Index

Action potentials, 414
Additive parallel branches, 198
Aliasing, 13
Amplitude nonlinearity, 43
Analysis of estimation errors, 125
Anatomists, 3, 25
Anisoropy, 492
ANN, see Artificial neural network
Apparent transfer function (ATF), 93, 158
 illustrative example, 160
 of linearized models, 158
Applications of two-input modeling to
 physiological systems, 369
Arbitrary inputs, 52
ARMA model, 148
ARMAX model; see Autoregressive moving
 average with exogenous variable
 model
ARMAX,X model, 148
Artificial neural network (ANN), 223
Artificial pancreas, 345, 347
Ascending-order MOS procedure, 258
Asclepiades, 26, 27
ATF, see Apparent transfer function
Auditory nerve fibers, 302
Autocorrelation functions of random processes,
 505
Autoregressive moving average with
 exogenous variable (ARMAX) model,
 parameters, 147
 Axon hillock, 414
 Axons, 414
Band-limited GWN, 92
 advantages, 92
 disadvantages, 93
 input, 60
 Bandwidth, 270
 Beta rule, 243, 279
 Bose, Amar, 71, 142
 Broadband stochastic input/output signals, 5
 Brownian motion, 57
Caltech, 143
Cardiovascular system, 320
Causal systems, 10
Cerebral autoregulation, 22
 in humans, 380
Closed-loop condition, 153
Closed-loop model, 490
 autoregressive form, 490
 network model form, 491
 Coherence function, 94
 Coherence measurements, 93
Comparative use of GWN, PRS, and CSRS, 92
Comparison of Volterra/Wiener model predictions, 64
Connectionist models, 223
 relation with PDM modeling, 230
Constant zeroth-order Wiener functional h_0, 73
Constant-switching-pace symmetric random signal (CSRS), 80
 advantages, 93
 and Volterra kernels, 84
 disadvantages, 93
Cross talk, 43
Cross-correlation technique, 17, 78, 100, 449
Cross-correlation technique (CCT), 113
 for Wiener kernel estimation, 72
 of nonparametric modeling, 16
Cross-correlation-based method for multiinput modeling, 390
CSRS, see Constant-switching-pace symmetric random signal
CCT, see Cross-correlation technique
Cubic feedback, 222
 systems, 204
Cybernetics, 32
 Data consolidation method, 276
 Data preparation, 275
 Data record length, 273
 Deductive modeling, 24
 Delta-bar-delta rule, 243, 279
 Democritus, 26
 Dendrites, 414
 Dendritic potentials (DPs), 415
 Diagonal estimability problem, 85
 Differential-equation models, 145
 Discrete-time representation of the CSRS functional series, 89
 Discrete-time Volterra kernels of NARMAX models, 164
 Discretized output, 17
 Disease process, 3
 DLF expansions for kernel estimation, 112
 DP, see Dendritic potentials
 Dual-input stimulation in the hippocampal slice, 455
 Duffing system, 98
 Dynamic nonlinearity, 43
 Dynamic range, 270
 Dynamic system physiology, 3
 Dynamic systems, 30
 ED, see Eigen decomposition
Efficient Volterra kernel estimation, 100
 Eigen-decomposition (ED) approach, 188
 ELS, see Extended least squares
 Empiricists, 3, 26, 27
 Enhanced convergence algorithms for fixed training steps, 242
 Equivalence between connectionist and Volterra models, 223
 Equivalence between continuous and discrete parametric models, 171
 illustrative example, 175
 Erasistratus, 25
 Ergodicity, 273, 505
 Erroneous scaling of kernel estimates, 136
 Error term, 9
 Estimation bias, 128
 Estimation error, 132
 analysis of, 125
 Estimation errors associated with direct inversion methods, 137
 Estimation Errors Associated with iterative cost-minimization methods, 139
 Estimation errors associated with the cross-correlation technique, 127
 Estimation of h_0, 73
 Estimation of $h(t_1, t_2)$, 74
 Estimation of $h(t_1, t_2, t_3)$, 75
 Estimation variance, 130, 132
 Extended least-squares (ELS) procedure, 150
 Fast exact orthogonalization, 55
