INDEX

A/D converter
 bin, 57
 quantization characteristic, 57, 168
 resolution, 56, 169
 window-flash architecture, 189
 zero-error bin, 58, 168
Aliasing, 51, 53, 56, 71, 94, 97, 138
 mitigation in digital current control, 57
 small-aliasing approximation, 76, 94, 97,
 102, 151, 156, 157
Amplitude quantization, 6, 51, 56, 167
Analog control
 average current-mode control, 42
 voltage-mode, 21, 32
Analog to digital conversion, 51–53, 65, 167
Anti-windup provisions, 160
Autotuning, 10, 241
 based on injection of a digital
 perturbation, 243, 247
 based on limit cycling, 242
 based on relay feedback, 265
Averaging, 15, 22, 26, 28, 29, 71, 74
B2C see Binary two's complement, 295
Bilinear transform, 119–121
 definition and properties, 120, 121
 design method, 122
 of a discrete-time PID compensator, 123,
 124
Binary two's complement
 addition and subtraction, 304
 alignment, 299
 circular representation, 295
 multiplication, 305
 overflow detection, 307
 saturated arithmetic, 307
 sign extension, 298
 sign reversal, 301
 signal notation, 296
 truncation, 302
Capacitor charge (ampere-second) balance,
 16, 18, 29, 50
Coefficients
 quantization, 192, 200
 scaling, 198
 vector, 191, 194
Compensator
 absolute sensitivity function, 201, 203,
 204, 207, 210, 211
 anti-windup provisions, 160
 coefficients quantization, 192, 200
 coefficients scaling, 198
 continuous-time, 36, 59
 conversion from p-domain to z-domain, 196
 design, continuous-time, 32
 design, discrete-time, 126
 discrete-time, 58
 fixed-point implementation, 213
PID structures
 cascade, 195, 208, 229
 direct, 194, 206, 225
 parallel, 194, 204, 220
 programmable, 243, 244, 246, 247
 relative sensitivity function, 201, 204,
 205, 207, 208, 210–212
 transfer function, p-domain, 124
 transfer function, continuous-time, 36, 44,
 46, 48, 72
 transfer function, discrete-time, 60, 61
 verilog coding, 237
 vhdl coding, 235
Continuous conduction mode, 17
Crossover frequency, 13, 119, 122

