Abamectin, 503
Abate, 316
Abortion, 448
Acceptable daily intake (ADI), 317, 575
Acceptable Operator Exposure Levels (AOEL), 576
Accidental poisonings, 343, 347–348, 349
children, 347–348
Chile, 362
China, 372
India, 349
Iran, 436–440
Japan, 349, 458–459, 459
prevention, 351
Serbia, 483
Spain, 500
Taiwan, 349, 512, 517
Thailand, 528
Turkey, 349, 535–537
worldwide, 237, 349, 482, 583
Acephate, and aluminum, 330
Acetaminophen
and fenitrothion, 321
and organophosphates, 321
Acetylcholine (ACh)
accumulation, 4, 11, 136, 150, 151–152, 484, 543
and seizures, 156
determination, head-focused microwave
irradiation, 11
and glutamate, 156–157
homeostatic mechanisms, 10
hydrolysis, 4, 9–10
butyrylcholinesterase, 26, 29, 30
steps in, 58
insufficient, 31
storage, 4
synthesis, 9–10
turnover time, 268

Acetylcholine receptors, See also Muscarinic acetylcholine receptors; Nicotinic acetylcholine receptors
direct effects of organophosphates, 244–245
long-term acetylcholinesterase inhibition, 5
mechanism of acetylcholine binding, 4
overstimulation of, cholinergic signs, 30, 31
plant-produced, 20
Acetylcholinesterase (AChE)
aging reaction, 5, 58, 268, 484, 584
as biomarker of exposure, 278–279, 404, 485
as bioscavenger, 27, 255
brain, measuring, 5
carbamate effects, 5–9
cholinergic targets, 14
direct, 5, 14
erythrocyte, 278–279, 485, 585
gene, 20, 31, 31
alterations in expression, 31, 183
polymorphisms, 20
interindividual variations, 485
knockout mice, 5, 30
organophosphate effects on, 5–9, 584–585
reactivation, 19, 150–151, 268, 484, 487–488, 585
role of, 584
sarmin-bound, 485
similarities with carboxylesterases, 60
upregulation, and response to exposure, 20
Acetylcholinesterase inhibition
age and, 6–7
antioxidants and, 141–142
brain acetylcholinesterase activity and, 5–7
carbamates, 5–9, 63, 242, 584–585
cholinergic signs, 30, 31
cholinergic targets, 14
in chronic neurotoxicity, 246
direct, 5, 14
exposure pathways, 19–20

INDEX
Acetylcholinesterase inhibition (Continued)
extrapyramidal signs of, 136
genetic polymorphisms and, 20–23
high-energy phosphate depletion, 139–140
inhibition rate constant, 5
mechanism of, 5, 58
memantine pretreatment, 142–143
nitric oxide and, 139–140
noncholinergic effects, 13–14
organophosphates, 5–9, 242, 584–585
paraoxonase 1 activity
and acute exposure, 23
and chronic exposure, 22–23
pesticides, 3–4; See also Anticholinesterase pesticides;
Carbamates; Organophosphates
striatum, 6–7
therapeutic purposes, 4
Acetylcholinesterase reactivators, 253, 268, 584;
See also individual agents
Acetylcholine synthesis, blockade of, 255–256
Activated charcoal, 487, 589
Acute pesticide poisonings
Central America, 506
defined, 343, 496
global rates, 19, 343–344, 351–352, 495, 541
Greece, 406–408
India, 420–422
Iran, 436–440
Israel, 452–453
Korea, 464–466
Mexico, 475
neurobehavioral effects, 559
Serbia, 484–486
signs/symptoms, 496, 542–543, 585
Spain, 506
Taiwan, 511, 516
Thailand, 523, 525–526
treatment, 585–588, 589–591
Turkey, 538
underreporting, 506
United States, 506
WHO estimates, 343–344, 380, 405, 571
Acute reference dose (ARfD), 576–577
Addiction, 14
Adenosine, in seizures, 154
A1 Adenosine receptor, nerve agent binding, 154
A1 Adenosine receptor agonists, 154
Adenosine receptor antagonists, 154, 255
Adenyl cyclase signaling, 214
anticholinesterases effects, 208–209, 249, 250
chlorpyrifos exposure and, 249
organophosphate effects on, 250
ADME (absorption, distribution, metabolism, and excretion), 267, 269
Adolescents, neurobehavioral effects in, 232–233
Adults, paraoxonase activity, 206
Aerial spray workers, Israel, 450–451
A-esterases, 77
age-related differences in activity, 206
organophosphate detoxication, 126
Affective disorders, 104, 350
Africa, self-poisonings, 346
Age
and acetylcholinesterase activity, 6–7
and brain, acetylcholinesterase inhibitors, 6–7
and paraoxonase 1 status, 90–91
Agent Orange, 403
Aging reaction
acetylcholinesterase, 5, 58, 268, 484, 584
neuropathy target esterase, 114–115, 136
resistance of carboxylesterases to, 58–59
soman, 484, 585
Agricultural and Cattle Service, 357–363
Agricultural workers
aceticholinesterase exposure, 238, 346–347, 349
chronic, 103–104
long-term effects, 238
routes, 435
biomonitoring, 268, 279–280
children of
neurobehavioral effects in, 232
pesticide exposure, 226
genotoxicity, 305–306, 477–478
paraoxonase 1 status, 22
reproductive toxicity, 477–478
Agrochemicals, WHO classifications, 359
Alachlor, carcinogenicity, 306–307
Albumin
carbamate detoxication, 129–130
organophosphate detoxication, 126–127
paraoxon metabolism, 88
Aldicarb
biomarkers, 282
LD50, 570
neurobehavioral effects, 215
oxidative biotransformation, 128
toxicity, 436
Aldo-keto reductases, 181
Alexandria Poison Center (APC), 384–385
Allergic rhinitis, 410–411
Allethrin, 66, 67
All-trans retinoic acid (ATRA), 185
N-Allylnorbornadiene, 256
Almeria, Epidemiological Surveillance Program on Acute
Pesticide Poisoning (ESPAPP), 496–508
α-Adrenergic agonists, 155
α,β-hydrolase-fold families, 43, 47
Alpha-synuclein, 171
Aluminum, and acephate, 330
Aluminum phosphide, suicide attempts, 344, 422
Alzheimer’s disease
donepezil for, and cytochrome P450 polymorphisms, 21
loss/alteration of nicotinic receptors, 14
protective effects of PBN, 141
and silent butyrylcholinesterase genotype, 29
Aminopyrine N-demethylase, 332–333
Amitraz poisoning, Turkey, 537–538
AMPA/kainate, seizures and, 154
Amphibians, endocrine disruption in, 194–195
Amyotrophic lateral sclerosis (ALS), in Gulf War veterans, 242
Andalusia, Epidemiological Surveillance Program on Acute Pesticide Poisoning (ESPAPP), 496–507
Androgen receptor, 197
Androgen receptor-associated protein 54 (ARA54), 114
Anectine, 32
Angiotensin-converting enzyme inhibitors, 44
Aniline hydrolase, 332–333
Animal poisonings, Greece, 411–412
Annexin-V, 166
Annexin-V/propidium iodide, 169
Antagonism, anticholinesterases, 320–321
Antiatherogenic compounds, 587
Anticholinergic drugs, antiseizure effects, 153
Anticholinesterase pesticides. See also Acetylcholinesterase inhibition; Carbamates; Organophosphates
absorption, 269
antagonism, 320–321
apoptosis and, 166–172, 180, 215, 251, 334–335
as carboxylesterase substrates, 318
environmental residues, 175–176
excretion, 269
exposure routes, 269, 435
gene expression and, 250–252
global poisonings, 150
-induced seizures, 151–158
interactions with metals, 330–336
interaction with non-cholinesterase inhibitors, 317–318
metabolism, 269
neurobehavioral effects. See Neurobehavioral effects
occupational exposure. See Occupational poisonings
pharmacokinetics, 268–270
potentiation between, 316–317
sensitivity, age-related differences, 205–207
tissue distribution, 269
tolerance to, 248
toxicity, See also Neurotoxicity
CNS effects, 239, 542, 543
complications, 490
developmental neurotoxicity, 205–218
and heavy metals, 335
immunotoxicity, 333–334
mechanism of, 484
muscarinic effects, 150, 239, 542, 543
nicotinic effects, 150, 239, 542, 543
oxidative stress in, 442
signs/symptoms, 239, 542–543
treatment, 150–151
Anticonvulsants, 19, 150–151, 254–255, 586
Antidementia drugs, 4
Antidotes, organophosphate poisoning, 585–588, 589–591; See also individual agents
Antioxidants
apoptosis prevention, 166–167
organophosphate-induced impairments, 246–247
suppression of oxidative injury, 141–142
Antipyrine, 333
Antitumor drugs, 44
Anxiety, 104, 136, 405
Apnea, 27, 28, 32, 33
Apolipoprotein A1, paraoxonase and, 123–125
Apoptosis
carbamates-induced, 170–172
defined, 165–166
disruption of, 334
and DNA fragmentation, 247
and immunotoxicity, 333–334
and metals, 334–335
organophosphate-induced, 166–170, 215, 251, 334–335
-neurodevelopmental effects, 180
role of, 334
rotenone-induced, 251
Aquatic ecosystems, pesticide residues, Egypt, 392, 393
Aquatic invertebrates, carbamate metabolism, 65–66
Arachidonic acid, 138
Aricept. See Donepezil
Aromatase, 191
Aromatic plants, contaminated, 395
Arsenic, 329
-induced apoptosis, 334–335
-induced septal defects, 335
interactions with pesticides, 330, 332, 333
and malathion, 333
and parathion, 330
and pefloxacin, 333
Artemisinin, 211
Aryl acylamidase activity, butyrylcholinesterase, 35
Aryl hydrocarbon receptor (AhR), 191
Asia, suicide by pesticides, 344–345
Asians, paraoxonase 1 polymorphisms, 86
Asoxime. See HI-6
Aspartate, in soman poisoning, 154
Astrocytes
development, 214
role of, 137
in seizures, 157
Atherosclerosis, 60
Atmosphere, organophosphates in, 454
ATP, depletion of, 139–140
Atropine
antagonism at muscarinic receptors, 151
for anticholinesterase pesticide poisoning, 150–151, 252, 487, 585–586, 589
anticonvulsant effects, 586
and benzodiazepines, 254
and diazepam, 488
and dizocilpine, 153
dosing, 487, 589
and memantine, 255
with methylprednisolone and trimedoxime, 256, 594
oxime interactions, 151, 253, 585–586
and pyridostigmine, 151
“Attention” battery, NEPSY, 451
Attention deficit, 136
Attention deficit hyperactivity disorder (ADHD), 451
Avizafone, 254
Axonal-enriched proteins, 211
Axons, degeneration, 240

Bangladesh, pesticide-related fatalities, 344–345
Barbiturates, 254
Bayley Scales of Infant Development, 231, 233
Beekeepers, 411
Behavior, 97, 98–100; See also Neurobehavioral effects
Benactizine, 153
Benzene, carcinogenicity, 417
Benzene hexachloride, 448
Benzodiazepines, 254
for anticholinesterase pesticide poisoning, 150–151
and atropine, 254
mechanisms of action, 488
site of action, 254–255
Beryllium, 334–335
B-esterases, 46
organophosphate detoxication, 126
sensitivity, 278–279
Bhopal, India, plant disaster, 423–425
Binding Occupational Exposure Limit Values (BOELV), 576
Biological Limit Values (BLV), 576
Biomarkers
butyrylcholinesterase, 278–279, 280, 282, 404, 410
and carbamates, 281–282, 282
and carcinogenesis, 304–305
choline acetyltransferase, 212–213
citrulline, 140
defined, 305
dimethyl phosphate, 294
erthrocyte acetylcholinesterase, 278–279, 404, 485, 585
of exposure, 280, 282
P₂ isoprostanes, 138, 141, 142
gluconuride, 281
1-naphthol, 281
organophosphate exposure, 277–278
adducts of phosphorylated albumin, 127
β-glucuronidase, 289–300, 436
oxidative stress, 138, 141, 142
of response, 280
Biomarkers of Oxidative Stress Study (BOSS), 138
Biomonitoring
butyrylcholinesterase, plasma, 278–279, 404, 410
cholinesterase biomarkers, 278–279, 280, 485, 585
exposure pathways, 268
β-glucuronidase, 289–300, 436
goal of, 267
guidelines for, 268
pharmacokinetic models, 270, 276–277
protein adducts, 282
strategy, 267
Biomonitoring programs
Chile, 360–361
China, 367–369, 373
Egypt, 394–395
Spain, 496–507
Thailand, 525–526
U.S., 544–546
Bioscavengers
carboxylesterases, 255
catalytic, 27–28, 91
melatonin, 171
organophosphates
acetylcholinesterase, 27, 255
butyrylcholinesterase, 20–21, 26, 27–28, 33, 35, 91, 255
paraoxonase 1, 91
requirements for, 27
stoichiometric, 91