 Feedback branches, 200
 Feedback mechanisms, 200
 Feedforward Volterra-equivalent network architectures, 229
 Filter banks, 251
 First-order Volterra functional, 35
 First-order Volterra kernel, 34
 Fly photoreceptor, 85
 F-ratio test, 151
 Frequency-domain estimation of Wiener kernels, 78
 Function expansions, 495–498
 Functional integration in the single neuron, 414
 Galen of Pergamos (Galenos), 3 27, 28, 143
 Gaussian white noise (GWN), 499
 input, 30
 test input, 16
 General model of membrane and synaptic dynamics, 408
 Generalized harmonic balance method, 173
Global predictive model, 153
Glucose balance, 354
equation, 354
Glucose metabolism, 344
Glucose production, 354
Glucose–insulin minimal model, 21; see also
Minimal model
Graded potentials, 414
Gram matrix, 53, 54, 104
GWN, see Gaussian white noise
Harvey, William, 3, 27
H-H model, see Hodgkin–Huxley model
Hidden layer, 278
Higher-order nonlinearities, 37, 116
High-order kernels, 78
High-order Volterra modeling with equivalent
networks, 122
High-order Volterra models, 122
Hippocampal formation, 448
Hippocrates, 1, 3, 25, 26, 27, 28, 143
Hodgkin–Huxley (H-H) model, 162, 408
Homogeneous chaos, 57
Hypothesis-driven research, 4
Impulse invariance method, 171
Impulse sequences, 51
Impulsive input, 42
Inductive modeling, 24
Inductively derived models, 2
Input characteristics, 269
Input-additive noise, 135
Input–output data, 13, 30
Input–output signal transformation, 8
Instrumental variable (IV) method, 153
Insulin action, 354
Insulin production, 354
Insulin secretion, 344
Insulin sensitivity, 347
Insulin–glucose interactions, 342
Insulinogenic PDM, 352
Insulinoletic PDM, 353
Integrated PDM model with trigger regions,
427
Integrative and dynamic view of physiology,
3
Interaction layer, 278
Interference, 8, 135, 271
Interpretation of the PDM model, 282
Interpretation of Volterra kernels, 281
Invertebrate photoreceptor, 18
Invertebrate retina, 296
Iterative cost-minimization methods for non-
Gaussian residuals, 55
Iterative estimation methods, 139
KBR method, see Kernel-based method
Kernel expansion approach, 55
Kernel expansion method, 469
kernel expansion methodology, 101
kernel invariance method, 171, 172
Kernel-based (KBR) method, 169, 170
Kernel-expansion method for multiinput
modeling, 393
Kronecker delta, 69
Lag-delta representation of P–V or P–W
kernels, 444
Laguerre expansion technique (LET), 31, 107,
113, 455
Laguerre functions, 107
Laguerre–Volterra Network (LVN), 246
illustrative example, 249
Lateral feedforward branches, 198
Lee, Y. W., 142
Leucippus, 26
Light-to-horizontal cell model, 217
Likelihood of firing, 286
Linear time-varying systems with arbitrary
inputs, 479
Linearized models, apparent transfer functions
of, 158
L–N cascade, 194
system, 38, 96
L–N model, 196
L–N–M cascade, 194, 198
L–N–M model, 196
L–N–M “sandwich” system, 39
LVN variant with two filter banks (LVN-2),
253
LVN-2 Modeling, 255
Marmarelis, Panos, 143, 286, 287, 295, 361,
369
Marmarelis, Vasilis, 143, 288
Mathematical models, 1, 7
“ideal,” 7
“less than ideal,” 7
bandwidth, 11
compact, 7
datasets, 8
dynamic range, 11
efficiency, 11
global, 7
Mathematical models (continued)
interpretable, 7
operational range, 11
practical considerations and experimental
requirements of, 266
robustness, 7
scientific interpretability, 11
signals, 8
trade-off between model parsimony and its
global validity, 11
McCann, Gilbert, 143, 287, 361
MDV model, see Modified discrete Volterra
(MDV) model
MDV modeling methodology, 277
Measurement noise, 5, 8
Metabolic autoregulation in dogs, 378
Metabolic–Endocrine system, 342
