
Congruence, 319–320
Congruent faces, 307
Congruent shapes, 244, 305, 307, 320
Conjectures, 382
 about divisibility, 388–389
 in number theory, 379–381
Connections, 13
 to aid retention, 17
 importance of, 93
 between procedural and conceptual knowledge, 17–18
Connections Standard (NCTM), 82, 93–94
Conservation of area, 331
Conservation of number, 131
Construction of knowledge, 3
Constructivism, 18
 tenets of, 20–21
Contexts, for math lessons, 38
Conversion of measurements, 343–344
Coordinate systems, 318–319
Counting
 and basic facts, 180
 of fractional parts, 247
 with hundreds charts, 159
 in learning place value, 160–161
 and operations sense, 172
 order-irrelevnce rule, 135
 and place value concept, 150–151
 by tens, hundreds, thousands, 160–161
Counting back, 137–138
 in division, 193
 in learning place value, 161
 as subtraction strategy, 188
Counting on, 136–137
 as addition strategy, 185–186
 in other cultures, 193
 as subtraction strategy, 188
Counting principles, 134–140
 developing benchmarks, 139–140
 identifiable counting stages, 135
 language used in, 128–129
 model from nature for, 135
 rational counting, 135–136
 rote counting, 135–136
Counting strategies
counting back, 137–138
counting on, 136–137
skip counting, 138–139
Criterion referenced tests, 74
Cuban division, 239
Cultural diversity
in algebraic thinking, 277
approach to problem solving, 121–123
in computational algorithms, 238–239
in computational proficiency, 213–214
in counting and early number development, 143–144
in learning basic facts, 193–194
and learning preferences, 53
in measurement systems, 323
and NAEP test performance, 77–78
in patterns for naming numbers, 167–168
and Project IMPACT, 96–97
in socioeconomic status, 28
in teaching fractions and decimals, 261
in teaching geometry, 298–299

Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics (NCTM), 44, 219
Curriculum guides, 44
Curriculum Issues in an Era of Common Core State Standards for Mathematics, 5
Curriculum Principle (NCTM), 4–5

D
Data analysis, 349–369
formulating questions for, 351–353
graphical organization, 354–363
interpreting results, 368–369
Data collection, 353–354
experiments, 354
simulations, 354
surveys, 353
Data sense, 368–369
Decimals, 162–164, 211–214
Decimal operations, 237–238
Decomposition
in mental computation, 202
Decomposition algorithm, 225, 239
Deficient numbers, 381
Density property (fractions), 255
Descriptive statistics, 363–368
averages, 363–366
measures of central tendency, 363–366
measures of variation, 366–368
Developmental characteristics of students, 22–23, 34
Dewey, John, 18
Diagrams
of geometric shapes, 321–323
Diameter, 310
Dienes, Zoltan, 20–22
Digits
moving, 155

in place value learning, 155–156
position of, 149–150
writing blocks of, 161
Direct comparisons
of angles, 332
of area, 331
of capacity, 330
of length, 328–329
Direct instruction lessons, 48, 49
Disjoint sets, 128
Distance, measuring, 329
Distributed practice, 35
Distributive division algorithm, 233–234
Distributive property, 178, 190, 228–229, 231–232, 295
Diversity
and equity, 4
and planning to meet needs of students, 52–55
socioeconomic, 28
supporting, 12–17
Divisibility, 387–389
Divisibility rules, 387–388
Division, 102, 110–111, 126, 139, 175–177
basic facts for, 178
compatible numbers for, 209–210
factors, 383–384
with fractions, 260–261
mental computation strategies for, 204
and multiplication, 191
and relationship among operations, 173, 192
thinking strategies for, 191–193
Division algorithms, 193, 232–236
with one-digit divisors, 233
with remainders, 236
with two-digit divisors, 235–236
Doubles
adding, 185
subtracting, 187–188
Drills, 3, 35
for basic facts, 180
online resources for, 181
understanding vs., 15
Dyslexia, 154

