Contents

About the Authors xiii
Preface xv
Accompanying Websites xxi
Acknowledgments xxiii

1 Introduction 1
 1.1 Introduction 1
 1.2 The Future Grid 2
 1.3 Motivation and Objectives 3
 1.4 Signal Processing Framework 4
 1.5 Conclusions 8
References 10

2 Power Systems and Signal Processing 11
 2.1 Introduction 11
 2.2 Dynamic Overvoltage 12
 2.2.1 Sustained Overvoltage 12
 2.2.2 Lightning Surge 13
 2.2.3 Switching Surges 15
 2.2.4 Switching of Capacitor Banks 17
 2.3 Fault Current and DC Component 21
 2.4 Voltage Sags and Voltage Swells 25
 2.5 Voltage Fluctuations 27
 2.6 Voltage and Current Imbalance 29
 2.7 Harmonics and Interharmonics 29
 2.8 Inrush Current in Power Transformers 42
 2.9 Over-Excitation of Transformers 45
 2.10 Transients in Instrument Transformers 47
 2.10.1 Current Transformer (CT) Saturation (Protection Services) 47
 2.10.2 Capacitive Voltage Transformer (CVT) Transients 54
 2.11 Ferroresonance 55
 2.12 Frequency Variation 56
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>Other Kinds of Phenomena and their Signals</td>
<td>56</td>
</tr>
<tr>
<td>2.14</td>
<td>Conclusions</td>
<td>57</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Transducers and Acquisition Systems</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Voltage Transformers (VTs)</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Capacitor Voltage Transformers</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Current Transformers</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Non-Conventional Transducers</td>
<td>71</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Resistive Voltage Divider</td>
<td>71</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Optical Voltage Transducer</td>
<td>72</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Rogowski Coil</td>
<td>73</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Optical Current Transducer</td>
<td>74</td>
</tr>
<tr>
<td>3.6</td>
<td>Analog-to-Digital Conversion Processing</td>
<td>75</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Supervision and Control</td>
<td>78</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Protection</td>
<td>79</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Power Quality</td>
<td>79</td>
</tr>
<tr>
<td>3.7</td>
<td>Mathematical Model for Noise</td>
<td>80</td>
</tr>
<tr>
<td>3.8</td>
<td>Sampling and the Anti-Aliasing Filtering</td>
<td>81</td>
</tr>
<tr>
<td>3.9</td>
<td>Sampling Rate for Power System Application</td>
<td>84</td>
</tr>
<tr>
<td>3.10</td>
<td>Smart-Grid Context and Conclusions</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Discrete Transforms</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Representation of Periodic Signals using Fourier Series</td>
<td>87</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Computation of Series Coefficients</td>
<td>90</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The Exponential Fourier Series</td>
<td>92</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Relationship between the Exponential and Trigonometric Coefficients</td>
<td>93</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Harmonics in Power Systems</td>
<td>95</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Properties of a Fourier Series</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>A Fourier Transform</td>
<td>98</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Introduction and Examples</td>
<td>98</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Fourier Transform Properties</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>The Sampling Theorem</td>
<td>104</td>
</tr>
<tr>
<td>4.5</td>
<td>The Discrete-Time Fourier Transform</td>
<td>108</td>
</tr>
<tr>
<td>4.5.1</td>
<td>DTFT Pairs</td>
<td>109</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Properties of DTFT</td>
<td>110</td>
</tr>
<tr>
<td>4.6</td>
<td>The Discrete Fourier Transform (DFT)</td>
<td>110</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Sampling the Fourier Transform</td>
<td>116</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Discrete Fourier Transform Theorems</td>
<td>116</td>
</tr>
<tr>
<td>4.7</td>
<td>Recursive DFT</td>
<td>117</td>
</tr>
<tr>
<td>4.8</td>
<td>Filtering Interpretation of DFT</td>
<td>120</td>
</tr>
</tbody>
</table>
6.4.1 Introduction 174
6.4.2 The Input–Output Relation for the Decimator 174
6.5 Fractional Sampling Rate Alteration 175
6.5.1 Resampling Using MATLAB® 175
6.6 Real-Time Sampling Rate Alteration 176
6.6.1 Spline Interpolation 177
6.6.2 Cubic B-Spline Interpolation 180
6.7 Conclusions 184
References 184

7 Estimation of Electrical Parameters 185
7.1 Introduction 185
7.2 Estimation Theory 185
7.3 Least-Squares Estimator (LSE) 187
7.3.1 Linear Least-Squares 188
7.4 Frequency Estimation 191
7.4.1 Frequency Estimation Based on Zero Crossing (IEC61000-4-30) 192
7.4.2 Short-Term Frequency Estimator Based on Zero Crossing 195
7.4.3 Frequency Estimation Based on Phasor Rotation 198
7.4.4 Varying the DFT Window Size 200
7.4.5 Frequency Estimation Based on LSE 201
7.4.6 IIR Notch Filter 203
7.4.7 Small Coefficient and/or Small Arithmetic Errors 203
7.5 Phasor Estimation 205
7.5.1 Introduction 205
7.5.2 The PLL Structure 207
7.5.3 Kalman Filter Estimation 209
7.5.4 Example of Phasor Estimation using Kalman Filter 211
7.6 Phasor Estimation in Presence of DC Component 212
7.6.1 Mathematical Model for the Signal in Presence of DC Decaying 213
7.6.2 Mimic Method 214
7.6.3 Least-Squares Estimator 215
7.6.4 Improved DTFT Estimation Method 216
7.7 Conclusions 224
References 224