Biotransformation
activation to detoxification ratio, 270
carbamates, 270
detoxication, 121
organophosphates, 269–270
phosphates, 122
phosphorothioates, 121
prenatal toxin exposure, 205
toxic activation, 121
 xenobiotics, 121

Biperiden, 153
Bipyridyls, 503, 506

Birds
organophosphate sensitivity, 125
paraoxonase 1 activity, 87
phosphotriesterases, 123

Birth defects, 448

Birth weight, 231, 232

Blood, organophosphates in, 196
Blood alkalization, sodium bicarbonate, 254, 441, 488–489
Blood-brain barrier (BBB)
carbamates and, 592
and developmental neurotoxicity, 207
disruption of permeability, 207
organophosphate-induced damage, 158
oximes and, 587
sarin and, 587
and toxin exposure, 204, 205

Blood disorders, 405
Blowflies, dichlorvos toxicity, 184, 185

Bouillon theory, 156

BPMC
and fenitrothion, 317
and malathion, 317
potentiation of, 320

Brain
acetylcholinesterase, 585
age and acetylcholinesterase inhibitors, 6–7
Ca²⁺/cAMP response element binding protein (CREB) in, 250
cholinergic regulation of, 4
development, 195–196
GABA levels during seizures, 155
neurodevelopmental effects, 176, 177–180, 180–185
neuropathy target esterase activity, 112–113
nicotinic receptors, 243
oxidative injury, 137–139, 245
Brain-derived neurotrophic factor (BDNF), 176, 209–210
Brazelton Neonatal Behavioral Assessment Scale (BNBAS), 231
Breast cancer
Greece, 409–410
pesticide and estrogen effects, 182, 310
Breast cancer resistance protein (BCRP), 44, 46
Breast milk, organophosphates in, 196
Brodifacoum poisoning, sheep/goats, 391
Butyrylcholinesterase
acetylcholine hydrolysis, 29, 30
affinity of oxons for, 79
aryl acylamidase activity, 33
“atypical” (silent), 21, 26, 28
and donepezil, 29
as biomarker of exposure, 278–279, 280, 282, 404, 410
biomonitoring and, 278–279, 404, 410
characteristics of, 25–26
and cholinergic syndrome, 246
detoxication
acetylcholinesterase inhibitors, 28, 32
cocaine, 26–27, 28, 29, 33, 35
mivacurium, 27, 28, 32, 33
succinylcholine, 27, 28, 32, 33
eresterase activity of, 26
functions of
detoxication, 26, 28–33, 34–35
fat metabolism, 28, 33
knockout mouse studies, 28–29
gene, 26, 31, 31
deletions, 31
polymorphisms, 20
history, 26–27
human
clinical use of, 33
Gly117 His mutant, 29
native, 26
plasma-derived, 256
recombinant, 26
structure of, 34
tissue distribution, 33
human studies, 28
knockout mice, 29
limitations of, 28
mouse studies, 28–33
nomenclature, 26
as organophosphate scavenger, 20–21, 27–28, 33, 91, 255
regulation of acetylcholine release, 30
role in neurotransmission, 31–32
role in thermoregulation, 31, 33
substrate specificity, 27
subunits, 31, 34
Butyrylcholinesterase inhibitors, 317
Bystander exposure, 574, 577
Cadmiun, 329
and anticholinesterases, developmental toxicity, 335
-induced apoptosis, 334–335
Ca$^{2+}$ ATPase, 249
Ca$^{2+}$/calmodulin-dependent protein kinase II (CaM kinase II), 180–181
activation of, 249, 250
in OPIDN, 240
Ca$^{2+}$/cAMP response element binding protein (CREB)
activation of, 250–251
anticholinesterases effects, 204, 214, 215
role of, 250
Ca$^{2+}$ uptake, mitochondrial, 246
Calcium channel blockers, 255, 594
California
cholinesterase monitoring program, 551
occupational poisonings, 347
California Pesticide Illness Reporting (Cal-PIR), 545, 549
California Pesticide Illness Surveillance Program (Cal-PISP), 544–545, 548–549
Calmodulin, 140
Calpain, 249
Calreticulin, 181
cAMP
neuropathy target esterase binding, 114, 117, 118
organophosphate inhibition of, 248
signaling
anticholinesterases effects, 209
and developmental neurotoxicity, 248
“Campo Limpio,” 473
Cancer
epidemiology, 311
stages of, 304–305
Caramiphen, 153
Carbamates
acetylcholinesterase inhibition, 5–9, 63, 242, 584–585
albumin hydrolysis of, 129–130
biomarkers, 281–282, 282
biotransformation, 270
blood-brain barrier (BBB) and, 592
cholinergic targets, 14
classification of, 436
cytochrome P450 metabolism, 63–64, 65
delayed intermediate syndrome, 136
detoxication, 127–130
environmental persistence, 136
exposure, 101, 238, 280–282
formulations, 436
fungicides, 63, 136, 165
in hemoglobin, 238
herbicides, 63, 136
-induced apoptosis, 170–172
-induced reactive oxygen species (ROS), 247
insecticides, 63
mechanism of action, 4, 63, 268, 542–543, 583
Carbamates (Continued)
metabolism
aquatic invertebrates, 65–66
by carboxylesterases, 63–64
in invertebrates, 65–66
in vertebrates, 64–65
metabolites, 63–64
muscarinic receptors and, 13, 244
neurobehavioral effects, 101, 239
nicotinic receptors and, 13, 244
noncholinergic effects, 13–14
oxidation of, 127–128
and oxidative stress, 247, 442
pharmacokinetics, 268–270
placental transfer of, 206
poisoning
children, 469
pralidoxime for, 254
signs/symptoms, 436, 542
treatment, 254, 591–592
potency of inhibition, 13
potentiation
between, 316–317
by carboxylesterase inhibitors, 318
of organophosphates, 317
resistance, insects, 65
sensitivity, age-related differences, 205–207
structure, 63, 127, 136, 150
sulfoxidation, 127–128
therapeutic uses, 4, 238
toxicity, 127
developmental neurotoxicity, 205
mechanism of, 4, 63
neurotoxicity, 101, 136–137, 239
reproductive, 65
signs/symptoms, 239
and transient receptor potential (TRP) family, 244
tumor-initiating potency, 306–307
types of, 175
uses, 238
Carbaryl
albumin hydrolysis of, 129
biomarkers, 282
biomonitoring, 128, 280–282
carboxylesterase hydrolysis of, 128–129
delayed neurotoxicity, 240
-induced alterations in gene expression, 180
metabolism, 64
metabolites, 128, 280–282
neurite inhibition, 211
neurobehavioral effects, 215
poisoning, pralidoxime for, 254
reproductive toxicity, 65, 185
Carbendazim, -induced apoptosis, 170
Carbofuran
brain acetylcholinesterase and, 8, 9
carboxylesterase hydrolysis of, 65
delayed neurotoxicity, 510
"-induced apoptosis, 170–171
neurobehavioral effects, 215
oxidative injury, 138
reproductive toxicity, 65
Carbohydrate metabolism, 182
Carbosulfan, 81
Carboxylesterases
acetylcholinesterase
affinity for, 318
similarity to, 58, 60
activity in reproductive organs, 65
affinity of oxons for, 79
as bioscavengers, 255
interspecific sensitivities, 66
invertebrates, 65–66
vertebrates, 64–65
catalytic mechanisms, 47, 48, 58
characteristics of, 126
in children, 226
cholesterol hydrolysis, 60
classification, 43
cocaine metabolism, 44, 49
drug metabolism, 44, 49
in endoplasmic reticulum, 43
functions of, 43, 60
genes
human, 49–50
male-dependent overexpression, 184–185
mouse, 49–50
polymorphisms, 51–52
human, identity with acetylcholinesterase, 58
inhibitors, 66
chloramphenicol, 322
molate, 65
potentiation of anticholinesterases, 317–318
malathion metabolism, 80
mammals, 126
mechanism of action, 47
organophosphate metabolism, 46, 58–59, 126
insects, 60–62
vertebrates, 68–69
protective effects, 79–80
pyrethroids metabolism
structural and chemical basis, 66–68
vertebrates, 68–69
resistance to aging, 58–59
species differences, 43–44
tissue expression, 44, 126
xenobiotic metabolism, 182
Carboxylesterases isozymes
αE7, 61–62, 69
catalytic mechanism, 46–49
CES1-5, 46–52
E4/FE4, 60–61
esta/β, 61
families, 45, 46–52
gene structure, 49–51
Carcinogenic, mutagenic, and reproductive toxic (CMR) compounds, 577
Caucasians, paraoxonase 1 polymorphisms, 86, 89
Cell growth, organophosphate-induced alterations, 176
Cell membrane, role of neuropathy target esterase, 113
Cell replication, anticholinesterases effects, 207–208
Cell signaling, anticholinesterases effects, 208–210
Central America, acute pesticide poisoning, 506
Central nervous system
anticholinesterase effects, 239, 240, 241, 542, 543;
See also Neurotoxicity
endocrine disruption and, 196–197
nicotinic receptors, 243
Centromere protein F, 181
c-fos, 251–252
cGMP, neuropathy target esterase binding, 117, 118
CHAMACOS study, 227, 230, 231
c-Ha-ras oncogene, 310
Children
accidental poisonings, 347–348
carbamates poisoning, 469
carboxylesterase levels, 226
delayed neurotoxicity, 451
farm work and pesticide exposure, 397
food to body mass ratio, 226
neurobehavioral effects in, 215–216, 451
organophosphate exposure, 196
paraoxonase activity, 226
pesticide exposure, 196, 226
acute, 231
Chloramphenicol, 322
Chlordane, carcinogenicity, 306–307, 405
Chlorfenvinphos, O-dealkylation, 123
Chlorpyrifos
activation of, 21
adenyl cyclase signaling effects, 249
B-esterase sensitivity, 278–279
bioactivation of, 80
brain acetylcholinesterase activity and, 6
carcinogenicity, 306–307
and cell signaling, 208–210
developmental neurotoxicity, 194, 196
and diazoxin, 316
fertility and, 194
gene expression alterations, 176, 177, 178
glial cell development and, 137, 213–215
-induced apoptosis, 167–168, 169, 180, 196, 215, 335
induction of heat shock proteins, 184
inhibition of cell replication, 207–208
inhibition of DNA synthesis, 214
and lung cancer, 405
metabolic pathways, 270
neurite inhibition, 210
neurobehavioral effects, 101, 215–216
neurotoxicity, 185, 241
nicotinic receptors and, 13
OPIDN, 350
PBPK/PD modeling, 273–276
prenatal exposure to, 10, 91
longitudinal studies, 227, 230, 231
and performance, 227, 228–229
pralidoxime in, 253
vulnerability to toxicants, 225–226
Chile
accidental poisonings, 362
agriculture activity, 361
carbamate use, 359–360, 360
congenital malformations, 362–363
epidemiology, 361–363, 361
monitoring system, 360–361
occupational poisonings, 362
organophosphate use, 359–360, 360
pesticides regulations, 357–361
residue regulations, 359
China
accidental poisonings, 372
agriculture activity, 366
epidemiology, 366, 367–369, 367
fatality rates, 366, 372, 373
monitoring system, 367–369, 373
non-occupational pesticide poisonings, 371, 372–376
occupational poisonings, 347, 369–372
pesticide category distribution, 370–371, 371
pesticide regulations, 373–374
pesticide use, 366
poisoning prevention, 373–374
safety education, 374
suicide attempts, 372–373, 506
Chloramphenicol, 322
Chlordane, carcinogenicity, 306–307, 405
Chlorfenvinphos, O-dealkylation, 123
Chlorpyrifos
activation of, 21
adenyl cyclase signaling effects, 249
B-esterase sensitivity, 278–279
bioactivation of, 80
brain acetylcholinesterase activity and, 6
carcinogenicity, 306–307
and cell signaling, 208–210
developmental neurotoxicity, 194, 196
and diazoxin, 316
fertility and, 194
gene expression alterations, 176, 177, 178
glial cell development and, 137, 213–215
-induced apoptosis, 167–168, 169, 180, 196, 215, 335
induction of heat shock proteins, 184
inhibition of cell replication, 207–208
inhibition of DNA synthesis, 214
and lung cancer, 405
metabolic pathways, 270
neurite inhibition, 210
neurobehavioral effects, 101, 215–216
neurotoxicity, 185, 241
nicotinic receptors and, 13
OPIDN, 350
PBPK/PD modeling, 273–276
prenatal exposure to, 10, 91
Chlorpyrifos (Continued)
protective effects of zinc, 331
synaptic development and, 212–213
toxicity
acute long-term effects, 98
age and, 90–91
chronic, 101
neural tube, 168
neurotoxicity, 185, 194, 196, 215–216, 241
paraoxonase 1 status and, 87, 88, 90
urinary metabolites, 280
U.S. regulations, 572
Chlorpyrifos-methyl, endocrine effects, 191, 193
Chlorpyrifos-oxon, 21
albumin hydrolysis of, 126
cAMP inhibition, 248
detoxication, paraoxonase, 124
glial development and, 214
-induced apoptosis, 168, 180, 196
metabolism of, 270
neurite inhibition, 211
Cholesterol, carboxylesterase hydrolysis of, 60
Choline, transport, 10
Choline acetyltransferase (ChAT), 10, 212–213
Cholinergic neurons
anticholinesterase effects, 243
distribution of, 404
overstimulation, 484
Cholinergic syndrome, 238–239, 484–485
and butyrylcholinesterase, 246
CNS symptoms, 485, 506
early phase, 100
later stages, 100
muscarinic effects, 485, 506
nicotinic effects, 485, 506
signs, 136
Cholinergic system
anticholinesterase effects, 212–213
and glutamatergic system, 156–157
major functions, 4
Cholinesterase monitoring programs, U.S., 551–552
Cholinesterases, 584
as biomarkers, 278–279, 404, 485, 585
ChEs isoform, 213
inhibition
and motor activity, 242
organophosphates, 176
inhibitors. See Anticholinesterase pesticides; Carbamates; Organophosphates
interindividual variations, 485
role of, 436, 584
serum, 26
types of, 584
Chromium, -induced apoptosis, 334–335
Chromosomal aberrations
methyl isocyanate, 425
pesticide-induced, 305–310, 408
Chronic fatigue syndrome, 137
Chronic organophosphate-induced neuropsychiatric disorder (COPIND), 136
Chrysanthemic acid, 66, 81
Cimetidine, 321
Citriulline, 140
c-Jun, 251, 252
c-Jun N-terminal protein kinase (JNK), 251
Clonazepam, 154, 254
Clonidine, 254
Coagulation defects, 319, 405
Coal combustion, 417–418
Cocaine metabolism
butyrylcholinesterase, 26–27, 28, 29, 33, 35
carboxylesterases, 44, 49
cytochrome P450 system, 29
Cockroaches, organophosphate resistance, 126
Cognitive dysfunction
adolescents, 232
carbamates, 215–216
childhood pesticide exposure, 227
malaise and, 241
organophosphate poisoning
acute, 215–216, 451
chronic, 102–104, 102, 103, 215–216
COLQ gene, 31, 32
Coma, delayed onset, 240
Compartmental pharmacokinetic models, 270–272
Conditioned behavior, chronic organophosphate exposure and, 101
Congenital defects
Chile, 362–363
metals and anticholinesterases, 335
Containers
dermal exposure from, 419
recycling, 351
residue regulations
Chile, 359
Egypt, 397, 398
Greece, 409
Mexico, 473–474
Convulsions
benzodiazepines for, 488
and increased gene expression, 251–252
and oxidative stress, 245
pretreatment with PBN, 142
Costa Rica, agricultural worker poisonings, 238
Cotton production
Egypt, 380–381, 381, 382
Israel, 448, 449–450
CPP, 153
Crete, 405
carbamate poisonings, 407
organophosphate poisonings, 406
Crop losses, due to insects, 570–571
CTP-phosphocholine cytidylyltransferase (CCT), 114
Culex pipens, 61
Cumulative risk assessment (CRA), U.S., 560–561
Cyclic nucleotide phosphorylase, 213
Cyclins, 310
Cycloate, -induced apoptosis, 170
Cyclooxygenase (COX), organophosphate induction of, 137
Cycloprothrin, 67
Cyclosporine cytoprotective effects, 168
interactions with pesticides, 332
Cypermethrin, 67, 68
Cysteine proteases, in apoptosis, 166
Cytochrome c oxidase (COx), 139, 140
Cytochrome P450 monoxygenase system, 44, 77
arsenic-mediated effects, 333
carbamate metabolism, 63–64, 65, 81
carbofuran metabolism, 128
cocaine metabolism, 29
drug metabolism, 44
ethyl carbamate metabolism, 65
genetic polymorphisms, 21
inhibition by chloramphenicol, 322–323
and insecticide tolerance, 182
metals and, 331
organophosphate bioactivation, 78–79, 125, 270
xenobiotic metabolism, 182
Cytokines, role in seizures, 158
Cytoskeletal proteins, 211, 240
Cytotoxic T-lymphocyte (CTL) activity, organophosphate-induced inhibition, 170