Egyptians, use of fractions by, 261
Electronic manipulatives
base-ten blocks, 223, 227
building graphs with, 354
for connecting attributes, 345
multiplication and division with, 220
in probability models, 374
for problem-solving, 106
for simulations, 354, 374
visualizing basic facts with, 172
English as a second language (ESL), 96
English-language learners (ELLs)
interviews with, 67
teaching, 53, 54–55
Equal-additions algorithm, 239
Equal-groups problems, 175
Equality (in algebraic thinking), 288
Equations (in algebraic thinking), 289
Equilateral triangles, 309, 313, 315, 318
Equity, 52
Equity Principle (NCTM), 4, 12
Equivalence
of measurement units, 342–343
Equivalent fractions, 244, 246–247
defined, 249
finding, 255
Equivalent ratios, 264–265, 268–269
Eratosthenes, 385
Estimation, 207–213
adjusting, 208–209
averaging, 212
background for, 207–208
checking computation with, 237
choosing strategies for, 212–213
chunking, 341–342
classifying, 212
compatible numbers in, 209–210, 223–224
division algorithms, 232–233
flexible rounding in, 210–212
and fractions, 256
front-end, 208–209
front-end strategy for, 208
in Japan, 213
as means of computation, 198
of measurements, 340–342
and multiplication algorithms, 229
overestimation, 213
of percent, 275
performance in different countries, 214
and proportions, 270–271
in Taiwan, 213–214
underestimation, 213
Euler’s formula, 307
Even numbers, 381–383
Events
independent of, 373–374
probability of, 370–372
sample spaces of, 371
Everyday Mathematics, 38
Expectations, 15–16
establishing, 15
grade-level, 219
relating to algorithms, 219–220
Explicit equations, 292
Explorations, 24–25, 48, 50–51
“Extended-constructed-response” (ECR) items, 103

F
Face models, 306–307
Faces (solids), 305
Fact families, 187, 191
Factors, 381, 383–384
Fairness, 373
Fibonacci sequence, 284, 392–393
Figures within two-dimensional figures, 316–317
Finger multiplication, 192
Flexible rounding, 210–212
Flip cards, recording observations on, 64
Flip transformation, 319–320
Foil method for multiplying binomials, 286–287
Formal axiomatic level (geometric thought), 303
Formalization, learning level, 21
Formal operational thinking, 21
Formal reasoning, 84
Formative assessment, 59
phases of, 59–61
purposes for, 61–62
Fraction bars, 247–248, 252
Fraction circles, 273
Fractions, 242–261
addition of, 256–257
area model of, 245, 249
comparing, 252–254, 252–255
cultural differences in teaching, 261
differences between whole numbers and, 243
distinct meanings of, 243–244
division of, 260–261
equivalent, 249, 255
greater than one, 251–252
improper, 247, 251, 257, 261
length model of, 244–245, 250
making sense of, 245–248
meanings of, 243–245
and measuring with rulers, 336
model and symbolization of, 273
multiplication of, 258–260
part–whole meaning of, 243–245
quotient meaning of, 243–244
ratio interpretation of, 244
ratios vs., 266–267
region model of, 244, 249
set model of, 245, 250
subtraction of, 256–257
Functions
in algebraic thinking, 284–285, 295
graphing, 295
as patterns, 295
variables in, 288
Function table, 286–287
machines, 286–287
G
Gagné, Robert, 19
Games, basic facts practice with, 182–183
Game software, 181
Gauss, Carl Friedrich, 147, 393
GCF (greatest common factor), 384–385
Generalization(s), 21
in algebraic thinking, 158, 292–293, 297–298
reasoning and, 91
Generalized lesson plan, 45, 46
Geoboard, 249, 311–312
Geometer’s Sketchpad (software package), 112, 314, 320
Geometry, 301–323
classification schemes, 315–317
cultural differences in teaching, 323
in mathematics, 2
space, 317–319
standards relating to geometric shape concepts, 302
three-dimensional shapes, 303–309
transformations, 319–320
two-dimensional shapes, 309–317
visualization and spatial reasoning, 320–323
German, symbols and number names, 144
Gestalt theory, 3
Goldbach conjecture, 379
Golden Ratio, 392–393
Grading, scoring vs., 63
Graphing calculators, 89, 199, 355, 360, 375
Graphing methods, 355
Graphs, 354–363
bar, 358, 361
box & whisker, 357, 361
characteristics of, 361
comparison of, 361
complexity of, 361
concrete, 355
of a function for given a rule, 296
of functions, 295
graphical roundup, 360–361
histograms, 358, 361
line, 359–360, 361
misleading, 361–363
picture, 358, 361
pie, 359, 361
plots, 355–357, 361
quick graphing methods, 355
real, 355, 361
stem-and-leaf plots 356–357, 359
Greatest common factor (GCF), 384–385
Grouping, students, 37
small groups, 37, 65
Guess-and-check strategy in problem-solving, 116
Guess and test strategy, 276
Guidelines for Assessment and Instruction in Statistics Education (GAISE), 351–352, 355, 360, 364
H
Height, circumference and, 330
Heptagons, 316
Hexagons, 316
Hidden figures, 316–317
Hidden questions, 117
Hiele, Pierre Marie van, 303
Hiele Geldof, Dina van, 303
Higher-decade addition algorithm, 224–225
Higher-level thinking, encouraging, 34–35
High-stakes assessments, 6
Hindu-Arabic numeration system, 144, 149
Holistic scoring guides, 63
Hundreds charts (100-charts), 158–159, 379
Hundredths, 149, 162–164, 168, 272
Hypothesis
formulation of, 66
testing, 66
IDEA (Individuals with Disabilities Education Improvement Act), 52
Identity property, 178, 254
Improper fractions, 247, 251, 257, 261
Incidental learning, 3
Indirect comparisons
of angles, 332
of area, 331
of capacity, 330
of length, 328–329
of weight/mass, 330–331
Individual instruction, 37
Inequality (in algebraic thinking), 288
Instructions
goals of, 44
individual, 37
for small group, 37
value of calculators in, 200–202
for whole class, 37
Integers, 142–143
Internet, 43
data collection Web sites, 354
probability simulations on, 374
Interviews
assessment by, 65–67
with English Language Learners, 67
phases of, 66
primary, on place value, 67
Inventiveness, mental computation and, 206
Inventories of students’ understanding, 179
Investigations in Number, Data, and Space (elementary curriculum), 38, 51
Investigative lesson plans, 45, 46, 47–48
Isosceles triangles, 302, 313, 315
Japan
computational algorithms in, 239
computational proficiency in, 213
computation strategies in, 205
Japanese, symbols and number names, 144
Japanese counting system, 144
mental and written computation in, 213
number names in Japanese, 167
students’ understanding of percent, 277