8 Spectral Estimation 227
8.1 Introduction 227
8.2 Spectrum Estimation 227
8.2.1 Understanding Spectral Leakage 229
8.2.2 Interpolation in Frequency Domain: Single-Tone Signal 232
8.3 Windows 236
8.3.1 Frequency-Domain Windowing 236
8.4 Interpolation in Frequency Domain: Multitone Signal 240
Contents

8.5 Interharmonics 243
8.5.1 Typical Interhamonic Sources 246
8.5.2 The IEC Standard 61000-4-7 247
8.6 Interharmonic Detection and Estimation Based on IEC Standard 250
8.7 Parametric Methods for Spectral Estimation 254
8.7.1 Prony Method 254
8.7.2 Signal and Noise Subspace Techniques 262
8.8 Conclusions 269
References 270

9 Time-Frequency Signal Decomposition 271
9.1 Introduction 271
9.2 Short-Time Fourier Transform 274
9.2.1 Filter Banks Interpretation 274
9.2.2 Choosing the Window: Uncertainty Principle 276
9.2.3 The Time-Frequency Grid 279
9.3 Sliding Window DFT 280
9.3.1 Sliding Window DFT: Modified Structure 282
9.3.2 Power System Application 282
9.4 Filter Banks 284
9.4.1 Two-Channel Quadrature-Mirror Filter Bank 288
9.4.2 An Alias-Free Realization 290
9.4.3 A PR Condition 290
9.4.4 Finding the Filters from P(z) 292
9.4.5 General Filter Banks 294
9.4.6 Harmonic Decomposition Using PR Filter Banks 295
9.4.7 The Sampling Frequency 298
9.4.8 Extracting Even Harmonics 298
9.4.9 The Synthesis Filter Banks 300
9.5 Wavelet 300
9.5.1 Continuous Wavelet Transform 301
9.5.2 The Inverse Continuous Wavelet Transform 305
9.5.3 Discrete Wavelet Transform (DWT) 305
9.5.4 The Inverse Discrete Wavelet Transform 308
9.5.5 Discrete-Time Wavelet Transform 308
9.5.6 Design Issues in Wavelet Transform 313
9.5.7 Power System Application of Wavelet Transform 316
9.5.8 Real-Time Wavelet Implementation 318
9.6 Conclusions 319
References 319

10 Pattern Recognition 321
10.1 Introduction 321
10.2 The Basics of Pattern Recognition 322
10.2.1 Datasets 323
10.2.2 Supervised and Unsupervised Learning 323
10.3 Bayes Decision Theory
10.4 Feature Extraction on the Power Signal
 10.4.1 Effective Value (RMS)
 10.4.2 Discrete Fourier Transform
 10.4.3 Wavelet Transform
 10.4.4 Cumulants of Higher-Order Statistics
 10.4.5 Principal Component Analysis
 10.4.6 Normalization
 10.4.7 Feature Selection
10.5 Classifiers
 10.5.1 Minimum Distance Classifiers
 10.5.2 Nearest Neighbor Classifier
 10.5.3 The Perceptron
 10.5.4 Least-Squares Methods
 10.5.5 Multilayer Perceptron
 10.5.6 Support Vector Machines
10.6 System Evaluation
 10.6.1 Estimation of the Classification Error Probability
 10.6.2 Limited-Size Dataset
10.7 Pattern Recognition Examples in Power Systems
 10.7.1 Power Quality Disturbance Classification
 10.7.2 Load Forecasting in Electric Power Systems
 10.7.3 Power System Security Assessment
10.8 Conclusions
References

11 Detection
11.1 Introduction
11.2 Why Signal Detection for Electric Power Systems?
11.3 Detection Theory Basics
 11.3.1 Detection on the Bayesian Framework
 11.3.2 Newman-Pearson Criterion
 11.3.3 Receiving Operating Characteristics
 11.3.4 Deterministic Signal Detection in White Gaussian Noise
 11.3.5 Deterministic Signals with Unknown Parameters
11.4 Detection of Disturbances in Power Systems
 11.4.1 The Power System Signal
 11.4.2 Optimal Detection
 11.4.3 Feature Extraction
 11.4.4 Commonly Used Detection Algorithms
11.5 Examples
 11.5.1 Transmission Lines Protection
 11.5.2 Detection Algorithms Based on Estimation
 11.5.3 Saturation Detection in Current Transformers
11.6 Smart-Grid Context and Conclusions
References