Index

A
Anisotropic materials, 56
Arches, 4, 173

B
Ball and socket joint, 169
Beam, 173
Bending, 165
moment, 165
Boundary data, 46, 52
Brittle material, 26
Built-in support, 170, 224

C
Cauchy stress tensor, 35–36
Cinème, 226
Circular plates, 228–233
Cohesion, 62–63
Compatibility equilibrium-resistance, 6–7
Complete solution, 104, 232–234
Conical virtual mechanism, 233–234
 Constitutive law, 21, 64
Convex
hull, 59, 125
programming, 132
Convexity, 55, 58, 106, 123
Coulomb, 4–6
Coulomb’s criterion, 68
Curvature (rate of), 211
Curvilinear one-dimensional model, 145–156

D
Design load effect, 10, 116
Design resistance effect, 10, 116
Dimensioning, 119–120
Director curve, 148–149
Director sheet, 177
Discontinuous stress field, 40
Divergence theorem, 42–43
Domain of potential stability, 120–129
Drucker-Prager criterion, 69
Dual definition, 82–83, 100–101
Ductility, 64

E
Economic function, 130
Equations of motion, 45
Equilibrium equations, 154, 192
External forces, 34–35, 150,
182–184
Exterior approach, 91–107, 125–126, 163, 209–213
Extreme load, 24, 58
Extreme value probability law, 141

F
Frame, 157
Friction angle, 70

G
Galileo, 1–4
Geometry changes, 28

H
Hadamard’s compatibility condition, 211
Hinge
 curves, 8
 lines, 223
Hinged support, 150

I
Initial state of internal forces, 23
Interaction formula, 158, 164–167
Interfaces, 69–70, 83–84, 87–88
Interior approach, 160–161
Internal forces, 35–36, 150–152, 196–198
Internal moments tensor, 177

J
Johansen strength criterion, 221
Joints, 186–172

K
Kinematically admissible virtual motions, 209
Kinematical necessary condition, 107
Kirchhoff-Love condition, 181, 210, 224

L
Limit loads, 64
Linear programming, 172
Loading
 mode, 52–55, 157–158
 parameters, 52, 120, 134–136
 path, 21, 25, 27, 28, 64
Lower bound estimate, 73

M
Maximum
 plastic work, 64, 95
 resisting bending moment, 165
 resisting work, 163–164
Membrane forces, 177
Metal plates, 213–216
Micro-macro modelling, 204, 207, 213
Microstructure, 147
Model uncertainties, 117

N
Navier-Bernoulli condition, 149
Normal force, 156, 173, 192, 205

O
Objective function, 130
One-dimensional continuum, 147–156
Index 239

Optimal dimensioning, 130–133
Orthotropy, 221

P
Partial factors, 10, 112, 133
Perfectly plastic material, 25–26
Permanent loads, 60–61
\(\pi\)-function, 78, 81–84
Pinned joint, 169–170
Plane stress, 207, 213
Plates, 178–204
Positive homogeneity, 81, 94, 100
Potential stability, 22–24
Potentially safe dimensionings, 122–124
Potentially safe loads, 57–60
Prestressing, 28
Principal stresses, 40
Probabilistic yield design problem, 134–138
Probability
density function, 140, 141
of collapse, 119, 137, 140
of stability, 136–140

R
Rate of
stretch, 148, 167
tension, 36
extension, 32
volume dilatation, 33
Regular point, 103, 104
Reinforced concrete slabs, 226
Relevant virtual velocity field, 94–100
Relevant virtual motions, 210–213
Resistance parameters, 113, 120–122
Rigid
joint, 168
support, 224
Rotation (rate) diagram, 226

S
Shear force vector, 177, 195, 207
Shearing force, 156
Simply supported support, 224–225
Singular point, 104
Slabs, 9, 130, 177, 204, 206, 216–224
Star-shaped domain, 107
Static exterior approach, 73–76
Statically admissible fields, 208
Stochastic
resistance parameters, 136, 140
loading parameters, 134–136
Strain rate (distributor), 30–33
Strain rate tensor, 32, 181
Strength criterion, 164–167, 213–225
Strength domain, 51, 113, 121, 207, 222
Strength vector continuity, 39
Structural supports, 170–172
Structures, 145–174
Support function, 79
Symmetry
(Cauchy stress tensor), 35, 36, 38, 43, 158, 207
(internal moment tensor), 119, 194, 205
(membrane force tensor), 185

T
Tension cut-off, 86, 87
Tensorial
distributor, 196
wrench, 196–198
Theorem of virtual work, 193, 194
Transverse microstructure, 179, 177
Tresca’s criterion, 69, 86
Tresca plates, 213
Truss, 131, 157, 172
Twisting moment, 152
Two-dimensional continuum, 177–182

U
ULSD, 1, 111
Upper bound estimate, 119

V
Vaults, 4, 8, 173
Velocity distributor, 145–148, 155, 177, 179, 191, 196, 202, 203, 209