K
expectations for, 171
Knowledge
conceptual, 17–18
construction of, 20
forgetting, 16
procedural, 17–18
students’ prior, 33–34
of teacher about math, 32–33

L
Language. See also Communication;
Foreign languages; Vocabulary
of algebra, 287–288
for interpreting data, 368
in learning, 27
math as, 2
for mathematical properties, 178
to relate symbols to operations, 173
Large-group instruction, 120
Lattice multiplication algorithm, 229
Launch phase
direct instruction lesson, 48
exploration, 50–51
investigative lesson, 45, 47
LCM (least common multiple), 384–385
Learned helplessness, 16
Learning, 11–28
abstract vs. concrete, 25–27
effectiveness for, 15
focus of, 3
improving skill retention, 16–17
incidental, 3
levels of, 21
of mathematics, 18–22
meaningful, 17
NCTM processes, 12, 13
and negative experiences, 14–15
positive environment, 13–14
prevailing theories of, 18
of procedural and conceptual knowledge, 17–18
process, frameworks of, 21
questions to facilitate, 36
role of language in, 27
as social process, 20
supporting diversity of students, 12–17
treating students equally, 15–16
Learning Principle (NCTM), 5, 18
Learning trajectories/progressions, 22, 33–34
Least common multiple (LCM), 384–385
Length
as attribute of objects, 328–329
model, of fractions, 244–245, 250
units, 336
Length of duration, 332
Lesson plans, 44–51. See also Planning
behaviorist perspective on, 19
direct instruction, 48, 49
explorations, 48, 50–51
explorations/learning centers, 48, 50–51
formats for, 44–48
generalized, 45, 46
investigative, 45, 46, 47–48
Line segments, 310, 320, 327, 336, 342
Line symmetry, 313–314
Literature, as lesson enhancement, 38–39
Logical connectives, in classification, 129
Logic blocks, 128
Logo programs, 318
Look-for-a-pattern problems, 281–282
M
Magic squares, 381
“Make-a-10” thinking strategy, 194
Manipulatives, 26–27. See also Electronic manipulatives
for addition and subtraction, 174
for algorithms, 220
for concrete understanding, 172
development, 528
as lesson enhancements, 39, 41
materials for, 39, 41
for problem-solving, 106
virtual, 43
Mass, 330–331
Mathematical knowledge for teaching
(MKT), 33
Mathematical memory, reasoning and, 91
Mathematical practice standards, 82, 92
Argumentation, 83–85
Modeling, 85–86
Precision, 86
Problem Solving, 83
Reasoning, 83
Regularity, 86–87
Structure, 86
using tools, 86
Mathematical processes (NCTM), 12, 13
standards (See Process standards, school mathematics)
Mathematical proficiency, 5, 17
Mathematical properties, 177–178
Mathematics
children’s literature, 38–39
defined, 2
focus on, 35
learning of, 18–22
materials for study of, 8
teachers’ personal understanding, 32–33
vocabulary, 36
Mathematics anxiety, 14–15
Mathematics Teaching in the Middle School (NCTM), 9
Math Forum (Web site), 287
Mathophobia, 14–15
Math Trailblazers, 38, 45
Mean, 364–365, 367
Mean absolute deviation, 366
Measurement (repeated-subtraction) problems, 177
Measurement(s), 325–347
CCSSM standards relating to, 327
choosing units, 332–334
comparing, 342–343
comparing objects to units, 332–334, 342–343
connecting attributes, 344–346
conversions, 343–344
creating objects based on, 342
cultural differences in, 346–347
estimating, 340–342
finding number of units, 334–340
identifying attributes, 327–328, 327–332
importance of studying, 325–326
in learning place value, 150
in mathematics, 2
process of, 326–340
reporting measurements, 334–340
Measures of central tendency, 363–366
Measures of variation, 366–368
Measuring instruments, 335–338
Median, 350, 357, 364, 367
Memorization, 17, 179
and estimation proficiency, 207
meaning vs., 15
Mental computation algorithms vs., 205
calculators vs., 201
as common means of computation, 199
encouraging, 204–207
guidelines for developing, 205–207
strategies and techniques for, 202–204
students’ preferences for, 204
Mental images (geometric), 322–323
Metacognition, 25, 68
Meter (unit), 335
Metric units of measurement, 336, 342, 343
Minimal competency movement, 4
Missing-addend problems, 174
Missing-number problems, 269
Mixed numbers, 246–247, 251
adding, 257
subtracting, 257
Models (modeling), 26–27
addition, 174, 223
algebraic thinking, 289–293, 297–298
for counting, 135
with decimal terms, 162–163
division, 233
fractions, 244–245, 248–250
mean, 365
median, 363–364
Models (continued)
multiplication, 175
one more or one less, 133
partitioning, 245–247
for part–whole meaning of a fraction, 244–245
percents, 272–274, 276
place-value, 150–151, 227
proportional, 155–156
symbolic representation, 157
ungrouped materials and pregrouped materials, 150
using manipulative materials, 173
Modular arithmetic, 390–391
Money
as nonproportional models, 150
and ratios, 265
Multiple embodiment/multiembodiment, 26
Multiples, 383–384
Multiplication, 110, 126, 139, 175–177
 basic facts for, 178, 188
by commutative thinking strategy, 189 and division, 191–193
finger, 192
with fractions, 258–260
mental computation strategies for, 203
models for, 175
and relationship among operations, 173, 187, 189
as repeated addition, 189
by the strategies for 0 and 1, 191
thinking strategies for, 188–191

