Contents

Preface, x

Acknowledgments, xiii

Introduction: Dr. Doe’s Headaches: An Imaging Case Study, xiv

Computed tomography, xiv

Picture archiving and communication system, xv

T1, T2, and FLAIR MRI, xvi

Functional MRI, xviii

Diffusion tensor MR imaging, xviii

MR guided biopsy, xx

Pathology, xxi

Positron emission tomography?, xxi

Treatment and follow-up, xxii

1 Sketches of the Standard Imaging Modalities: Different Ways of Creating Visible Contrast Among Tissues, 1

“Roentgen has surely gone crazy!”, 2

Different imaging probes interact with different tissues in different ways and yield different kinds of medical information, 4

Twentieth-century (analog) radiography and fluoroscopy: contrast from differential attenuation of X-rays by tissues, 7

Twenty-first century (digital) images and digital planar imaging: computer-based images and solid-state image receptors, 16

Computed tomography: three-dimensional mapping of X-ray attenuation by tissues, 17

Nuclear medicine, including SPECT and PET: contrast from the differential uptake of a radiopharmaceutical by tissues, 20

Diagnostic ultrasound: contrast from differences in tissue elasticity or density, 26

Magnetic resonance imaging: mapping the spatial distribution of spin-relaxation times of hydrogen nuclei in tissue water and lipids, 28

Appendix: selection of imaging modalities to assist in medical diagnosis, 30

References, 36

2 Image Quality and Dose: What Constitutes a “Good” Medical Image?, 37

A brief history of magnetism, 37

About those probes and their interactions with matter . . . , 39

The image quality quartet: contrast, resolution, stochastic (random) noise, artifacts – and always dose, 47

Quality assurance, 57

Known medical benefits versus potential radiation risks, 61

3 Creating Subject Contrast in the Primary X-ray Image: Projection Maps of the Body from Differential Attenuation of X-rays by Tissues, 67

Creating a (nearly) uniform beam of penetrating X-rays, 69

Interaction of X-ray and gamma-ray photons with tissues or an image receptor, 75

What a body does to the beam: subject contrast in the pattern of X-rays emerging from the patient, 83

What the beam does to a body: dose and risk, 87

4 Twentieth-century (Analog) Radiography and Fluoroscopy: Capturing the X-ray Shadow with a Film Cassette or an Image Intensifier Tube plus Electronic Optical Camera Combination, 91

Recording the X-ray pattern emerging from the patient with a screen-film image receptor, 92

Prime determinants/measure of image quality: contrast, resolution, random noise, artifacts, . . . and, always, patient dose, 98

Special requirements for mammography, 114

Image intensifier-tube fluoroscopy: viewing in real time, 122

Conclusion: bringing radiography and fluoroscopy into the twenty-first century with solid-state digital X-ray image receptors, 125

Reference, 126

vii
5 Radiation Dose and Radiogenic Risk:
Ionization-Induced Damage to DNA can cause Stochastic, Deterministic, and Teratogenic Health Effects – And How To Protect Against Them, 127
Our exposure to ionizing radiation has doubled over the past few decades, 127
Radiation health effects are caused by damage to DNA, 129
Stochastic health effects: cancer may arise from mutations in a single cell, 132
Deterministic health effects at high doses: radiation killing of a large number of tissue cells, 139
The Four Quartets of radiation safety, 146
References, 151

6 Twenty-first Century (Digital) Imaging:
Computer-Based Representation, Acquisition, Processing, Storage, Transmission, and Analysis of Images, 152
Digital computers, 153
Digital acquisition and representation of an image, 157
Digital image processing: enhancing tissue contrast, SNR, edge sharpness, etc., 166
Computer networks: PACS, RIS, and the Internet, 168
Image analysis and interpretation:
computer-assisted detection, 170
Computer and computer-network security, 172
Liquid crystal displays and other digital displays, 173
The joy of digital, 174

7 Digital Planar Imaging: Replacing Film and Image Intensifiers with Solid State, Electronic Image Receptors, 176
Digital planar imaging modalities, 176
Indirect detection with a fluorescent screen and a CCD, 178
Computed radiography, 178
Digital radiography with an active matrix flat panel imager, 179
Digital mammography, 184
Digital fluoroscopy and digital subtraction angiography, 186
Digital tomosynthesis: planar imaging in three dimensions, 189
References, 190

8 Computed Tomography: Superior Contrast in Three-Dimensional X-Ray Attenuation Maps, 191
Computed tomography maps out X-ray attenuation in two and three dimensions, 192
Image reconstruction, 198
Seven generations of CT scanners, 204
Technology and image quality, 208
Patient- and machine-caused artifacts, 219
Dose and QA, 221
Appendix: mathematical basis of filtered back-projection, 229
References, 233

9 Nuclear Medicine: Contrast from Differential Uptake of a Radiopharmaceutical by Tissues, 234
Unstable atomic nuclei: radioactivity, 235
Radiopharmaceuticals: gamma- or positron-emitting radionuclei attached to organ-specific agents, 245
Imaging radiopharmaceutical concentration with a gamma camera, 248
Static and dynamic studies, 254
Tomographic nuclear imaging: SPECT and PET, 260
Quality assurance and radiation safety, 270
References, 273

10 Diagnostic Ultrasound: Contrast from Differences in Tissue Elasticity or Density Across Boundaries, 274
Medical ultrasound, 274
The US beam: MHz compressional waves in tissues, 277
Production of an ultrasound beam and detection of echoes with a transducer, 280
Piezoelectric transducer elements, 281
Transmission and attenuation of the beam within a homogeneous material, 285
Reflection of the beam at an interface between materials with different acoustic impedances, 288
Imaging in 1 and 1 × 1 dimensions: A- and M-modes, 291
Imaging in two, three, and four dimensions: B-mode, 294
Doppler imaging of blood flow, 300
Elastography, 302
Safety and QA, 303
Contents

11 MRI in One Dimension and with No Relaxation: A Gentle Introduction to a Challenging Subject, 307
 Prologue to MRI, 308
 "Quantum" approach to proton nuclear magnetic resonance, 310
 Magnetic resonance imaging in one dimension, 316
 "Classical" approach to NMR, 321
 Free induction decay imaging (but without the decay), 331
 Spin-echo imaging (still without T1 or T2 relaxation), 338
 MRI instrumentation, 343
 Reference, 351

12 Mapping T1 and T2 Relaxation in Three Dimensions, 352
 Longitudinal spin relaxation and T1, 353
 Transverse spin relaxation and T2-w images, 364
 T2* and the gradient-echo (G-E) pulse sequence, 372
 Into two and three dimensions, 374
 MR imaging of fluid movement/motion, 382

13 Evolving and Experimental Modalities, 387
 Optical and near-infrared imaging, 388
 Molecular imaging and nanotechnology, 390
 Thermography, 392
 Terahertz (T-ray) imaging of epithelial tissues, 393
 Microwave and electron spin resonance imaging, 393
 Electroencephalography, magnetocardiography, and impedance imaging, 394
 Photo-acoustic imaging, 396
 Computer technology: the constant revolution, 397
 Imaging with a crystal ball, 399
 References, 399

Suggested Further Reading, 400

Index, 403