Index

a
adopted initial specific surface 200
advanced fluidized-bed coal gasifiers 308–309
– agglomerating fluidized bed with internal post gasification 314–315
– fluidized bed with slag bath 309–310
– internal circulating fast fluidized-bed gasifier (INCI) 311–314
– multistage spouted bed with slag bath 310–311
ambient gas composition effect 157–158
ANSYS-CFX® 2
ANSYS-Fluent® 2, 12–17, 76, 247, 248, 282, 297
– heterogeneous reactions setup 235
– – boundary settings 238–239
– – reactions definition 237–238
– – species and mixtures defining 236–237
– – species transport model 235–236
Arrhenius equation 175, 211, 280–281, 292
ash agglomeration 311, 313, 315
carbon burnout kinetic (CBK) model 273
carbon mass flux 232, 297
Carman–Kozeny equation 174
Cartesian grids 75–77, 80, 106, 131, 178
central difference scheme (CDS) 154
char particle combustion and gasification pore-resolved simulation 243–245
– 3D simulations under gasification conditions 264–267
– large porous particle of 2 mm
– – large Reynolds numbers 259–262, 264
– – small Reynolds numbers 257–259
– model assumptions and chemistry 245–248
– – numerical scheme, discretization, and software validation 248–249
– – small porous particles of 90 μm 249–256
– – gas temperature influence 256–257
chemical percolation devolatilization (CPD) 272, 276, 287, 290, 323
chemically reacting porous particle 166
coal oxidation 155
commercial gasification technologies 32
commercial software 14–17
Commonwealth Scientific and Industrial Research Organization (CSIRO) 22
– based modeling of entrained-flow gasifiers 6–8
– – mainstream computational submodels 8–9
– – review of works 13–17
– drying model 125–126
– model results 131–135
– modeling benchmark tests 17
– Brigham Young University (BYU) reactor 20, 22

b
Baum and Street model 11
Beeman–Verlet scheme 52
Biot number 123
Boudouard reaction 251, 256–257
boundary conditions, on reacting interface 296
Brigham Young University (BYU) reactor 19–20, 22
Brinkman–Forchheimer equation 174
British coal utilization research association (BCURA) reactor 14, 18

c
Edited by Petr A. Nikritynuk and Bernd Meyer.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
Commonwealth Scientific and Industrial Research Organization (CSIRO) (contd)
– British coal utilization research association (BCURA) reactor 18
– pressurized-entrained-flow reactor (PEFR) 22–23

Cooperative Research Centre for Coal in Sustainable Development (CCSD) 15, 22

current developments and modeling
– CFD modeling benchmark tests 18
– Brigham Young University (BYU) reactor 20, 22
– British coal utilization research association (BCURA) reactor 18
– pressurized-entrained-flow reactor (PEFR) 23

– CFD-based modeling of entrained-flow gasifiers 8
– mainstream computational submodels 9–12
– review of works 13–17
– direct numerical simulation (DNS), in particulate-flow modeling 3–6
– numerical modeling in engineering 1–3

dense phase reactors. See transport reactors
devolatilization 10–11
diffusion coefficient 177
diffusion kinetic single film (DKSF) 11–12, 15
dilute particulate flows 44
direct numerical simulation (DNS) 108, 110, 112, 116, 171, 217, 284
– in particulate-flow modeling 3–6
discrete element models (DEM). See discrete particle models (DPM)
discrete particle models (DPM) 43–45
distributed activation energy models (DAEMs) 272, 323
drag forces for two rotations 97, 100
dry-feed entrained flow gasifiers 35
eddy dissipation concept (EDC) model 12
eddy dissipation model (EDM) 12–13
effective diffusion coefficient 177
effectiveness factor 181–182
energy conservation equation 126
entrained-flow processes 34
Euler–Euler model 43, 320, 322
Euler–Lagrange models 3–5, 43, 45
external heat transfer 113

f
fixed-bed dry-bottom (FBDB) technology 31
fixed-bed gasifiers. See moving-bed gasifiers
fixed-grid models 144
flamelet model 13
FLASHCHAIN 272, 276, 323
fluidized-bed processes 34, 36
Fourier number 109, 123
functional
group–devolatilization–vaporization
crosslinking (FG–DVC) 272, 323
future gasifier simulations
– future numerical simulations additional fundamental aspects 322–325
– proposed future gasifier requirements 319–322