2,4-D, 403
Dasanit, 320
DDT, 344
cancer and, 405
use of, 571
DDVP. See Dichlorvos
Delayed effects, epidemiology of, 348–350
Delayed neurotoxicity
children, 451
farm animals, 391
Deltamethrin, 67
Demeton-S-methyl toxicity, 88
Depression
in COPIND, 136
and organophosphate exposure, 100, 103–104, 350, 405
Dermal exposure, 269
pharmacokinetic models, 276–277
risk assessment, 574
Desert Storm, 242
Destruction-box (D-Box), 114
Developmental neurotoxicity
absorption of toxins, 204–205
age differences in, 205–207
anticholinesterase pesticides, 205–218
apoptosis and, 215
cadmium and anticholinesterases, 335
and cAMP signaling, 248
carbamates, 205
disruption of neurodevelopment processes, 207
effects, 204
and exposure timing, 204
findings, 242
glial development and, 213–215
inhibition of neurite outgrowth, 210–212
neurobehavior and, 215–216
neuronal cells, 207–210
organophosphates, 90, 205–218
paraoxonase 1 status and, 90
PC12 model, 248
postnatal exposure, 204
prenatal exposure, 204
prevalence of, 203
pyrethroids, 68
synaptic development and, 211–212
testing for, 216–217
DFP. See Diisopropyl fluorophosphate
DFPase, 255
Diabetes, 182, 443
Diacylglycerol, 11, 249, 250
Dialkyl phosphates (DAP) as biomarkers, 277–278, 294
elimination half-lives, 297
reference values, 297, 298
urinary clearance, 276–277
Diazepam, 20, 254, 255
antiseizure effects, 152, 154
and atropine, 488
dosing, 586
Diazinon
activation of, 21
and chlorpyrifos, 316
chronic exposure, 443
developmental neurotoxicity, 208
neurite inhibition, 211
toxicity, paraoxonase 1 status and, 90
Diazinon-oxon, 21
albumin hydrolysis of, 126
neurite inhibition, 211
toxicity, paraoxonase 1 activity and, 88