N
National Assessment of Educational Progress (NAEP), 7, 102
calculator use with, 232
cultural differences in results, 77–78
decimals as percents, 271, 273, 276
figures within other figures, 316–317, 316–318
fractions, 245, 247, 256
function table, 286
identifying missing elements in a pattern, 283
measurements, 326, 337
national assessments, 103
open sentence, 289
pattern recognition, 114
relations between pairs of quantities, 295
set model of fractions, 245
students’ performance on measurement items, 326
National Council of Teachers of Mathematics (NCTM), 172, 332
for algebra, 288
on calculators, 199–200, 214
choosing appropriate methods, 237
factor game, 384
Logo simulation, 318
number and operations standard, 219–220
principles, 4–5
processes for learning, 12, 13
publications, 9
on shifts in classroom environment, 14
whole-number computation, 220
National Library of Virtual Manipulatives (NLVM), 172, 181, 220, 223, 227, 345
National Research Council (NRC), 32, 213
NCLB (No child Left Behind Act), 6, 7, 52, 59
NCTM Illuminations (Web site), 107, 172, 220, 288, 318, 332, 354, 374, 381, 384
Negative numbers, 142
“New math,” 3
No child Left Behind Act (NCLB), 6, 7, 52, 59
Nominal numbers, 141
Nonagons, 316
Nonproportional models, 150–151
Nonroutine problems, 102, 281–282
Norm-referenced tests, 74
Number and Operation Standard (NCTM), 219
Number and Operation standards (CCSSM), 198
Number benchmarks, 139
as a length model, 250
Number names, 152
cultural differences, 167
for larger numbers, 152, 168
learning, in early childhood, 152
patterns in, 167–168
reading, 165
Number puzzles, 293–294, 380
Numbers
abundant and deficient, 380–381
composite, 385
Fibonacci sequence, 284, 392–393
Hindu-Arabic numeration system, 149
mixed, 246–247, 251, 257
negative, 142
odd and even, 381–383
perfect, 380–381
polygon or figurate, 390
positive, 142
primes, 385–387
Pythagorean triples, 391–392
relatively prime, 389
Roman numerals, 149
rounding, 165–167
square, 390
teen, 152, 194
triangular, 390
whole, 158, 162, 203, 219–221, 236, 243, 254, 258–260, 284, 384–385
Number sense
approximate and exact numbers, 165
cardinal numbers, 141
characteristics of, 125–127
comparisons, 132–134
conservation stage of, 131
counting principles, 134–140
cultural differences in, 143–144
division algorithms, 235
and estimation, 207
helping development of, 172–173
and mental computation, 204
nominal numbers, 141
one-to-one correspondence, 132–133
ordering, 132–134
ordinal numbers, 141
place value, 152–155
prenumeral concepts, 127–131
stages in development of, 131–134
subitizing stage, 132
writing numerals, 141–143
Number theory, 378–393, 379–381
in ancient cultures, 393
divisibility, 387–389
factors and multiples, 383–385
Fibonacci sequence of numbers, 392
modular arithmetic, 390–391
odds and evens, 381–383
Pascal’s Triangle, 391
polygonal numbers, 390
primers and composites, 385–387
Pythagorean triples, 391–393
reasons to study, 379–381
relatively prime pairs of numbers, 389
triangular numbers, 390
Numeration systems
in ancient cultures, 167
in different countries, 167–168
Hindu-Arabic, 149
O
Objects
attributes of (See Attributes)
comparing to units of measurement, 334–340
creating, based on measurements, 342–343
Observation
assessment by, 63–65
guide for block-building activity, 67, 68
Obtuse triangles, 315
Octagons, 316
Odd numbers, 381–382
One
adding, 184–185
dividing by, 193
multiplying by, 190–191
subtracting, 187–188
One-more-set strategy, 190
One-right-answer syndrome, 213
one-to-one correspondence, 132–133
Open-ended tasks, 38
Open-ended writing, 93
Index