Luca Corradini, Dragan Maksimović, Paolo Mattavelli, and Regan Zane.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
Delay, 51
A/D conversion, 53, 65
computational, 58, 65
control, 65, 70
loop, 65, 70
modulation, 65, 66, 69, 70, 79
Difference equations, 277
forced response, 278
free response, 279
modes, 281
Digital autotuning see Autotuning, 241
Digital control
average current-mode control, 97, 134
hardware-based vs. software-based, 65, 191
multiloop control, 136
power factor correction, 141
system and performance gains, 8
voltage-mode, 52, 71, 90, 112, 126, 167, 218
Digital pulse width modulator
counter-based architecture, 63, 183
delay-line architecture, 184
duty cycle resolution, 64, 169
hybrid architecture, 185
quantization characteristic, 65
time resolution, 64
with \(\Sigma\Delta\) modulation, 187
Discontinuous conduction mode, 17, 56
Discrete-time modeling, 80
ext., 88
examples, 88
for basic types of PWM modulation, 87
of time-invariant topologies, 102
Discretization, 58, 59, 79
backward euler, 59, 60
impulse-invariant, 105
using Matlab®, 111
tustin, 60, 61
DPWM see Digital pulse width modulator, 169
Duty cycle
definition, 14
discrete-time vs. continuous-time, 48
quantization, 64, 65
resolution, 64, 169
Dynamic range, 214
definition, 214, 215
Efficiency optimization, 12
Example
boost converter
analog average current-mode control, 42
digital average current-mode control, 97, 134
digital power factor correction, 141
parameters, 43, 145
state-space averaging, 30
steady-state analysis, 17
buck converter
analog voltage-mode control, 32
digital multiloop control, 136
digital voltage-mode control, 71, 90, 112, 126
parameters, 33
use of Matlab® see Matlab® example, 93
verilog coding see Verilog example, 237
vhdl coding see VHDL example, 235
Fixed-point
arithmetic, 193
binary two’s complement representation, 294
implementation, 193, 213
cascade PID structure, 232
direct PID structure, 228
parallel PID structure, 224
voltage-mode control, 218
vs. floating-point arithmetic, 293
Frequency response
of a linear discrete-time system, 288
on-line identification, 9
Gain margin, 13, 119
Hardware dynamic range see Dynamic range, 215
Impulse response
of a linear discrete-time system, 279, 289
of a switched inductor, 83
of a time-invariant topology, 103
of an integral digital compensator, 179
Inductor volt-second balance, 16, 18, 29, 50
Laplace-transform, 30, 69, 106, 108
Limit cycling, 167
due to DPWM vs. A/D resolution, 175
due to the integral gain, 178
no-limit-cycling conditions, 167, 175, 176, 180
Linear-ripple approximation, 17, 22, 28, 50
Loop gain, 13
definition, continuous-time, 26
definition, discrete-time, 120
effective, 75, 77, 156
simulation, 38–40, 130
uncompensated, continuous-time, 26
uncompensated, discrete-time, 120
calculation, 108
closed-form expressions, 110
relationship with the modified z-transform, 108
Matlab® example
B2C round-off, 295
compensator design, 132
discrete-time modeling
boost converter, 100
buck converter, 93
general-purpose script, 114
of basic converters, 112
evaluation of the sensitivity function, 211
impulse-invariant discretization, 111
No-limit-cycling conditions see Limit cycling, 167
PFC see Power factor correction, 141
Phase margin, 13, 119
uncompensated, 128
Power factor correction, 141
Pulse width modulation
delay, 65, 66, 69, 70, 79, 313
digital, 63, 182
dirac approximation, 69, 104, 105
frequency response, 25, 67, 69, 313
leading-edge, 69, 89
modeling, 24
naturally sampled, 24
of converters, 14
symmetrical, 42, 69, 89
trailing-edge, 21, 69, 88
uniformly sampled, 24, 67, 313
Quantization
due to the A/D converter, 56, 167
due to the DPWM, 169
interval, 58
of compensator coefficients, 192, 200
Sampling
effects see Aliasing, 51
inherent to pulse width modulation, 24
rate selection, 52, 53
Sensitivity function
absolute, 201, 203, 204, 207, 210, 211
definition, 201
evaluation using Matlab®, 211
relative, 201, 204, 205, 207, 208, 210–212
Signal notation, 296
Small-aliasing approximation see Aliasing, 76
Small-ripple approximation, 16–20, 22, 28, 50, 144
Small-signal
averaging, 28
equations of a converter, 28, 80
model of a linear discrete-time system, 288
Steady-state, 16
operating point, averaged modeling, 28
operating point, discrete-time modeling, 80
solution in presence of quantizations, 172, 175
Switched inductor, 82
Time quantization, 6, 51
Time-invariant topologies, 102
Timing diagram, 58, 66, 67
Transfer function
audiosusceptibility, 155
control-to-inductor current, 32, 44, 45, 82, 85, 93, 95–97, 101
control-to-output voltage, 23, 32, 82, 93, 94, 106, 112
evaluation using Matlab®, 93, 100, 111, 114
input impedance, 159
Transfer function (Continued)
matrix, 32, 82, 114
of a linear discrete-time system, 287
of the effective plant, 94
of the pulse width modulator, 25
output impedance, 40, 41, 155
sensing, 21, 52

Verilog example
addition and subtraction, 305
compensator coding, 237
continuous assignment, 298
multiplication, 306
saturated addition and multiplication, 310
sign extension, 300
sign reversal, 302

VHDL example
addition and subtraction, 305
compensator coding, 235
concurrent statement, 298
multiplication, 306
saturated addition and multiplication, 308
sign extension, 300
sign reversal, 301
truncation, 303

Voltage conversion ratio, 19
of basic converters, 20

Z-transform, 105, 106, 108, 109, 123, 284
definition, 284
modified, 108
properties, 285
Zero-error bin, 58, 168