Dichlorvos
brain acetylcholinesterase activity and, 6
delayed neurotoxicity, 240, 391
inhibitions in gene expression, 178
apoptosis, 169, 335
induced oxidative stress, 305
muscarinic receptors and, 12, 245
neurotoxicity, chronic exposure, 241
OPIDN, 350
reproductive toxicity, flies, 184, 185
<table>
<thead>
<tr>
<th>Chemical/Compound</th>
<th>Page(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieldrin</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>N,N-Diethylthiocarbamate</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Diethyl maleate</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Diethylphosphate (DEP)</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>as biomarker, 277–278, 294 and sperm DNA, 478</td>
</tr>
<tr>
<td>Diethylthiophosphate (DETP)</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>as biomarker, 277–278, 294 and sperm DNA, 478</td>
</tr>
<tr>
<td>Diethylumbelliferyl phosphate</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>Digit-Symbol test</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Dihydrotestosterone (DHT)</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>parathion inhibition of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditosopropylfluorophosphate (DFP)</td>
<td>149–150</td>
<td>delayed neurotoxicity, 180, 594 dopaminergic effects, 239 for glaucoma, 435 -induced alterations in gene expression, 179, 180–181 oxidative injury, 138 somatostatinergic effects, 239 therapeutic uses, 4, 435</td>
</tr>
<tr>
<td>Diisopropyl phosphates, O-dealkylation, 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethoate immunotoxicity, 334 and metals, 330 neurobehavioral effects, 215 treatment, 590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylthiocarbamate (DMDC)</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Dimethyl phosphate (DMP) as biomarkers, 294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermediate syndrome, 592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-dealkylation, 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disulfoton, and OMPA</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Dithiocarbamates</td>
<td></td>
<td>changes to cell systems, 252 delayed neurotoxicity, 240 endocrine disruption, 240 immune system effects, 252 -induced apoptosis, 171–172 neurotoxicity, 250 and oxidative stress, 248 and Parkinson’s disease risk, 243</td>
</tr>
<tr>
<td>Dizocilpine, 13, 153, 254, 255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA damage in apoptosis, 166, 247 malathion-induced, 181 pesticide-induced, 305–310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA synthesis, inhibition by anticholinesterases, 207–210, 213, 214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docosahexaenoic acid (DHA)</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Domestic animals pesticide exposure, 435 poisonings, Greece, 411–412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donepezil, 4 metabolism, 21 and silent butyrylcholinesterase genotype, 26, 29 specificity of, 29 toxic side effects, 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine activity in Gulf War veterans, 242 auto-oxidation of, 245 cytotoxicity, 155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine quinones, 247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine receptor antagonists, 157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopaminergic neurons, 243, 247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopaminergic systems, in seizures, 155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose-effect relationships, risk assessment, 574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose-response relationships, risk assessment, 573–574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down syndrome, 363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug metabolism carboxylesterases in, 44–46 enzymes, 44, 45–46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug seeking, blocking with butyrylcholinesterase, 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echothioate and muscarinic receptors, 244 and nicotinic receptors, 245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectoparasicides, 433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egasy, 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egasy-β-glucuronidase complex, 290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron transport chain, inhibitors/uncouplers, 245 Encephalopathy, delayed onset, 240 Endemic familial arthritis, 426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocrine disruption in animals, 191–195 central nervous system and, 196–197 dithiocarbamates, 240 organophosphates, 190–191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endoplasmic reticulum, carboxylesterases in, 43 Endosulfan, 448 restrictions, 441 use in Mexico, 473</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
England, accidental poisonings, 348
Environment, residues in, 571
Environmental exposure, pharmacokinetic models, 276–277
Environmental Genome Project, paraoxonase 1 polymorphisms, 86
Environmental monitoring, workplace exposure, 279
Environmental Protection Agency (EPA)
neurotoxicity testing, 216–217
Office of Pesticide Programs, 571
registered organophosphates, 225
Epidemiological studies, limitations of, 404
Epidemiological Surveillance Program on Acute Pesticide
Poisoning (ESPAPP), Spain, 496–507
Epileptic seizures
excitatory amino acids in, 13–14
loss/alteration of nicotinic receptors, 14
monoamines in, 155
EPN
bioactivation of, 80
delayed neurotoxicity in farm animals, 391
potentiation of proacine, 320
toxicity potentiation, 316, 320
Erythrocytes, annealed, 254
E-screen assay, 190
Eserine, and breast cancer, 310
Esterases
α,β-hydrolase-fold structure, 47
classification of, 46
pyrethroid resistance, 68–69
substrate specificity, 46
Estrogen
and malathion/parathion, 182
prolonged exposure, and breast cancer, 310
Estrogen receptor (ER) competitive binding assay, 190
Estrogen-responsive gene (EBBP), 181
Ethacrynic acid (EA), 183
Ethyl carbamate
carcinogenicity, 306
detoxication, 65
Ethyl octylphosphonofluoridate (EOPF), 115
Ethyl parathion
brain acetylcholinesterase activity, 6–7
treatment, 591
Etofenprox, 67
European Commission (EC), 571
Pesticides Directive, 575
European Food Safety Authority (EFSA), 571, 575
European Pesticide Cooperation (EPCO), 571
European Union (EU)
carcinogenic, mutagenic, and reproductive toxic (CMR)
compounds, 577
neurotoxicity testing, 216
pesticide regulations, 571
residue limits, 574
risk assessment, 575
risk management, 575–577
SCOEL, 575–576
self-poisonings, 346
Excitatory amino acids, 13–14
in anticholinesterase neurotoxicity, 153
neurite inhibition, 211
Excitotoxicity
glutamate in, 157, 246
hippocampus, 141
initiating mechanism, 245–246
pretreatment with PBN, 142
reactive nitrogen species (RNS) in, 245
reactive oxygen species (ROS) in, 245
Exposure
assessment, 573, 574
multiple pesticides, 315
pathways, 19–20, 196–197, 238
quantifying
carbamates, 280–282
organophosphates, 279–280
Exterminators, paraoxonase 1 genotypes, 22
Extracellular signal-regulated kinases (ERKs), 180, 249–250
F₂-isoprostanes, 138, 141, 142
F₂-neuroprostanes, 138–139, 141, 142
Farm animals, incidental poisoning, Egypt, 391
Farmers
biomonitoring, 281–282
suicide rates, 103
Farm workers. See Agricultural workers
Fat metabolism, butyrylcholinesterase in, 28, 33
FB642, 172
Federal Food, Drug, and Cosmetic Act (FFDCA), U.S., 560, 571
Federal Insecticide, Fungicide, and Rodenticide Act
(FIFRA), U.S., 560, 571
Felbamate, 254
Fenitrothion
and acetaminophen, 321
and BPMC, 317
endocrine disruption, 190, 191, 193, 194, 195
-induced alterations in gene expression, 179
resistance, 183
self-poisoning, Japan, 459–461
toxicokinetics, 460–461
urinary metabolites, 436
Feniton
carcinogenicity, 306–307
endocrine effects, 191
potentiation of BPMC, 320
treatment, 590
Ferric-reducing ability of plasma (FRAP), 442
Fertility
and acetylcholine overexpression, 184–185
and chlorpyrifos exposure, 194
organophosphates and, 194, 197, 477–478
Fetotoxicity, in lipid peroxidation, 308
Fetus
brain, neurotoxicity, 206
endocrine disruption in, 194
neurobehavioral effects in, 215–216
paraoxonase 1 activity, 227
Fibroblast growth factor (FGF), 176
Fish
endocrine disruption in, 194–195
methylii parathion bioaccumulation, 391
pesticide residues, 391, 392
pyrethroids sensitivity, 67
Flavin-containing monooxygenases (FMOs), 44, 77
in carbamate metabolism, 63–64
fonofos bioactivation, 79
Flea-control products, 557
Flies
dichlorvos toxicity, 184, 185
organophosphate resistance, 126
Swiss cheese protein (SWS), 111, 112
Flufenamic acid-induced apoptosis, 171
Flufenprox, 67
Flutamide, endocrine disruption, 190, 193
Follicle-stimulating hormone (FSH), 477
Fonofos, flavin monooxygenase activation of, 79
Food and Agriculture Organization (FAO), 570
goals of, 472
Integrated Pest Management System, 374
International Code of Conduct on the Distribution and Use of Pesticides, 351
Food poisoning, 435
Food Quality Protection Act (FQPA), U.S., 560
Free radical intermediates, 138
Fruits, contaminated
Egypt, 392–395
Israel, 449
Fumigants, characteristics of, 434
Fungicides
benefits of, 570
carbamates, 63, 136
toxicological characteristics of, 434
G137D substitution, αE7 gene, 61, 62
Gacyclidine, antiseizure effects, 153
Galantamine, 4
Gamma-aminobutyric acid (GABA), 586
brain levels during seizures, 154–155
effects of organophosphates on, 14
Gamma-aminobutyric acid (GABA)-ergic neurons, 247
Gamma-aminobutyric acid (GABA) receptor, benzodiazepines at, 586
Gamma-aminobutyric acid (GABA)-regulated chloride channels, leptophos and, 239
Gamma glutamyl transpeptidase (GGT), 442
Gangliosides, 594
Gastric aspiration, 589
Gastric lavage, 486, 589
Gene expression
anticholinesterase effects on, 250–252
increases, arolusions and, 251–252
Genotoxicity
agriculture workers, Mexico, 477–478
and chronic pesticide exposure, Iran, 442
and occupational exposure, India, 428
and oxidative stress, 183–184
Genotoxicity testing, 573
Ginger Jake paralysis, 109, 391, 543
Glasgow coma score, 240
Glaucoma, DFP for, 435
Glial cells
anticholinesterase effects, 137, 213–215
neuropathy target esterase expression, 112–113, 116
Glial fibrillary acidic protein (GFAP), 176, 180–181, 213, 214
Glioma, 405
Gliosis, 137
Glucokinase, 182
Glucose-6-phosphate dehydrogenase (G-6PDH), 330
Glucose homeostasis, organophosphates and, 182, 184, 442
β-Glucuronidase, as biomarker, 289–300
acute exposure, 292–294, 436
chronic exposure, 292
Malaysian population, 291–294
in rats, 290–291
β-Glucuronidase assay, 290
Glucuronide, as biomarker, 281
Glutamate
and acetylcholine, 156–157
in excitotoxicity, 157, 246
NMDA receptor activation, 137
in seizures, 254
in soman poisoning, 153–154
Glutamate-receptor antagonists, 254
Glutamate receptors
effects of long-term organophosphate poisoning, 98
overstimulation of, 137
Glutamatergic system, and cholinergic system, 156–157
Glutamine synthase, 213
Glutathione-S-transferases (GSTs)
in carbamate metabolism, 64
genes, 176
-mediated O-dealkylation, 183
in organophosphate resistance, 183
xenobiotic metabolism, 182
Gly117 His mutant, butyrylcholinesterase, 29
Glyceraldehyde-3-phosphate dehydrogenase, 180–181
Glycerophosphocholine, 111
Glycopyrrolate, 253
Gos, brodifacoum poisoning, 391
Golfers, carbamate exposure, 282
Gonadotropin-releasing hormone (GnRH), 191, 195
G-protein coupled receptors, 11
G-protein signaling, anticholinesterase impairment of, 214
Grape farmers, 410–411
Greece
acute pesticide poisonings, 406–408
breast cancer incidence, 409–410
chromosomal aberrations, 408
domestic animal poisonings, 411–412
honeybee poisoning, 411
occupational poisonings, 406–411
residue regulations, 409
INDEX

Insecticide Act, India, 418
Insecticides, characteristics of, 434; See also Anticholinesterase pesticides; Carbamates; Organophosphates; Pesticides

Insect resistance
- carbamates, 65
- carboxylesterase-mediated, 60
- and cytochrome P450 activity, 182

Egypt, 391–392
Israel, 454
malathion, and W251L αE7 substitution, 62
organophosphates, heat shock proteins in, 184

Insects
- crop losses due to, 570–571
- malathion toxicity, 80, 318
- organophosphate sensitivity, 125
- sodium channel sensitivity, 67

Institute of Public Health (ISP), 357–358
Insulin resistance, 442

Integrated Pest Management System, FAO, 374

Intentional poisonings, 343, 344; See also Self-poisoning:
- Suicide attempts
 - India, 419, 423
 - Iran, 436–440
 - Israel, 453
 - Japan, 459
 - Korea, 463, 464–466
 - Serbia, 482–483
 - Spain, 500
 - Taiwan, 511, 512, 517
 - Thailand, 529–530
 - Turkey, 535–537

Interleukins
- IL-10, 252
- role in seizures, 158

Intermediate syndrome
- delayed, 136
- dimethylphosphates, 592
- epidemiology of, 348
- mechanism of, 348
- Serbia, 490–491
- signs/symptoms, 109, 136, 543, 592
- treatment, 592

International Agency for Research on Cancer (IARC), 303
International Classification of Diseases, WHO, 525
International Code of Conduct on the Distribution and Use of Pesticides, FAO, 351
International Program for Chemical Safety (IPCS), 570

Invertebrates
- carbamate metabolism, 65–66
- pyrethroids metabolism, 68–69
- Ipecacuanha, 487
- Iran
 - accidental poisonings, 436–440
 - acute pesticide poisonings, 436–440
 - biomonitoring, β-glucuronidase, 293–294
 - fatality rates, 345
 - occupational exposure, 442–443
 - opioid self-poisonings, 439
- pesticides residues, 443
- registered pesticides, 436, 437
- self-poisonings, 436–440
- treatment protocols, 440

Isopenphos, OPIDN, 350
Isomalathion, 318

- induced alterations in gene expression, 181
- potentiating impurities, 318

Israel
- acute pesticide poisonings, 452–453
- aerial spray workers, 450–451
- agriculture activity, 448
- contaminated fruits/vegetables, 449
- cotton production, 448, 449–450
- greenhouses, 448, 450
- groundwater contamination, 454
- insect resistance, 454
- migrant workers, 448
- mosquito control, 448
- neurotoxic effects, 449
- occupational poisoning, 449–452
- organophosphate use, 448–449
- Parkinson’s disease in kibbutz farmers, 452
- pediatric poisoning cases, 453
- pesticide regulations, 454
- pesticide use, 448–449
- self-poisonings, 453

Israel National Poison Control Center, 452–453

Jamaica Ginger, 109, 391, 543

Japan
- accidental poisonings, 349, 458–459, 459
- carbamate poisoning, 461
- carbamate use, 458
- fatality rates, 345
- fenitrothion self-poisoning, 459–461
- “gyoza” dumplings, 458, 459
- Ministries of Agriculture, Forestry, and Fisheries (MAFF), 457
- National Research Institute of Police Science, 345
- organophosphate use, 457–458
- paraquat poisoning, 459
- parathion regulations, 457, 458
- suicide attempts, 349, 458, 459–461