Open sentences, 289–291
Operations, 170–194. See also Basic facts
addition, 174–175
algorithms based on, 220
compatible numbers for, 209–210
and counting, 172
developing meanings for, 173–177
division, 175–177
with fractions, 256, 261
instructional goal for, 172–173
mathematical properties pertaining to,
177–178
multiplication, 175–177
state standards for, 219–220
subtraction, 174–175
use of language in learning about,
173–174
Opposites, 142
Oral communication, and sense
making, 27
Ordering, 132–134, 139–140
decimals, 275–276
fractions, 263–267
ordinal numbers, 141
Order-irrelevance rule, 135
Ordinal numbers, 141

P
Paper-and-pencil tests, 73
Parallelograms, 310, 313, 315–316, 319, 339
Parents/guardians
communicating about new methods, 39
communicating assessment
results to, 77
Partial-difference subtraction algorithm,
223–224, 227–228, 229
Participation checklist, 75
Partition problems, 177
Partners for Assessment of Readiness for
College and Careers (PARCC), 8
Part-to-part ratios, 266
Part-to-whole ratios, 266
Part-whole meaning of fractions, 243
Part-whole problems, in subtraction, 174
Pascal’s Triangle, 391
Patterns, 130
in algebraic thinking, 130, 158, 161,
265, 275, 278
alike and difference, 129
with blocks, 24
on 100-chart, 379
copying, 130
creating, 130
extending, 130
finding next one in, 130
in geometry, 319–320
in learning place value, 158,
204–207
math as study of, 2
as multiplication strategy, 191
in naming numbers, 166
as prenumeral concept, 130
problem solving by looking for,
113–114
ratios from, 265–266
and subitizing, 132
Peer assessment, 68
Peer teaching, 120
Pentagons, 316
Percents, 271–277
applying, 272–274
understanding, 274–277
Perceptual comparisons
of angles, 332
of area, 331
of length, 328
of temperature, 332
of volume, 332
of weight/mass, 330–331
Perfect numbers, 283–284, 380
Performance indicators, 63, 64
Performance tasks, assessment by,
67–68
Perimeter, 344–346
Perpendicular edges, 306
Perpendicular sides, 314
Piaget, Jean, 18–22, 267, 277
Pictorial concrete models (fractions),
248–249, 253, 255–256, 261
Picture graphs, 358
Pie graphs, 359
Place value, 147–168
and algorithms, 231–232, 239, 240
beginning teaching of, 152–155
commas (in large numbers), 161
common errors related to, 155
counting and patterns, 160–161
and decimals, 162–163
development of, 149–150
extending, 155–161
grouping or trading, 151–152
in Hindu-Arabic numeration
system, 149
modeling, 150–151, 227
patterns in naming numbers,
167–168
rounding, 165–167
Planning, 43–52. See also Lesson plans
analysis in, 51–52
assessment in, 51–52
for daily lessons, 44
importance of, 43
lesson types, 44–51
levels of, 44
for prenumeral concept, 130
for units, 44
for year, 44
Planning phase, assessment, 60
Poincaré, Henri, 170–171
Polya, George, 112
Polygonal numbers, 390