Golia relation 87
grain model 244, 291
grain pore model 199–200

h
hard-sphere models 45–46, 59
– formulation of collisions 63–65
– collision treatment in dense particulate systems 62–63
– governing equations 60–62
– illustration 65–68
Henry number 106
highly loaded compact gasifiers 315–316
– hybrid wall gasifier 316–318
homogeneous reaction layer (H-zone) 276, 278–280
homogeneous-zone single-film submodel ((H-zone model) 16

ideal gas assumption 280
ideal gas law 177
immersed boundary (IB) method 75, 76, 80, 118
impulse conservation equation 125, 210
initial particle size and ambient gas temperature effect, on oxidation regime 158–160
integrated gasification combined cycle (IGCC) power plants 30–31
interface-marker function 147–148
interface-tracking, during char particle gasification
– 3D interface tracking for porous char particle in kinetic regime
– internal surface reconstruction 196–197
porous particle description 194–195
problem description 192–194
porosity tracking for moving char particle 171–172
boundary conditions at particle surface 175
governing equations in gas phase 173
governing equations in porous particles 174
model setup 172–173
numerics 178–180
porous structure and particle shape change 176
reaction kinetics 175–176
results and discussion 180–192
transport properties 177
interfacial balance equations 293
internal circulation gasifier (INCI) 36, 38–39, 311–314
intrinsic heating regime 111
intrinsic solid reactivity. See char particle combustion and gasification pore-resolved simulation
intrinsic submodel 291
kinetic/diffusion model. See diffusion kinetic single film (DKSF)
laminar and turbulent regimes 214–217
Langmuir–Hinshelwood mechanism 273
large eddy simulations (LESs) 3, 14
lattice Boltzmann method 4
Lewis number 177, 208, 234, 277, 294
Linde–Fränkel air separation process 30
linear model 108–109
linear spring–dashpot model 54
Lurgi fixed-bed dry-bottom (FBDB) technology 31
mass conservation equation 174, 210
MATLAB® 2
MFIX code 2
moving-bed gasifiers 33–34
moving coal particle devolatilization and combustion subgrid model
– CFD-based model 281–282
– char conversion models with homogeneous reaction 273–276
– heterogeneous char conversion models 272
– model formulation 276–281
model validation 282–286
pyrolysis models 271–272
moving flame front (MFF) model 15, 219, 274–275
moving-grid-based models 144
moving particles modeling 43–47
– hard-sphere model 59
– formulation of collisions 63–65
– collision treatment in dense particulate systems 62–63
– governing equations 60–62
– illustration 67–68
– soft-sphere model 47
– illustrative examples 56–59
– numerical implementation 48–53
– validation cases 53–56
multiparticle collision algorithm 62–63
– application 65–68
multiscale modeling strategy 5
Navier–Stokes equations 43, 75–76, 118, 173, 290
Neumann boundary condition 211
noncommercial software 13–14
nonporous spherical particle heating in hot air stream
– problem and model formulation 107–109
– results illustration and subgrid model 109–114
– semiempirical two-temperature subgrid model 114–116
– state of art 105–106
one-film model 162–163, 165
OpenFOAM 2, 14
particle conversion 9–12
particle porosity impact and validation against experiments 217–218
particle-resolved CFD simulations
– non-spherical particles 225–226
– particle shapes 227–228
– results 228–234
– spherical particles
– boundary condition 211–212
– governing equations 210–211
– numerics and software validation 212–218
Strongly Implicit Procedure (SIP) algorithm 76, 178
subgrid models, for particle

devolatilization-combustion-gasification
– moving coal particle
– CFD-based model 282
– char conversion models with
 homogeneous reaction 274
– heterogeneous char conversion models
 272–273
– model formulation 276–277
– model validation 287–290
– pyrolysis models 272
– novel intrinsic submodel for moving char
 particle gasification 290–291
– CFD-based model 295–297
– model formulation 291–295
– model performance 297–300
subgrid models
– new model 127–131
– results illustration 109–114
– semiempirical two-temperature model
 114–116
– standard model 127
– validation 135–137
super-sampling method 76
surface Damköhler number 220–222
surface velocity 176
Sutherland–Hodgman clipping algorithm 179
syngas 30, 34
synthesis gas. See syngas

thermal conductivity 177
Thiele modulus 180–181
time-splitting algorithm. See multiparticle
 collision algorithm
total carbon consumption rate 292–293
transport equations, for chemical species 294
transport reactors 316, 318
trends, in gasifier design 307–308
– advanced fluidized-bed coal gasifiers
 308–309
– agglomerating fluidized bed with internal
 post gasification 314–315
– fluidized bed with slag bath 309–310
– internal circulating fast fluidized-bed
 gasifier (INCI) 311–314
– multistage spouted bed with slag bath
 310–311
– highly loaded compact gasifiers 315–316
– hybrid wall gasifier 316–318

tridiagonal matrix algorithm (TDMA) 154
turbulence–chemistry interactions 12–13

two-film model (TFM) 165–166, 213, 219, 273–274

u
unreacted core models 144
unresolved discrete particle models (UDPM) 3–5, 44
unsteady char gasification and combustion 143–145
 – advice for beginners 160–161
 – analytical models
 – – chemically reacting porous particle 166
 – – one-film model 162–163, 165
 – – two-film model 165–166
 – modeling approach 145–146
 – – governing equations 146–148
 – – initial conditions and boundary conditions 148–150
 – – pore structure and interface tracking 152–153
 – – reaction kinetics and transport properties 151–152
 – numerics and code validation 153–155
 – – results and discussion 155–160
user-defined function (UDF) 16, 17, 247, 282

v
Verlet list 51–52
virtual H-zone single-film (VHZ-SF) model 275
volume-averaged model 109–110, 124, 125, 138
volume fraction of gas 147, 179

w
wake flame 224, 231
Wolfram Mathematica 98, 99