Japanese, paraoxonase 1 polymorphisms, 89

Japan Poison Information Center (JPIC), 458–459

Joint Meeting on Pesticide Residues (JMPR), 570, 576–577

K- Jun N-terminal kinases, 180

Jurkat human T cells, 170

Kainate, neurite inhibition, 211

Kainic acid, 142

KDEL receptor, 46

Kerala, India, ethyl parathion poisoning, 422

Kibbutz farmers, 448–450, 452

Kidneys, neuropathy target esterase activity, 112

Knock Tap test, 451

Korea
- acute pesticide poisoning, 464–466
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbamates poisoning</td>
<td>468–469</td>
</tr>
<tr>
<td>epidemiology</td>
<td>464–466</td>
</tr>
<tr>
<td>fatality rates</td>
<td>463, 464, 467, 468</td>
</tr>
<tr>
<td>organophosphate poisonings</td>
<td>466–468</td>
</tr>
<tr>
<td>organophosphate/pyrethroid poisonings</td>
<td>466–468</td>
</tr>
<tr>
<td>suicide attempts</td>
<td>463, 465–466</td>
</tr>
<tr>
<td>L/M polymorphism, paraoxonase 1</td>
<td>86</td>
</tr>
<tr>
<td>Lactate dehydrogenase (LDH) release assays</td>
<td>169</td>
</tr>
<tr>
<td>Langerhans islets</td>
<td>442</td>
</tr>
<tr>
<td>Latin America, self-poisonings</td>
<td>346</td>
</tr>
<tr>
<td>Lead</td>
<td>329, 334–335</td>
</tr>
<tr>
<td>Learning deficits, childhood pesticide exposure</td>
<td>227</td>
</tr>
<tr>
<td>Legge's principle</td>
<td>448</td>
</tr>
<tr>
<td>Leptophos</td>
<td></td>
</tr>
<tr>
<td>delayed neurotoxicity in farm animals</td>
<td>391</td>
</tr>
<tr>
<td>GABA-regulated chloride channels and</td>
<td>239</td>
</tr>
<tr>
<td>neurite inhibition</td>
<td>210–211</td>
</tr>
<tr>
<td>Leukemia</td>
<td>408</td>
</tr>
<tr>
<td>Ligand-gated ion channels</td>
<td>11</td>
</tr>
<tr>
<td>Limbic region</td>
<td>22</td>
</tr>
<tr>
<td>Lindane</td>
<td></td>
</tr>
<tr>
<td>-induced oxidative stress</td>
<td>308</td>
</tr>
<tr>
<td>use of</td>
<td>571</td>
</tr>
<tr>
<td>Lipases, α,β-hydrolase-fold structure</td>
<td>47</td>
</tr>
<tr>
<td>Lipid metabolism, and neuropathy target esterase</td>
<td>116</td>
</tr>
<tr>
<td>Lipid peroxidation</td>
<td></td>
</tr>
<tr>
<td>brain</td>
<td>137–139</td>
</tr>
<tr>
<td>in chronic pesticide exposure</td>
<td>442</td>
</tr>
<tr>
<td>in fetotoxicity</td>
<td>308</td>
</tr>
<tr>
<td>protective effects of zinc</td>
<td>330–331</td>
</tr>
<tr>
<td>Lipopolysaccharide (LPS)</td>
<td>142</td>
</tr>
<tr>
<td>Lithium</td>
<td>249</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td>activation/detoxification reactions</td>
<td>269</td>
</tr>
<tr>
<td>carboxylesterases activity</td>
<td>44</td>
</tr>
<tr>
<td>Logman Hakim Hospital Poison Center</td>
<td>293</td>
</tr>
<tr>
<td>Low affinity choline uptake, and chlorpyrifos exposure</td>
<td>249</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>405</td>
</tr>
<tr>
<td>Luteinizing hormone (LH)</td>
<td>477</td>
</tr>
<tr>
<td>Lymphocytes, neuropathy target esterase activity</td>
<td>112</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>408</td>
</tr>
<tr>
<td>Lysosome pathway, neuropathy target esterase degradation</td>
<td>117</td>
</tr>
<tr>
<td>Magnesium sulfate, with atropine/oximes</td>
<td>440–441</td>
</tr>
<tr>
<td>Malaise</td>
<td>241</td>
</tr>
<tr>
<td>Malaoxon</td>
<td>80</td>
</tr>
<tr>
<td>-induced alterations in gene expression</td>
<td>181</td>
</tr>
<tr>
<td>persistence of</td>
<td>316</td>
</tr>
<tr>
<td>potentiating impurities</td>
<td>318</td>
</tr>
<tr>
<td>toxicity, organophosphates potentiation of</td>
<td>89</td>
</tr>
<tr>
<td>Malaria prevention</td>
<td></td>
</tr>
<tr>
<td>DDT for</td>
<td>571</td>
</tr>
<tr>
<td>Israel</td>
<td>448</td>
</tr>
<tr>
<td>Malathion</td>
<td></td>
</tr>
<tr>
<td>aerial application</td>
<td>553–554</td>
</tr>
<tr>
<td>arsenic and</td>
<td>333</td>
</tr>
<tr>
<td>and BPMC</td>
<td>317</td>
</tr>
<tr>
<td>and breast cancer</td>
<td>310</td>
</tr>
<tr>
<td>carboxylesterase detoxification of</td>
<td>80</td>
</tr>
<tr>
<td>and carcinogenesis</td>
<td>181–182</td>
</tr>
<tr>
<td>chromosomal damage</td>
<td>176</td>
</tr>
<tr>
<td>chronic exposure</td>
<td>101, 443</td>
</tr>
<tr>
<td>endocrine disruption</td>
<td>190, 194</td>
</tr>
<tr>
<td>estrogen and</td>
<td>182, 310</td>
</tr>
<tr>
<td>immunotoxicity</td>
<td>334</td>
</tr>
<tr>
<td>-induced alterations in gene expression</td>
<td>179</td>
</tr>
<tr>
<td>-induced apoptosis</td>
<td>168, 169</td>
</tr>
<tr>
<td>Medfly eradication</td>
<td>553–554</td>
</tr>
<tr>
<td>mosquito-control</td>
<td>554</td>
</tr>
<tr>
<td>neurobehavioral effects</td>
<td>101, 215</td>
</tr>
<tr>
<td>potentiating impurities</td>
<td>318</td>
</tr>
<tr>
<td>protective effects of zinc</td>
<td>330–331</td>
</tr>
<tr>
<td>resistance, and W251L αE7 substitution</td>
<td>62</td>
</tr>
<tr>
<td>toxicity</td>
<td></td>
</tr>
<tr>
<td>EPN potentiation</td>
<td>316</td>
</tr>
<tr>
<td>insects, 80, 318</td>
<td></td>
</tr>
<tr>
<td>mammals, 80</td>
<td></td>
</tr>
<tr>
<td>potentiation of</td>
<td>318, 319</td>
</tr>
<tr>
<td>urinary metabolites</td>
<td>436</td>
</tr>
<tr>
<td>Malaysia, biomonitoring</td>
<td></td>
</tr>
<tr>
<td>β-glucuronidase</td>
<td>291–294</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
</tr>
<tr>
<td>carboxylesterases</td>
<td>126</td>
</tr>
<tr>
<td>endocrine disruption in</td>
<td>191, 193–194</td>
</tr>
<tr>
<td>paraoxonase 1 activity</td>
<td>87</td>
</tr>
<tr>
<td>phosphotriesterases</td>
<td>123</td>
</tr>
<tr>
<td>pyrethroid toxicity</td>
<td>67, 68</td>
</tr>
<tr>
<td>Mammary glands, organophosphate-induced changes</td>
<td>310</td>
</tr>
<tr>
<td>Mancozeb</td>
<td></td>
</tr>
<tr>
<td>-induced apoptosis</td>
<td>171</td>
</tr>
<tr>
<td>neurotoxicity</td>
<td>245</td>
</tr>
<tr>
<td>Maneb</td>
<td></td>
</tr>
<tr>
<td>neurotoxicity</td>
<td>245</td>
</tr>
<tr>
<td>Manganese, interactions with pesticides</td>
<td>331–332</td>
</tr>
<tr>
<td>Manzanate/foley</td>
<td>472</td>
</tr>
<tr>
<td>MAP, 180</td>
<td></td>
</tr>
<tr>
<td>MAP kinase</td>
<td>251</td>
</tr>
<tr>
<td>Maximum residue limits</td>
<td>575</td>
</tr>
<tr>
<td>Medicinal plants, contaminated</td>
<td>395</td>
</tr>
<tr>
<td>Mediterranean fruit fly</td>
<td>553–554</td>
</tr>
<tr>
<td>Mediterranean Sea, methyl parathion spill</td>
<td>391</td>
</tr>
<tr>
<td>Melatonin, bioscavenging</td>
<td>171</td>
</tr>
<tr>
<td>Memantine</td>
<td>14</td>
</tr>
<tr>
<td>antiseizure effects</td>
<td>152, 153</td>
</tr>
<tr>
<td>atropine and</td>
<td>255</td>
</tr>
<tr>
<td>mechanisms of action</td>
<td>142</td>
</tr>
<tr>
<td>pretreatment</td>
<td>143–144</td>
</tr>
<tr>
<td>Memory, Ca²⁺/cAMP response element binding protein (CREB) in</td>
<td>250</td>
</tr>
<tr>
<td>Memory impairment</td>
<td></td>
</tr>
<tr>
<td>childhood pesticide exposure</td>
<td>232</td>
</tr>
<tr>
<td>in COPIND</td>
<td>136</td>
</tr>
<tr>
<td>from soman poisoning</td>
<td>98</td>
</tr>
<tr>
<td>Meperidine</td>
<td>44, 49</td>
</tr>
<tr>
<td>Mercury</td>
<td>329</td>
</tr>
<tr>
<td>Metabolites, toxicity of</td>
<td>319</td>
</tr>
</tbody>
</table>
Metals
 and anticholinesterase toxicity, 335
 and apoptosis, 334–335
 immunotoxicity, 334
 pesticide interactions, 330–336
Methamidophos
 -contaminated vegetables, 435
 in “gyoza” dumplings, 458, 459
 as an index chemical, 560
 neurobehavioral effects, 101
 OPIDN, 350
 restrictions, 441
 use in Mexico, 473
Methanesulfonyl fluoride, 4
Methiocarb, oxidative biotransformation, 128
Methocramine, 157
Methomyl
 acute poisoning, 506
 biomarkers, 282
 food-related exposure, 510
 self-poisoning, Japan, 461
 β-N-Methylaminoalanine, 211
Methyl carbamates
 activation of, 81
 carcinogenicity, 306
 detoxication of, 81
N-Methylthiophanate, 250
Methyl isocyanate
 acute poisoning symptoms, 424
 Bhopal disaster, 423–425
 chromosomal aberrations, 425
 decomposition products, 423
 inhalation exposure, 425
 post-traumatic stress disorder (PTSD), 425
Methyl paraoxon, 79
Methyl parathion
 accidental ingestion, 558–559
 atmospheric transformations, 454
 bioactivation of, 90
 brain acetylcholinesterase activity and, 6, 9
 brain choline acetyltransferase and, 212
 endocrine effects, 193
 illegal spraying, 538
 -induced alterations in gene expression, 179
 -induced apoptosis, 180
 mammalian toxicity, 457
 Mediterranean Sea spill, 391
 muscarinic receptors and, 12
 neurobehavioral effects, 451
 treatment, 591
 use in Mexico, 473
Methylprednisolone
 in OPIDP treatment, 594
 with trimedoxime and atropine, 256, 594
Methyl thiophanate, -induced apoptosis, 170
Mevinphos
 LD50, 570
 OPIDP, 491
Mexico
 acute pesticide poisonings, 475
 agriculture activity, 472
 genotoxic effects of pesticides, 477–478
 Green Revolution, 472
 occupational poisonings, 475–477
 paraoxonase 1 polymorphisms, 478
 pesticide regulations, 474
 pesticide use, 472
 reproductive effects of pesticides, 477–478
 socioeconomic status and pesticide use, 473, 474
 tobacco farmers, 477
 Toxicological Information Centers (TIC), 474–475
Microdialysis, intracerebral, 10–11
Microglia, in seizures, 157
Microtubule-associated protein-2 (MAP-2), 240
Midazolam, 254
Middle East, suicide attempts, 441–442
Migrant farm workers, pesticide exposure, 557
Milk
 contraindications, 487
 parathion contaminated, 348
 toxins in, 204
Ministries of Agriculture, Forestry, and Fisheries (MAFF), Japan, 457
Mipafox
 -neurite inhibition, 210
 OPIDN, 350
Mitochondria, organophosphate-induced impairments, 246
Mitochondrial electron transport chain, inhibitors/uncouplers, 245
p38mitogen-activated protein (MAP), 180
p38mitogen activated protein (MAP) kinase, 251
Mivacron®, 32
Mivacurium
 detoxication by butrylcholinesterase, 27, 28, 32, 33
 uses, 28, 32
Mivacurium apnea, 27, 28, 32, 33
Molinate, 65
Monitoring programs. See Biomonitoring programs
Monoamines, in seizures, 155
Monoaminooxidases, anticholinesterase inhibition of, 157
Monocrotophos
 -induced alterations in gene expression, 179
 restrictions, 441
 Monomethyl carbamate, 592
 Moshav farmers, 448–450
Mosquitoes
 carboxylesterases polymorphisms, 61
 control
 DDT, 571
 Israel, 448
 malathion, 554
Mothers’ and Newborns Cohort Study, 227, 230, 231
Motor impairment, 99, 22, 42
Motor neuron disease, 116
Mt. Sinai Children’s Environmental Health Study, 227, 230, 231
Muda Agricultural Development Authority (MADA), 292
Multi-drug resistance-associated protein 2 (MRP2), 44, 46
Multiple myeloma, 405
Muscarinic acetylcholine receptors, 11, 14
- acetylcholine accumulation, 4, 11, 136, 150, 151–152, 484
- antagonists, 152, 244, 252–253
- anticholinesterase effects, 11–13, 157, 243–245, 248, 543
- carbamates and, 244, 543
downregulation of, 11, 12, 248
- location, 157
- organophosphates and, 11–13, 243–245, 248, 543
direct effects, 244, 543
- overstimulation of, 136, 151–152, 243
- stimulation of, 11
- subtypes, 11, 14
Muscarinic mechanism, seizures and lethality, 151–152
Myelin, degeneration, 240
Myelin-associated glycoprotein (MAG), 176, 214
Myzus persicae, 60–61
N1-Naphthol, 281
Narcotics, carboxylesterases metabolism of, 44
National Environmental Center for Toxicology Research (NECTR), Egypt, 389–391
National Epidemiological Surveillance System, Thailand, 525
National Health and Nutrition Examination Survey (NHANES), 305
National Malaria Control Program, India, 418
National Pesticide Information Center (NPIC), U.S., 545, 549–551
National Poison Center, Turkey, 535–536
National Poison Control Center, Serbia, 482
National Poison Data System (NPDS), U.S., 546–547, 551
National Research Institute of Police Science, Japan, 345
Natural killer (NK) cells, 169
NBQX, 154
Necrosis, 165
Neonates, endocrine disruption in, 194
Neonicotinoids, 507
Neostigmine, therapeutic uses, 4
NEPSY, “Attention” battery, 451
Neramexane, 153
Nerve agents
- acetylcholinesterase inhibitors, 3
detoxification
- butryrylcholinesterase, 28, 32
- paraoxonase 1 in, 124, 256
- pretreatment/protection, butryrylcholinesterase, 26
toxicity, 80
- acute long-term effects, 98–100
- and paraoxonase 1 status, 89–90
- phosphotriesterase prevention of, 125
Nerve growth factor (NGF), 176, 209–210
Nervous system, developing
- processes in, 204
- sensitivity to toxic injury, 204–205
- NEST, 111, 112, 115
Netherlands, occupational poisonings, 347
Neural tube, chlorpyrifos cytotoxicity, 168
Neurite outgrowth, anticholinesterases effects, 210–212
Neurobehavioral effects
- acute pesticide poisoning, 98–100, 559
- adolescents, 232–233
- carbamates, 215–216, 239
- functional areas, 102–104, 103
- infants, 231–232
- organophosphate poisoning, 215–216
- acute, 98–100, 559
- chronic, 101–104, 241
- low level, 227, 449–450, 451–452
Neurobehavioral tests, demographic variables, 231
Neurodegeneration
- excitatory amino acids in, 13–14
- and neuropathy target esterase, 113
- and pesticide exposure, 405
Neurodevelopmental toxicity, anticholinesterase pesticides, 176, 177–180, 180–185
Neuroinflammation, in neurotoxicity, 155–156, 157–158
Neurological disorders, Gulf War veterans, 242
Neuromuscular junction, acetylcholinesterase reactivation at, 253
Neurons
- neuropathy target esterase activity, 112–113, 115
- replication/differentiation, 207–210
Neuropathy esterase, 110, 240
Neuropathy target esterase (NTE)
- active site, 593
- aging of, 114–115, 136
- altered gene expression, 185
- biochemistry, 110–111
- in cell membrane regulation, 113
- discovery of, 110, 593
- function of, 112–113, 593
- knockout mice, 113
- and lipid metabolism, 116
- lysophospholipase activity, 111
- molecular structure of, 111–112
- molecular toxicology, 117–118
- NTE1, 111
- in OPIDN, 114, 115–116, 240
- in OPIDP, 491, 593
- in predictive toxicity testing, 116–117
- regulation of expression, 113–114
- tissue distribution, 112–113
- Neuropathy target esterase (NTE)-related esterase (NRE), 111–112
Neuropsychiatric disorders, 528
Neurotoxicity
- acute, 98–100, 238–240
- altered gene expression, 176, 177–180, 180–185
- carbamates, 136–137
- chronic, 241, 246, 449
- mechanism of, 246
delayed. See Organophosphate-induced delayed neuropathy;
Organophosphate-induced delayed polyneuropathy
Neurotoxicity (Continued)
developmental differences, 205, 226–227
mechanisms, 151–158
NMDA receptors in, 141
organophosphates, 136–137
acute exposure, 98–100, 238–240, 239
chronic exposure, 241–242, 449
and oxidative stress, 245–247
protective effects of PBN, 141–142
severe effects, 226
and signaling pathways, 248–250
subtle effects, 226
Neurotransmission, role of butyrylcholinesterase in, 26, 31–32
Neurotransmitters
in anticholinesterases poisoning, 151–155
noncholinergic, inactivation of, 4
Neurotrophic factors, anticholinesterases effects, 208–210
Neurotrophins, 176
Newborns
congenital malformations, 362–363
paraoxonase 1 levels, 91, 206
Nicaragua, occupational poisonings, 347
Nickel, -induced apoptosis, 334–335
Nicotinic acetylcholine receptors, 11
acetylcholinesterase inhibitors, 13
antagonists, 253–254
anticholinesterase effects, 13, 157
carbamates and, 244
downregulation, 11, 12
HI-6 interaction, 587
loss/alteration of, 14
organophosphates and, 13, 243–244
direct effects, 245
overstimulation of, 136, 243
potencies of inhibition, 13
pralidoxime interaction, 587
stimulation of, 11
subunits, 11, 14
Nicotinic mechanisms, seizures and lethality, 152
Nimodipine, 255
Nitric oxide
cytochrome c oxidase inhibition, 140
in lipid peroxidation, 140
NMDA activation of, 137
in seizures, 140
Nitric oxide synthase, 140
4-Nitrophenol, endocrine effects, 193
\(N\)-Nitroscoboruan, -induced apoptosis, 171
NMDA. See \(N\)-methyl-\(\alpha\)-aspartate
\(N\)-methyl-\(\alpha\)-aspartate (NMDA)
activation of nitric oxide synthesis, 137
in neurodegeneration, 13–14
\(N\)-methyl-\(\alpha\)-aspartate (NMDA) receptor, 14, 255
activation, apoptosis blocking, 168
glutamate activation of, 137
location, 157
role in neurotoxicity, 141
\(N\)-methyl-\(\alpha\)-aspartate (NMDA) receptor antagonists
antiseizure effects, 152–154, 156
memantine, 14
properties of, 255
\(N\)-methyl-\(\alpha\)-aspartate (NMDA)-receptor-channel blockers, 254
Non-Hodgkin’s lymphoma, 311, 403, 405
Non-protein sulfhydryls (NPSH), 321–322
Noradrenaline, 155
Noradrenergic systems, in seizures, 155
Noricaine nitroxide, 29
\(N\)-tert-butyl-\(\alpha\)-phenylnitrone (PBN), 141–142
Nuclear factor kappaB (NF-kappaB), 171–172
Obesity, and butyrylcholinesterase deficiency, 28
Obidoxime, 253, 588
dosing, 590, 591
Occupational exposure levels (OELs), 575
Occupational poisonings, 150, 238, 343, 346–347, 349
biomonitoring, 279–280, 411
Chile, 359, 362
China, 369–372
data collection, 346
Egypt, 382–384
epidemiological studies, 404
Greece, 406–411
hair analysis, 411
healthcare workers, 435
India, 425–428
Iran, 442–443
Israel, 449–452
Mexico, 475–477
migrant farm workers, 557
and Parkinson’s disease risk, 243
pesticide applicators, 557–558
pharmacokinetic models, 276–277
prevention, 351
risk assessment, 574
risk of, 346
self-reporting, 346–347
signs/symptoms, 506
Spain, 498, 500
Taiwan, 512, 517
Thailand, 529
Turkey, 536, 537–539
underreported, 34–37
U.S., 554–558
veterinarians, 435
Octamethylpyrophosphoramide. See OMPA
Octanoyl ghrelin, 28
O-dealkylation, organophosphates, 122–123
O-dearylation, organophosphates, 125–126
Omethoate, use in Mexico, 473
iso-OMPA, 4, 317–318
OMPA, and disulfoton, 316
Ophthalmic disorders, methyl isocyanide poisoning, 424–425
OPIDN. See Organophosphate-induced delayed neuropathy
OPIDP. See Organophosphate-induced delayed polyneuropathy
Opioids, self-poisoning, 439
Organization for Economic Cooperation and Development (OECD), 216–217
Organochlorine insecticides, 175
Egypt, 380, 381
in medicinal/aromatic plants, 395
restrictions, 404
use in Israel, 448
use in Mexico, 473
Organonitrogens, 507
Organophosphate-induced delayed neuropathy (OPIDN), 239–240
CaM kinase II in, 240
characteristics of, 239–240
compounds causing, 240
DFP, 180
epidemiology of, 348–349, 349
hen model, 110
in vitro testing, 116–117
and neuropathy target esterase, 114, 115–116, 240
tri-o-tolyl phosphate (TOTP), 543
Organophosphate-induced delayed polyneuropathy (OPIDP), 109
characteristics of, 109
DFP-induced, 594
electrophysiological evaluation, 593
neuropathy target esterase (NTE) in, 491, 593
prevention and treatment of, 256
Serbia, 491
signs/symptoms, 136, 593
treatment, 592–594
Organophosphate poisoning
acute, 496, 542–543, 585
chronic, 100–104
and carboxylesterases inhibition, 60
markers of, 442
and paraoxonase 1 status, 90
confirming, 544
exposure routes, 19–20, 196–197, 238, 279–280, 315
global rates, 19, 343–344, 351–352, 495, 541
Gulf War Syndrome, 89–90, 242–243
intermediate syndrome. See Intermediate syndrome
occupational exposure, long-term effects, 99
sensitivity to, species differences, 59–60
signs/symptoms, 239, 434, 542–543, 585
treatment, 19–20, 252–256, 434, 544
paraoxonase 1 scavenging, 91
supportive, 588–589
underestimating, 510