Polygons, 316–317
Polyhedra, 306–307
Portfolios, assessment by, 70, 71
Position Statement on Technology in
Teaching and Learning Mathematics
(NCTM), 42
Positive learning environment, 13–14
Positive number, 142
Practice
assessment, shifts in, 61
distributed, 35
mental computation, 205
necessity of, 35
Preformal reasoning, 84
Prenumber concepts, 127–131
Preoperational thinking, 21
Preliminary level (geometric
thought), 303
Primary elementary students
appropriate problems for, 89
developmental characteristics in, 23
Prime numbers, 385–387
relatively prime pairs of numbers, 389
Principles and Standards for School
Mathematics (NCTM), 4, 7, 27, 32, 59
algebra instruction, 280–281
color development, 173
on fractions and decimals, 173
don geometry, 302
on measurement, 340–342
on probability, 370
process standards for school
mathematics (See Process standards,
school mathematics)
on role of language, 173
and state standards, 197, 218
teaching objectives from, 35
tools/technology for student learning,
41–42
on worthwhile mathematical tasks, 68
Principles to Action: Ensuring
Mathematical Success for All
(NCTM), 6, 34–35
and assessment by questioning, 65
and mathematical discourse, 35–36
on reasoning, 92
on teaching practices, 82
Prisms, 306
Probability, 369–372
of events, 370–372
Problems
choosing appropriate, 105–107
definition, 101–103
finding, 109
non routine, 102
routine, 102, 281, 289–292
Problem solving, 12, 13
by acting it out, 113
analytic scoring scale for, 71
beliefs and affects, role in, 105
with calculators, 111–112
Problem solving (continued)
 children’s work, samples of, 70, 71
 choosing appropriate problems, 105–107
 compensatory strategies for, 121
 with computers, 111–112
 conditions favoring success in, 104–105
 by constructing tables, 114–115
 definition, 101–103
 finding problems, 109
 by guess and check, 116
 having students modify familiar problems, 110–111
 helping students with, 120–121
 importance of looking back in, 119–120
 by looking for patterns, 113–114
 by making drawings or diagrams, 113
 modeling, 15
 Polya’s model, 112
 practical suggestions from Japanese teachers, 122–123
 retention of skills in, 17
 rewarding students for, 14
 self-assessment, 68–69
 signposts to, 103–104
 sociocultural factors, role in, 105
 by solving similar but simpler problems, 116–119
 strategies, 112–119
 student needs, managing, 120–121
 teaching mathematics, 103–112
 teaching via, 90
 time management, 120
 by working backward, 116

Problem Solving Standard (NCTM), 82, 87–90

Procedural fluency, 13

Procedural knowledge
 acquisition of, 17–18
 Process standards, school mathematics
 Communication Standard, 82, 92–93
 Connections Standard, 82, 93–94
 Problem Solving Standard, 82, 87–90
 Reasoning and Proof Standard, 82, 90–92
 Representation Standard, 82, 94–96
 Productive disposition, 13

Professional Standards for Teaching Mathematics (NCTM), 20, 52

Professional Teaching Standards (NCTM), 52

Proficiency
 mathematical, 5, 17
 Project IMPACT, 96–97

Properties of numbers, algebraic thinking and, 295–297

Proportional models, 150–151, 155–156

Proportional reasoning, 267–269

Proportions, 267–270

Protractors, 338

Pyramids, 307

Pythagorean theorem, 391–392

Pythagorean triples, 391–393

Q

Quadrilaterals, 312–314

Qualitative graphs, 84

Questions/questioning
 assessment by, 65
 to facilitate learning, 36
 hidden, 117
 for interpreting data, 368
 in interviews, 66
 during selection of manipulatives, 41
 self-assessment, 68
 for statistical investigations, 351
 to test hypotheses, 66

Quilts, modular arithmetic and, 391–392

Quotient meaning of fractions, 243–244

R

Radius, 310

Randomness, 373–374

Range, 367–368

Ratio meaning of fractions, 244

Rational counting, 135–136

Ratios, 264–267

Ratio tables, 265–267

Real graphs, 355

Reasoning and Proof Standard (NCTM), 82, 90–92

Reasoning/reasoning and proof, 12, 13

empirical, 83

and generalizations, 91

and learning from mistakes, 91–92

and mathematical memory, 91

preformal, 84

spatial, 320–323

Recordkeeping
 of assessments, 74–76
 Rectangles, 176, 310, 315–316
 arranging tables (rectangles) in order by size, 108

formula for area of, 339

Recursive expressions, 292

Reflection, 25, 319

Reflectional symmetry, 313–314

Region model (fractions), 244–245, 249

Regrouping, 226

and algorithms, 221–222

in learning place value, 160–162

to subtract fractions, 257

Reinforcement, shaping behavior through, 19

Relationship(s), 263–278. See also Fractions for algebraic thinking, 284–287, 295–297

in different countries, 277

math as study of, 2

mental computation, 204

percents, 271–277

proportions, 267–271

ratios, 264–267

Relatively prime pairs of numbers, 389

Remainders, division with, 236–237

Repeated addition, 189, 193

Repeated subtraction, 176–177, 192–193, 282–283

Representation(s), 13, 21
 in algebraic thinking, 289–291
 creating and using, 95
 of locations, 317–319
 to model and interpret phenomena, 96
 in multiplication and division, 175
 of place value, 155
 of quantities, 152–153
 selecting/applying/translating among, 95–96

