Contents

Preface ix
Acknowledgements xiii
List of Abbreviations xv

1 The Multiradio Access Network 1
1.1 Introduction 1
1.2 Radiomobile Networks 3
 1.2.1 GSM/GPRS/EDGE Network Architecture 4
 1.2.2 GSM/GPRS/EDGE Access Network 6
 1.2.3 UMTS/HSPA/HSPA+ Network Architecture 17
 1.2.4 UMTS/HSPA/HSPA+ Access Network 21
 1.2.5 LTE Network Architecture 30
 1.2.6 LTE Access Network 33
 1.2.7 LTE Advanced 48
1.3 Wireless Networks 50
 1.3.1 Wireless LAN 50
 1.3.2 Wireless MAN 58
 1.3.3 Wireless PAN 61
References 66

2 Cognitive Radio: Concept and Capabilities 69
2.1 Cognitive Systems 69
2.2 Spectrum Sensing Cognitive Radio 70
 2.2.1 Spectrum Sensing Cognitive Features 72
2.3 Introduction to the Full Cognitive Radio 101
References 102

3 Self-Organizing Network Features in the 3GPP Standard 105
3.1 Self-Organizing Networks 105
 3.1.1 Alarming 107
 3.1.2 Operational Support System Automation 108
 3.1.3 Energy Saving 109
3.2 LTE Overview 111
Contents

3.3 **LTE Home eNB**

3.4 **LTE and Self-Organizing Networks**
 - 3.4.1 *Self-Establishment of a New eNB*
 - 3.4.2 *Automatic Neighbour Relation Management*
 - 3.4.3 *eNB Self-Optimization*
 - 3.4.4 *Energy Saving Management*
 - 3.4.5 *Self-Healing*

3.5 **References**

4 **IEEE 802.22: The First Standard Based on Cognitive Radio**
 - 4.1 *White Spaces*
 - 4.1.1 *FCC Regulation*
 - 4.1.2 *ECC Regulation*
 - 4.2 *IEEE 802.22*
 - 4.2.1 *IEEE 802.22 Architecture*
 - 4.3 *IEEE 802.22.1*

4.4 **References**

5 **ETSI Standards on Reconfigurable Radio Systems**
 - 5.1 *Introduction*
 - 5.2 *ETSI Reconfigurable Radio Systems*
 - 5.2.1 *Reconfigurable Radio Base Station Architecture*
 - 5.2.2 *Reconfigurable Radio Device Architecture*
 - 5.2.3 *Cognitive Pilot Channel (CPC)*
 - 5.2.4 *ETSI RRS Functional Architecture*
 - 5.3 *Summary*

5.4 **References**

6 **IEEE 1900.4**
 - 6.1 *Introduction*
 - 6.2 *IEEE Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC)*
 - 6.3 *IEEE 1900.4 Functional Architecture*
 - 6.3.1 *Operator Spectrum Manager Entity*
 - 6.3.2 *Network Reconfiguration Manager Entity*
 - 6.3.3 *RAN Reconfiguration Controller and RAN Measurement Collector Entities*
 - 6.3.4 *Terminal Equipment Entities*
 - 6.3.5 *IEEE 1900.4 and ETSI RRS Functional Architecture Comparison*
 - 6.3.6 *Use Cases for the IEEE 1900.4 Functional Architecture*
 - 6.4 *IEEE 1900.4a Functional Architecture*
 - 6.4.1 *White Space Manager Entity*
 - 6.4.2 *Cognitive Base Station*
 - 6.4.3 *Terminal Equipment Entities*
 - 6.4.4 *Use Cases for the IEEE 1900.4a Functional Architecture*
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| 6.5 | Summary
 | References | 249 | |
| 7 | Regulatory Challenges of Reconfigurable Radio Systems | 251 |
| 7.1 | Introduction | 251 |
| 7.2 | Spectrum Management | 251 |
| 7.2.1 | Dynamic Spectrum Access | 254 |
| 7.2.2 | Market-Based Approach in Spectrum Management | 259 |
| 7.3 | Impacts of Reconfigurable Radio Systems to Spectrum Governance | 262 |
| 7.4 | Summary
 | References | 266 |

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>269</td>
</tr>
</tbody>
</table>