Organophosphate resistance
glutathione-S-transferases (GSTs) in, 183
heat shock proteins in, 184
Organophosphates, 175
absorption, 486, 543
and acetaminophen, 321
acetylcholine receptors, direct effects, 244–245
acetylcholinesterase and, 5–9, 584–585
agricultural uses, 149–150
albumin hydrolysis of, 126–127
antiandrogenic actions, 190–191, 197
atmospheric transformations, 454
bioactivation, 78–79, 122
biomarkers, 277–278
adducts of phosphorylated albumin, 127
β-glucuronidase, 289–300, 436
biocatalysts
acetylcholinesterase, 27, 255
butryrylcholinesterase, 20–21, 26, 27–28, 33, 35, 91, 255
paraoxonase 1, 91
requirements for, 27
biotransformation, 269–270
brain acetylcholinesterase and, 5–7
cardiotoxicity, 426
characteristics, 58–59
choline acetyltransferase and developmental stage, 10
cholinergic effects, 14, 243–244
cholinesterases and, 5–9, 584–585
classification, 269, 543
commonly used, 434–435
detoxication, 122–127
butryrylcholinesterase, 28, 32
carboxylesterases, 46, 58–62, 126
hydrolysis reactions, 123–125
insects, 60–62
paraoxonase 1 in, 21, 60
species differences, 125, 130
vertebrates, 59–60
developmental neurotoxicity, 90, 205–218
effects on GABA, 14
environmental residues, 136, 175–176
estrogenic/antiestrogenic actions, 190
formulations, 175, 434
gastrointestinal absorption, 486
and glucose homeostasis, 182, 184, 442
history of, 403
in vitro testing, neuropathic vs. nonneuropathic, 117
mechanism of action, 4, 19, 27, 268, 542–543, 583
metabolites, 294, 295
biomarkers, 277–278
detecting, 294–300
pharmacokinetics, 276–277
muscarinic receptors and, 11–13, 243–245, 248, 543
nerve gases, 150; See also individual agents
neurotoxicity, 136–137
acute exposure, 98–100, 238–240, 239
altered gene expression, 176, 177–180, 180–185
chronic exposure, 241–242, 449
developmental, 205, 226–227
fetal brain, 206
glial cells in, 137
nicotinic receptors and, 13, 243–244, 245
noncholinergic effects, 13–14
O-dealkylation, 122–123
O-dearylation, 125–126
and oxidative stress, 442
oxon-type, 5, 78–79, 122
Organophosphates, 175 (Continued)
and Parkinsonism, 100
pharmacokinetics, 268–270, 279–280
phosphorothioate form, 122
phosphotriesterase hydrolysis of, 123–125
photochemical degradation, 454
placental transfer of, 206
potency of inhibition, 13
potentiation
between, 316–317
of carbamates, 317
by carboxylesterase inhibitors, 318
impurities, 318
of pyrethroid toxicity, 82–83
prophylaxis, 20
racemic mixtures, phosphotriesterase resolution, 124
reactivation rates and aging reaction, 584
resistance
cockroaches, 126
flies, 126
sensitivity, age-related differences, 205–207
serum protein binding, 248–249
structure, 58–59, 78, 122, 135–136
suicide and, 103–104, 175, 344, 405
therapeutic uses, 4
thion-type, 5
tissue protein binding, 248–249
toxicity, See also Organophosphate poisoning
acute, 98–100, 496, 542–543, 585
age and, 90
chronic, 60, 90, 100–104, 442
delayed onset, 240
depression and, 100, 103–104
developmental, 90–91
effects of carboxylesterase, 79–80
mechanism of, 4, 27, 137
neurotoxicity, See Neurotoxicity; Organophosphates, neurotoxicity
noncholinergic mechanism, 137
oxon form, 58
paraoxonase 1 and, 21–22, 86–91
phosphotriesterase prevention of, 125
reproductive, 195
signs/symptoms, 239, 434, 542–543, 585
species differences in sensitivity, 125, 130
variations in, 584–585
uses, 238, 433
veterinary use, 433
Oseltamivir, carboxylesterases hydrolysis of, 49
O,S,S-trimethylphosphorodithionate (OSS-Me), 319
Oxidative stress, 245–247
in anticholinesterase toxicity, 442
and chronic pesticide exposure, 442
and dopaminergic neurons, 247
genotoxicity and, 183–184
markers of, 306
neuronal, 137–139
pesticide-induced, 184, 305–310
and seizures, 247–248
suppression of, 141–143
Oximes, 150–151, 253, 586–588, 589
antidotal potency, 487–488
and atropine, 151, 253, 585–586
and blood-brain barrier (BBB), 587
contraindications, 592
dosing, 587–588, 589–590
limitations of, 150
mechanism of action, 253, 586–587
toxicity of, 150
Oxonases, age-related differences in activity, 206
Oxons, affinity for serine esterases, 79
p53 tumor suppressor gene, 309
Packaging, residue regulations, 359
Pakistan, pesticide-related fatalities, 344
Pan American Health Organization (PAHO), 238
Pancreatic cancer, 405
Paraoxon
albumin hydrolysis of, 88, 126
detoxication of, 88, 126
-induced apoptosis, 167, 168, 169, 334–335
LD50, 570
modulation of signal transduction, 249
protective effects of carboxylesterase, 79
toxicity
acute long-term effects, 98
paraoxonase protection, 87
Paraoxonase 1, 123–125
age and, 90–91, 206
albumin-associated, 127
catalytic activity of alloforms, 88
in children, 226
chronic pesticide exposure and, 22–23
fetal, 227
genes, 85–86
knockout mice, 87–88
lipoprotein-associated, 86, 123–125, 127
in nerve agent poisoning, 256
in organophosphate metabolism, 60, 91
organophosphates toxicity
animal studies, 87–88
developmental, 90–91
modulation of, 88–89
protective effects, 86–87
polymorphisms, 21–23, 85–87
Gulf War veterans, 242–243
Mexican workers, 478
Q192R, 243
pregnancy and, 91
protective effects, 87–88
status, 86–87, 88, 89–90
structure, 85–86
substrates, 86
therapeutic uses, 87–88
tissue expression, 86
transgenic mice, 88
Paraoxonase 2, 85
Paraoxonase 3, 85
Paraquat
and oxidative stress, 248
suicide and, 344, 459
use in Mexico, 473
Parathion
and arsenic, 330
bioactivation of, 80
and breast cancer, 310
chronic exposure, neurobehavioral effects, 101
-contaminated milk, 348
developmental neurotoxicity, 208
endocrine effects, 190, 193
estrogen and, 182, 310
-induced alterations in gene expression, 179
-induced apoptosis, 167, 169
inhibition of DNA synthesis, 214
LD_{50}, 570
mammalian toxicity, 457
-regulations, Japan, 457, 458
Parkinson’s disease
extrapyramidal signs, 100
kibbutz farmers, 452
organophosphates and, 100, 428
and pesticide exposure, 171, 243, 405, 448
-and acetylcholinesterase inhibitors sensitivity, 22
protective effects of PBN, 141
protective effects of smoking, 452
-reactive oxygen species (ROS) in, 243
PBN, 141–142
Peach-potato aphid, carboxylesterase-mediated resistance, 60–61
Pediatric Environmental Neurobehavioral Test (PENBT), 233
Pefloxacin
arsenic and, 333
-interactions with pesticides, 332, 333
Percutaneous absorption studies, 276–277
Peripheral nervous system, 240, 241
Permethrin, 66
-metabolism of, 82–83
-resistance, 183
-stereospecific toxicity, 67
Permissible exposure limits (PEL), 575
Peroxisome proliferator-activated receptor α (PPARα), 191
Peroxynitrite radicals, 140
Persian Gulf veterans, paraoxonase 1 status, 89–90
Personal external monitoring, 279
Personal protective equipment (PPP)
-agricultural workers, 500, 503, 508
-health care workers, 556
Peru, accidental poisonings, 348
Pest control operators, biomonitoring, 279–280
Pest eradication programs, U.S., 552–554, 564
Pesticide applicators, occupational exposure, 557–558
Pesticide Hazard Classes, WHO, 512, 513, 516
Pesticide regulations
carcinogenic, mutagenic, and reproductive toxic (CMR) compounds, 577
Chile, 357–361
China, 373–374
Egypt, 381, 392
EU, 571
goal of, 570
India, 418
Israel, 454
Mexico, 474
-risk assessment, 572–575
-risk management, 575–577
U.S., 571–572
-cholinesterase monitoring programs, 551–552
-cumulative risk assessment (CRA), 560–561
-organophosphates, 559–560
-pest eradication programs, 552–554, 564
-public health impact, 562–563
-risk management, 561–562
-surveillance programs, 544–551
WHO. See World Health Organization
Pesticide residues. See Residue regulations
Pesticides
-acceptable daily intake (ADI), 317
-availability of, 350
-benefits of, 570–571
carcinogenicity, 304, 383, 405
-contaminants in, 507
-environmental persistence, 381–382, 571; See also Residues and hepatocellular carcinoma, 383
-history of, 403
-metals interactions, 330–336
-and Parkinson’s disease, 243
-risk assessment, 351
-safety programs, 351
-storage, 507
-synergism, 315
tolerance, and cytochrome P450 activity, 182
toxicological characteristics of, 434
-in veterinary medicine, 433
WHO classification, 441
Pets, pesticide exposure, 435
P-glycoprotein
-in drug metabolism, 44
-organophosphate-induced alterations in expression, 183
Pharmacodynamic (PD) response modeling, 272–276
Pharmacokinetics
models
-compartmental, 270–272
-organophosphate exposure, 276–277
-PBPK, 272–273
-PBPK/PD, 273–276
-principles of, 270
-Phase I reactions, 44, 45, 63–64, 77
-Phase II reactions, 44, 45, 64, 77
Phenobarbital
-antagonism of anticholinesterases, 320–321
-fetoprotective effects, 321
-induction of hepatic microsomal enzymes, 320, 321
Phenothrin, 67
Phenthoate, potentiating impurities, 319
Phenthoate acid, 319
Phenylisopropyl adenosine, 154
Phenyl saligenin phosphate, -induced apoptosis, 167
Phenytoin, 254
Phosfolan, occupational exposure, Egypt, 383
Phosphamidon -induced apoptosis, 166
- induced oxidative stress, 305
OPIDN, 350
Phosphates, biotransformation, 122–123
Phosphatidylcholine, 111
Phosphatidylinositol (PI), 249
Phosphatidylinositol 4,5-2 phosphate (PIP2), 11, 249
Phosphocholine, neuropathy target esterase interaction, 114
Phosphocreatine, depletion of, 139–140
Phospholipase C, 11
Phospholipid phosphatidylserine (PS), 166
Phosphoramidates, 135–136
Phosphoroamidothiolates, 269
Phosphorodithioates, 269
Phosphorothionates, 78–80, 269
biotransformation, 121
metabolic activation of, 270
Phosphorylation, serine esterases, 79–80
Phosphotriesterases, 255
albumin-associated activity, 127
applications, 124–125
bacterial, 124
hydrolysis of organophosphates, 123–125
stereoselectivity, 124–125
Physiologically-based pharmacokinetic (PBPK) models, 272–273
Physiologically-based pharmacokinetic (PBPK)/pharmacodynamic (PD) modeling, 273–276
Physostigmine, 150
developmental neurotoxicity, 208
glial development and, 214
and muscarinic receptors, 244
therapeutic uses, 4
Pilots, pesticide exposure, 450–451
Piperonyl butoxide, 322
Pirenzepine, 157
Placenta, and toxin exposure, 204–205
Placental transfer
carbamates, 206
organophosphates, 206
Plasminogen activator, 181
Points of departure (PoDs), 560
Poison Center Surveillance System, Thailand, 525–526
Poison Control Center, Taiwan, 510–511, 516
Poison Control Center of Ain Shams University (PCCA), 385–388
Poison control centers, Egypt, 384–388
Poisoning Severity Score, Serbia, 489–490
Polyhalogenated cyclic hydrocarbons (PCH), carcinogenicity, 306–307
Polyunsaturated fatty acids (PUFAs), 137–139
PON1. See Paraoxonase 1
Porphyria cutanea tarda-like syndromes (PCT), 538
Post-traumatic stress disorder (PTSD), 100, 425
Potency of inhibition
carbamates, 13
organophosphates, 13
Potentiation, 316
between anticholinesterases, 316–317
anticholinesterases and non-cholinesterase inhibitors, 317–318
anticholinesterases as carboxylesterase substrates, 318
blockage of detoxification pathway, 320
by impurities, 318–319
metabolism-based interactions, 319–323
models for, 323
Potentiometric biosensors, phosphotriesterases-based, 124
Pralidoxime (2-PAM), 19, 253–254, 590–591
and blood-brain barrier, 587
dosing, 589–590
interaction with nicotinic receptors, 587
pharmacokinetics, 253
WHO recommendations, 488
Pralidoxime methylsulphate, 488
Prefrontal brain region, 22
Pregnancy
and carbamates exposure, 196–197
and organophosphate exposure, 196–197
and paraoxonase 1 status, 91
Pregnane X receptor (PXR), 191
Pregnenolone, antiseizure activity, 154–155
Preschool children, neurobehavioral effects in, 232
Prevention of Food Adulteration Act, India, 418
PRiMA gene, 31–32, 33
Primicarb, 247, 282
Pro-2PAM, 254
Procainamide, 49
Procaine, potentiation by EPN, 320
Procyclidine, 254
Profenofos, 588
Proliferating cell nuclear antigen (PCNA), 310
Prophylaxis, organophosphates, 20
Propoxur
biomarkers, 282
brain acetylcholinesterase and, 8–9
immunotoxicity, 334
Prostaglandins, cyclooxygenase-derived, 138
Protein adducts, biomonitoring of, 282
Protein kinase A (PKA), similarity to neuropathy target esterase, 112, 113
Protein kinase C (PKC)
activation of, 11, 157, 308–309
in neuropathy target esterase expression, 114
role of, 308
Protein phosphorylation, and pyrethroids, 67
Protein synthesis, anticholinesterases effects, 207–210
Prothiofos, -induced alterations in gene expression, 179
Pseudocholinesterase, 26
Psychological disorders
chronic organophosphate poisoning and, 102–104, 102, 103
methyl isocyanide poisoning, 425
Psychomotor functions, chronic organophosphate poisoning and, 102–104, 102, 103
Public health regulations, U.S., 562–563
Pyramidal neurons, excitotoxicity, 141
Pyrethroids
developmental toxicity, 68
- induced oxidative stress, 305
metabolism, 81–82
carboxylesterases, 66–68
invertebrates, 68–69
mammals, 67, 68–69
optical isomers, 67, 81–82
reproductive toxicity, 68
resistance, esterase-mediated, 68–69
sensitivity of fish to, 67
site of action, 67, 81
structure, 66, 81
toxicity
acute signs, 81
mammalian, 68
potentiation by organophosphates, 82–83
species, differences, 67
stereospecificity, 67–68, 81–82
type I, 66, 67, 81
type II, 66–67, 81
Pyrethrum, neurite inhibition, 211
Pyrethrum extract, 66
Pyridinium oximes, 487–488, 586–588, 589; See also Oximes
Pyridostigmine, 20
atropine and, 151
prophylaxis, and ‘atypical’ butyrylcholinesterase, 21
Q/R polymorphism, paraoxonase 1, 86
Quinalphos, endocrine effects, 191, 193–194, 195
Rabbits, paraoxonase 1 activity, 87
REACH (Registration, Evaluation, Authorization and Restriction of Chemicals), 216
Reactive nitrogen species (RNS)
in excitotoxicity, 245
generation of, 137
Reactive oxygen species (ROS)
carbamate-induced, 247
in excitotoxicity, 245
and heat shock protein expression, 169, 184
mediators of apoptosis, 167
in oxidative injury, 137–139
in Parkinson’s disease, 243
Relative potency factors (RPFs), 560
Replication factor C, 181
Reproductive organs, carboxylesterases activity in, 65
Reproductive toxicity
and acetylcholine overexpression, 184–185
agriculture workers, Mexico, 477–478
carbamates, and carboxylesterases inhibition, 65
carbaryl, 185
dichlorvos, 184, 185
organophosphates, 195
pyrethroids, 68
Reproductive toxicity testing, 573
Reptiles, endocrine disruption in, 194–195
Residential risk assessment, 561–562
Residue regulations
Chile, 359
EU, 574
India, 428–429
Iran, 443
Residues
environmental, 381–382, 571
in food, 574
Resmethrin, 66, 67
Respiratory disorders
acute exposure, 241
and pesticide exposure, 239, 405
Rift Valley fever, 391
Risk assessment
accuracy of data, 572–573
EU, 575
exposure assessment, 573, 574
harmonizing, 351
principles, 572–573
steps in, 573–575
U.S., 560–561
Risk characterization, 575–576
Risk management
EU, 575–577
U.S., 561–562
Rivastigmine
brain acetylcholinesterase and, 9
therapeutic uses, 4
RNA synthesis, anticholinesterases effects, 207–210
Rodenticides
accidental poisonings, 347–348
toxicological characteristics of, 434
Rodents, endocrine disruption in, 191, 193–194
Rotenone
- induced apoptosis, 251
and Parkinson’s disease risk, 243
Rotterdam Convention, 373, 474
Safety programs, pesticide use, 351
Sample collection, urine, 296–297
Sarin, See also Tokyo subway sarin attacks
acute exposure, 241
long-term effects, 98, 100
neurotoxic effects, 10
A1 adenosine receptor binding, 154
and blood-brain barrier (BBB), 587
- bound acetylcholinesterase, 458
choline acetyltransferase activity and, 10
chronic exposure, 241
direct reaction with oximes, 253
Japanese terrorist attacks, 242
Sarin, See also Tokyo subway sarin attacks (Continued)
low-dose exposure, 242
nicotinic receptors and, 13
sensitivity to, and paraoxonase 1 polymorphisms, 23
toxicity, and paraoxonase 1 status, 89
SCH 23390, 155, 157
Schizophrenia, 14
School-age children, neurobehavioral effects in, 232
Schools, pesticide exposure, 559
SCOEL, EU, 575–576
Scoline, 32
Seizures
adenosinergic mechanism, 154
AMPA/kainate-related mechanisms, 154
anticholinesterase-induced, 247
mechanisms, 151–158
neurotransmitter systems in, 151–155
atropine protection, 151
GABA-ergic mechanisms, 154–155
glutamate in, 254
monoaminergic mechanism, 155
muscarinic mechanisms, 151–152
neuroinflammation in, 155–156, 157–158
nicotinic mechanisms, 152
nitric oxide in, 140
NMDA antagonists, 152–154, 156
organophosphate-induced, 100
cyclooxygenase (COX) induction, 137
and oxidative stress, 247–248
pretreatment with PBN, 142
Selenium, immunoprotective effects, 334
Self-harming, characteristics of, 350
Self-poisonings, 344–346, 349; See also Intentional poisonings;
Suicide attempts
China, 372, 506
Greece, 406, 407
India, 420, 421, 422, 422, 423
Iran, 436–440
Israel, 453
Japan, 458, 459–461
Korea, 463, 465–466
Serbia, 482–483
Spain, 500
Sri Lanka, 506
Taiwan, 511, 512, 517
Thailand, 529–530
Turkey, 535–537
worldwide rates, 344–346, 349, 441–442, 463
Semen, 477, 478
Sensory impairment, 99
Sensory-motor functions, 102–104, 102, 103
Sentinel Event Notification System for Occupational Risk
(SENSOR), 544, 548
Septal defects, arsenic, 335
Serbia
accidental poisonings, 483
acute pesticide poisoning, 484–486
intermediate syndrome, 490–491
National Poison Control Center, 482
OPIDP, 491
Poisoning Severity Score, 489–490
suicide attempts, 482–483
treatment protocols, 486–489
Serine esterases
organophosphate detoxication, 126
phosphorylation, 79–80
Serine hydrolase KIAA 1363, 126
Serine hydrolase superfamily, 58
Serine protease inhibitor, 168
Serotonin receptors, chlorpyrifos and, 196
Serotonin systems, 155
anticholinesterase effects on, 215–216
organophosphate effects on, 196
in seizures, 155
Serum proteins, 248–249
Sex steroids, and brain development, 195–196
Sexually dimorphic nucleus of the medial preoptic area
(SDN-POA), 195
Sheep, brodifacoum poisoning, 391
Sheep dippers
chronic neuropsychological effects, 241–242
paraoxonase 1 status, 90
Sheep farmers, occupational exposure, 558
SH-SY5Y cells, 117
Signaling pathways
organophosphate modulation of, 248–250
reduction in, 251
Silaflofen, 67
Single nucleotide polymorphisms (SNPs)
acetylcholinesterase gene, 20
carboxylesterases isozymes, 51–52
SKF 525-A, 321
Smoking, protective effects in Parkinson’s disease, 452
Sodium bicarbonate, blood alkalization with, 254, 441, 488–489
Sodium channels, pyrethroids and, 67, 81
Sodium methylthiocarbamate (SMD), 238
Sodium pentobarbital, 321
Soil
pesticide persistence, 381–382
toxaphene residues, 381–382
Solanaceous plants, butyrylcholinesterase inhibitors in, 21
Soman
acute long-term effects, 98
A1 adenosine receptor binding, 154
aging reaction, 484, 585
albumin hydrolysis of, 126
direct reaction with oximes, 253
muscarinic receptors and, 245
nicotinic receptors and, 245
toxicity
brain aspartate levels, 154
brain glutamate levels, 153–154
Spain
accidental poisoning, 500
acute pesticide poisoning, 506
Epidemiological Surveillance Program on Acute Pesticide Poisoning (ESPAPP), 496–507