Method of generalized harmonic balance, 154
Methodists, 27
Minimal model of insulin–glucose interaction,
161, 353, 354, 356
Minimum-order modeling of spike-output
systems, 431
Minimum-order Wiener models, 434
illustrative example, 438
MIT, 142
Model estimation, 10, 276, 284
Model interpretation, 281
Model order determination, 104
Model specification, 10, 276, 284
inductive versus deductive model
development, 11
Model validation, 279
Modeling errors, 8, 126
Modeling of closed-loop systems, 489–493
Modeling of multiinput/output systems,
359–406
multiinput case, 389
two-input case, 360
Modeling of neuronal ensembles, 462
Modeling of neuronal systems, 407–465
Modeling of nonstationary systems, 467–488
illustrative example, 474
Modeling physiological systems with multiple
inputs and multiple outputs, 359
Modified discrete Volterra (MDV) model, 103
Modular and connectionist modeling, 179–264
Modular form of nonparametric models, 179
Modular representation, 177
Modulatory feedforward branches, 198
Motion detection in the invertebrate retina,
369
Multiinput/multioutput systems, 10
Multiple interconnections, 5
Multiple variables of interest, 5
Multiplicative feedback, 201
Myogenic mechanism, 333
Naka, Ken, 143, 286, 287, 288, 290, 295, 361
NARMAX model, 151, 152, 164, 165, 168, 169, 170
Negative decompressive feedback, 222
nervous system, 407
Network-based methods, 480
applications to nonstationary physiological
systems, 484
illustrative examples, 481
Network-based multiinput modeling, 393
Neuronal modes, (NMs), 417
Neuronal systems with point-process inputs,
438
Neuronal unit, 408
Neurosensorial systems, 286
N–M cascades, 194
N–M model, 196
Noise, 271
effects, 134
Non-Gaussian white-noise, 500
Non-Gaussian, quasiwhite input signals, 77
Nonlinear (stationary) systems, 150
Nonlinear autoregressive modeling (open-
loop), 246
Nonlinear behavior, 6
Nonlinear dynamic analysis, 3
Nonlinear dynamics, 5
Nonlinear feedback, 220
described by differential equations, 202
in sensory systems, 216
Nonlinear modeling of physiological systems,
29
conceptual/mathematical framework, 30
objective, 30
strengths, 29
weaknesses, 29
Nonlinear modeling of synaptic dynamics, 459
Nonlinear models of physiological systems, 13
connectionist, 14
modular, 14
nonparametric, 14
parametric, 14
Nonlinear parametric models with
intermodulation, 161
Nonlinearity, 12
amplitude, 43
Nonparametric modeling, 29–143
Nonstationarity, 12, 13, 152, 467
modeling of, 467–488
modeling problem, 472
system, 30
in system dynamics, 5
system/model, 34
Nonwhite Gaussian inputs, 98
One-step predictive model, 153
Open-loop condition, 153
Optimization of input parameters, 131
Ordinary least-squares (OLS) estimate, 53
Orthogonal Wiener series, 30
Parabolic leap algorithm, 279
Parallel-cascade Method, 55
Parametric model, 167, 168
Parametric modeling, 145–178
basic parametric model forms and estimation
procedures, 146
PDM (principal dynamic mode) model
interpretation, 282
insulinogenic, 352
insulinoleptic, 353
integrated, with trigger regions, 427
Physiological system modeling, 3, 6, 7
complexity, 11
data driven, 11
data-driven, 24
inductive, 11, 24
linearity, 12
nonlinearities in, 12
nonstationarities in, 12
superposition principle, 12
synergistic, 24, 25
Physiological system modeling problem, 13
Physiological variables, 8
inputs, 8
outputs, 8
Physiology, problems of modeling in, 6
Piecewise stationary modeling methods, 468
Positive compressive feedback, 222
Positive nonlinear feedback, 213
Posterior filter, 245
Practical considerations and experimental
requirements of mathematical
modeling, 266
Preliminary testing, 272
test for system bandwidth, 272