Representation Standard (NCTM), 82, 94–96

Resources, 6–9
 cultural and international, 8
 guidelines, 7
 professional development, 9
 professional organizations, 9

Response to Intervention (RTI), 52, 62

Retention
 improving, 16–17
 of isolated learnings, 20

Reversibility of thinking, 295

Rhombus, 316

Right prisms, 306

Right triangles, 315

Roman numerals, 149–150

Rotation, 319

Rounding:
 in estimation, 210–212
 flexible, 210–212
 in learning place value, 165–166
 similarity of measuring and, 327

Rubric, 62–63

S

Same number puzzle, 282

Sample space, 371

Sampling, 354

Scaled instruments, 336–337

Scalene triangles, 315

Scales, balancing, 285

Scaling problems, 269

Scope-and-sequence charts, 33, 44

Scoring guide, 62–63, 64

Scoring vs. grading, 63

Self-assessment, 68–70

questions, 68

Semi-concrete learning, 21

Sense making, 24–25

communication and, 27

Set model (fractions), 245
Index

Sets, bimodal and trimodal, 364
Shapes
 connecting attributes for, 344–345
 properties of, 302–303
 three-dimensional, 303–309
 two-dimensional, 309–317
Sharing problems (division), 177
Sieve of Eratosthenes, 385
Similarity, 320
Similar rectangles, 271
Simulation content/software, 42
Simulations, 354
Skills
 behaviorism in acquisition of, 18
 Skinner, B. F., 19
Skip counting
 in division, 193
 for multiplication, 189
 and place value, 158
 by tens and hundreds, 156
Slide transformation, 319–320
Small group, students, 37, 65
Small-group instruction, 120
Smarter Balanced, 8
Social development, 23
Social utility, 4
Society, math principle and needs of, 3–4
Socioeconomic status (SES), 28, 53, 77
Software
 to build computational fluency, 238
 descriptive statistics, 363
 for factor trees and Venn diagrams, 387
 for graphing, 355
 for learning basic facts, 181
 for location and movement activities, 318–319
 shape-making, 322
Solid shapes, 304
 cross sections, 323
Spanish, number names in, 144, 166
Spatial reasoning, in geometry, 320–322
Spatial relations, coordinate system for, 317–319
Speed tests, understanding vs., 15
Spiral approach, teaching, 33
Splitting the product strategy, 190–191
Spreadsheets
 descriptive statistics on, 363
 for graphing, 355
Square numbers, 389–390
Squares, 315–316
Standard addition algorithm, 222–223
Standardized achievement tests, 74
Standards-based curricula, 38
Standard subtraction algorithm, 225–227
Standard units of measurement, 334–335
State standards, 218–220
Statistical investigation
 collecting data, 353–354
 communicating results, 369
 data analysis, 354–368
 descriptive statistics, 363–368
 formulating questions, 351
 interpreting results, 368–372
 interquartile range (IQR), 257
 mark-recapture, 354
 probability, 369–372
 randomness, 373–374
 steps in, 353–354
Statistics, 349–351
 box (box-and-whisker) plots, 357, 361
 interquartile range (IQR), 357
 mark-recapture technique, 354
 stem-and-leaf plots, 356–357, 359
Strategies
 for comparing fractions, 254–255
 for estimating measurements, 340–342
 for estimation, 207–213
 for mental computation, 202–204
 for remembering basic facts, 181–183
 for thinking about basic facts, 183–193
 Student files, for recording information, 75, 76
Students. See also Students with special needs
 abilities, assessment of, 62–74
 achievement, evaluating, 62
 active involvement of, 23, 24–25
 assessing basic facts known by, 178–179
 communicating assessment results to, 77
 communication, ways to encourage, 35–37
 developmental characteristics of, 22–23, 34
 dispositions, assessment of, 62–74
 grouping, 37
 interests, assessment of, 62–74
 intermediate elementary, 23
 needs, meeting, 52–55
 primary elementary, 23, 89
 prior knowledge of, 33–34
 progress, monitoring, 62
 self-assessment, 68–70
 technology content for, 42–43
 Students with special needs, adapting instruction for, 55
Student-designed written tests, assessment by, 72–74
Teachers
 encouraging students to communicate, 35–37
 personal understanding of math, 32–33
 planning (See Planning)
 roles of, 31
Teaching, 32–43
 appropriate tasks for students, 34–35