- greenhouses, 496
- mortality rates, 499, 506
- occupational poisoning, 498, 500
- personal protective equipment, 500, 503, 508
- suicide attempts, 500
- Sperm, 477–478
- Sperm aneuploidy, 478
- Spermatogenesis, parathion effects on, 193
- Spermatozoids, 65
- Spina bifida, 363
- Spin trapping agents, 141–142
- Sri Lanka
 - organophosphate poisoning, 512
 - pesticide-related fatalities, 345
 - self-poisoning, 506
- Statue test, 451
- Steroid hormones, receptors involved with, 195
- Steroidogenesis, disruption of, 191
- Steroidogenic acute regulatory protein (StAR), 185
- Stress proteins, organophosphate-induction of, 184;
 See also Heat shock proteins
- Stress response, p53 in, 309
- Striatum
 - cholinergic markers, 4
 - sensitivity to acetylcholinesterase inhibitors, 6–7
- Substantia nigra, vulnerability to oxidative stress, 245
- Substantia nigra pars compacta (SNpc), 243
- Succinylcholine
 - butyrylcholinesterase detoxication, 21, 25–26, 27, 28, 32, 33
 - hypersensitivity to, 21
 - uses, 28, 32
- Succinylcholine apnea, 27, 28, 32, 33
- Sugar oximes, 254
- Suicide attempts
 - aluminum phosphate, 422
 - bipyridyls, 506
 - China, 372–373, 506
 - common chemicals used in, 344
 - Greece, 406, 407
 - India, 420, 421, 422, 422, 423
 - Iran, 436–440
 - Israel, 453
 - Japan, 458, 459–461
 - Korea, 463, 465–466
 - and organophosphate exposure, 103–104, 175, 344, 405
 - Serbia, 482–483
 - Spain, 500
 - Sri Lanka, 506
 - Taiwan, 511, 512, 517
 - Thailand, 529–530
 - Turkey, 535–537
 - WHO estimates, 237, 482
 - worldwide rates, 344–346, 349, 441–442, 463
- Suicide prevention, 350
- Sulphotransferase, in drug metabolism, 44
- Sulfoxidation, carbamates, 127–128