test for system linearity, 274
INDEX

Sigmoid feedback, 222
 systems, 209
Signal characteristics, 266
Significant response, 267
Single-input stimulation in vitro, 455
Single-input stimulation in vivo, 449
Sinusoidal input, 43
Socrates, 5
Sources of estimation errors, 125
 estimation method errors, 125
 model specification errors, 125
 noise/interference errors, 125
Spatiotemporal modeling, 395, 397
 of cortical cells, 402
 of retinal cells, 398
Spectrotemporal model, 397, 395
Spider mechanoreceptor, 307
Spontaneous insulin-to-glucose PDM model, 352
Stark, Larry, 286
Static nonlinear system, 37
Stationarity, 12, 273, 505
Stationary system, 30
Step-by-step procedure for physiological system modeling, 283
Stochastic error term, 8, 9
Sum of sinusoids of incommensurate frequencies, 52
SVN, see separable Volterra network
Synaptic junction, 414
System bandwidth, 266, 272
System characteristics, 266
System dynamic range, 267
System ergodicity, 268
System linearity, 268, 274
System memory, 267, 272
System modeling, 8, 11
System nonlinear dynamics, 4
System stationarity, 268
Systemic interference, 5
Systemic noise, 135
Taylor multivariate series expansion of an analytic function, 32
Taylor series coefficients, 37
Taylor series expansion, 33
Test of nonstationarity, 475
Test systems
 for system bandwidth, 272
 for system linearity, 274
 for system memory, 272
 for system stationarity and ergodicity, 273
TGF, see tubuloglomerular feedback
Themison, 27
Three-layer perceptron (TLP), 224
Time invariance, 268
TLP, see three-layer perceptron
Transformation, 414
Trigger lines, 421
Trigger regions, 417, 421
Tubuloglomerular feedback (TGF), 333
Two-dimensional Fourier transform, 36, 44
Two-input cross-correlation technique, 362
Two-input kernel-expansion technique, 362
Variable step algorithms, 243
Vector notation, 10
VEN, see Volterra-equivalent network
VEN/VWM modeling methodology, 278
Vertebrate retina, 15, 287
Vesalius, 3, 27
Volterra, Vito, 31, 32, 33, 140, 141
 Theory of Functionals and Integro-Differential Equations, 32
Volterra analysis of Riccati equation, 19
Volterra-equivalent network (VEN), 223, 224
 architectures, 223, 235
 for nonlinear system modeling, 235
 convergence and accuracy of the training procedure, 240
 equivalence with Volterra kernels/models, 238
 network parameter initialization, 241
 selection of the structural parameters, 238
 selection of the training and testing data sets, 240
 with two inputs, 364
 illustrative example, 366
Volterra functional, 33, 34, 36, 42, 43, 44
 expansion, 30, 37
 series expansion, 31
Volterra kernel, 18, 20, 22, 30, 33, 34, 37, 42, 167
 discrete-time, 20
 expansion, 101
 estimation of, 49, 101
 first order, 20
 meaning of, 45
 of nonlinear differential equations, 153
 operational meaning, 41
 second order, 20
Volterra modeling framework, 35
Volterra models, 31, 37, 223
 discrete-time, 47
frequency-domain analysis, 48
frequency-domain representation, 45
of system cascades, 191
of systems with feedback branches, 200
of systems with lateral branches, 198
Volterra series, 30, 31, 32
 expansion, 32, 33, 37
Volterra–Wiener approach, 4, 15
Volterra/Wiener model predictions, comparison of, 64
Volterra–Wiener network (VWN), 122
Volterra–Wiener–Marmarelis (VWM) model, 260
VWN see Volterra–Wiener network

Weierstrass theorem, 33
Whiteness, 270
Wiener, Norbert, 6, 32, 140, 141, 142, 143
 approach to kernel estimation, 67
Wiener class of systems, 62
Wiener functionals, 58, 59
Wiener kernel, 16, 30, 58, 59, 77
 estimation, 77
Wiener model, 57, 30, 195
 examples of, 63
Wiener series, 57, 58, 503
 construction of, 503
Wiener–Bose model, 122