 developmental characteristics of students, 22–23, 34
 and encouraging students to communicate, 35–37
 English-language learners, 53, 54–55
 grouping students, 37
 and materials selection, 37–43
 students’ prior knowledge and, 33–34
 via problem solving, 90
Technology
 content, types of, 42–43
 for lesson enhancement, 41–43
 and needs of the subject, 3
 representing, 95
 Technology Principle (NCTM), 5
Teen numbers, 152, 194
Partial-difference, 227–228
Subtractive division algorithm, 225–227
Summative assessment, 59
Surface area, connecting attributes for, 345–346
Symbolic representation of fractions, 253–254
of place value, 153
Symbols, 25
 of algebra, 287–289
 for fractions, 247
 meaningfulness of, 161
 for ratios, 265–266
 relating operations to, 173
Understanding, 310–312
T
 Tables
 function, 284–286
 ratio, 265–266
 Taiwan, computational proficiency in, 213–214
 Tangram puzzle, 321
 Tasks
 appropriate, for students, 34–35
 open-ended, 38
 performance, 67–68
 Teacher-designed written tests, assessment by, 72–74
Temperature
measurement in positive and negative numbers, 142
measuring, 332
Ten-frame, 153
representations on, 140
Tests/testing
achievement tests, 16
criterion referenced, 74
hypothesis, 66
multiple-choice, 78
norm-referenced, 74
speed, 15
standardized achievement, 74
teacher-designed written, 72–74
Textbooks, 8
addition and multiplication facts in, 181
lessons from, 37–38
practice material in, 35
Thermometer, reading, 142
Thinking. See also Mental computation
about size of numbers, 158
math as way of, 2
Piaget’s levels of, 21
reversibility of, 295
in use of calculators, 199
written communication conveying, 27
Thinking strategies
for addition, 183–187
for basic facts, 183–193
for division, 191–193
efficiency of, 181
for multiplication, 188–191
or subtraction, 187–188
Think multiplication (division strategy), 191–193
Thorndike, Edward L., 19
Thousandths, 164–167
Three-dimensional shapes, 303–309
Time:
equivalencies, 343
measuring, 332
Tinkerplots™, 355
Tool content/software, 43
Trading
and algorithms, 220–221
in learning place value,
149–152, 159
Transformations (geometry),
319–320
Trapezoids, 339
algebraic topics in, 299
data analysis and probability in, 374
functions in, 295
geometry in, 323
measurement in, 325–326, 340
Trends in International Mathematics and
Science Study (TIMSS), 8, 122
Triangles, 308–309, 315, 339
Triangular numbers, 390
Turn transformation, 318
Tutorial content/software, 42
Twice-as-much strategy, 190
Two-dimensional shapes, 309–317
Two-sided number lines, 268
U
Understanding
communication and, 27
constructing, 20–21
and learning, 3, 18
memorization vs., 15
speed tests/drills vs., 15
Units, planning for, 44
Units of measurement
choosing, 332–334
comparing objects to, 342–343
conversion of, 343–344
counting, 334–335
equivalences of, 342–343
finding number of, 334–340
Using results phase, assessment, 61
V
Variables (in algebraic thinking), 288
Variation, measures of, 389–390
Verbal interaction, English-language
learners, 55
Vertices
solids, 305
two-dimensional shapes, 309–310
Virtual manipulatives, 43
Visualization. See also Manipulatives
in geometry, 321
of multiplication, 189
Vocabulary
for counting, naming, and representing
numbers, 150
in developing place value, 155–159
for fractions, 251
geometric, 323
for two-dimensional shapes,
309–310
Volume, 332, 345–346
equivalencies, 343
units for, 336
Vygotsky, Lev, 21, 27
W
Web sites. See also specific Web sites
for data collection, 354
Elementary Brain Teaser
Contest, 102
for making patterns, 140
for probability simulations, 374
real-world problem-solving, 109
Weight, 330–331, 336
Whole numbers, 258–259
Working-from-known-facts
strategy, 190
Weight samples, assessment by, 70
Worksheets, computational-skill,
238
Writing numerals, 141–143
Writings
assessment by, 72
open-ended, 93
Written computation, 199, 214
Z
Zero
adding, 184–185
dividing by, 193
as even number, 382
in Hindu-Arabic numeration
system, 149
in multiplication, 190–191, 230–231
subtracting, 187–188, 227
Zone of proximal development, 21, 22