Surveillance systems. See Biomonitoring programs
- Suxamethonium, 32
- Swiss cheese protein (SWS), fly, 111, 112
- Synaptic development, anticholinesterase effects, 212–213
- Synergism, pesticides, 315
- Synthetic pyrethroids. See Pyrethroids

Tabun
- A1 adenosine receptor binding, 154
- direct reaction with oximes, 253

Taiwan
- accidental poisonings, 348, 349, 512, 517
- acute pesticide poisoning, 511, 516
- carbamates poisoning, 516–520
- fatality rates, 345–346, 513, 516, 518
- occupational poisoning, 512, 517
- organophosphate poisoning, 510–516
- Poison Control Center, 510–511, 516
- suicide attempts, 349, 511, 512, 517
- Tamaron/lannate, 472
- Target organs, identifying, 573
- TCDD, -induced oxidative stress, 307–310
- Tehran Legal Medicine Center (TLMC), 439
- Temocapril, carboxylesterases hydrolysis of, 49
- Tengku Ampuan Rahimah Hospital, 292–293
- Testicles, neuropathy target esterase activity, 112
- Testosterone
 - metabolism, 191
 - pyrethroids and, 68
- Tetrachlovinfos, -induced alterations in gene expression, 179
- Tetra ethyl pyrophosphate (TEPP), 165, 457
- Tetra hydroamino acridine (THA), 4
- Tetraisopropyl pyrophosphoramide (iso-OMPA), therapeutic uses, 4, 317–318
- TGF-β3, 181

Thailand
- accidental poisonings, 348, 528
- acute pesticide poisoning, 523, 525–526
- carbamates available in, 528
- epidemiology of pesticide poisoning, 526–527
- fatality rates, 344, 525
- intentional poisoning, 525
- medical outcomes, 530–531
- National Epidemiological Surveillance System, 525
- National Epidemiological Surveillance System, 525
- occupational poisoning, 529
- organophosphates available in, 527
- pesticide poisoning in children, 528
- pesticides imported into, 524, 526
- Poison Center Surveillance System, 525–526
- severity of pesticide poisoning, 530
- suicide attempts, 529–530
- Thermoregulation, 31, 33
- Thiobarbituric acid-reactive substances (TBARS), 330, 442
- Thiram
 - -induced alterations in gene expression, 180
 - -induced apoptosis, 170, 171
- Threshold limit values (TLV), 575
- Threshold of toxicological concern (TTC), 574
Vitamin E
 apoptosis prevention, 166–167
 suppression of oxidative injury, 141–142
Vitelligenin assay, 194–195
Voltage-dependent sodium channel, pyrethroids and, 67, 81
VX, direct effects on muscarinic acetylcholine receptors, 244
W251L substitution, αE7 gene, 61, 62
Washington, U.S., cholinesterase monitoring rule, 551–552
Waste materials, phosphotriesterase detoxication of, 124
Water
 EU residue limits, 574
 pesticide residues, Iran, 443
Wheat flour, ethyl parathion in, 422
Wisconsin Card Sorting Test, 232
Workplace exposure, environmental monitoring, 279
World Health Organization (WHO)
 accidental poisonings, 237, 482
 acute pesticide poisonings, 380, 405, 571
 agrochemical classifications, 359, 441
 fatality rates, 19, 344, 405
 International Classification of Diseases, 525
 Pesticide Hazard Classes, 512, 513, 516
 pesticide regulations, 569–570
 pralidoxime chloride recommendations, 488
 public health initiative, 463
 self-reported poisonings, 380
 suicide attempt statistics, 237, 344, 482
Xenobiotics
 absorption of, 121
 biotransformation, 121
 excretion, 121
 lipophilicity, 121
Xenobiotics metabolism
 carboxylesterases, 182
 chloramphenicol inhibition of, 322–323
 cytochrome P450 system, 182
 glutathione-S-transferases (GSTs), 182
 organophosphate-inhibited carboxylesterases, species differences, 60
 phase I reactions, 44, 77
 phase II reactions, 44, 77
 yTb rare blood group, 20
Zinc, antioxidant properties, 330–331, 335–336
Zineb, -induced apoptosis, 171
Ziram, -induced apoptosis, 171