INDEX

Note: Page numbers followed by “f” and “t” indicate figures and tables, respectively.

abc-phase components, 39
abc-phase voltages, 92
abc reference frames, 239
abc sequence, 30
abc theory, 30
 instantaneous, 81–91
 p-q theory and, 91–97
 reference power control method and,
 209–210
 three-phase three-wire shunt active filters
 and, 147–148
abc-to-pqr-reference frames, 102
ac/dc power conversion system, 254f
ac inductance, 8–9
active current, 27, 82
 instantaneous, 45, 79–80
 oscillating portion of, 120
 in three-phase three-wire shunt active filters, 120
 instantaneous zero-sequence, 78
 means of minimization method for calculating, 83–88
active filter, 232. See also hybrid active filters; series active filter; shunt active filter
 basic series, 237–239, 238f
 capacitor of, 422–423
 in combined series and shunt converters, 386f
 controllers, 238
 circuit, 159f
 constant instantaneous power control strategy, 116
 generalized Fryze current control strategy, 116
 harmonic compensation and, 117–118
 harmonic damping and, 156–171
 installation of, 157
 notches and performance of, 132–133
 sinusoidal current control strategy, 116
 in three-phase three-wire shunt active filters, 119, 152–156
 voltage detection and, 152–156
 currents
 for constant power control strategy, 196f
 for sinusoidal current control strategy, 195f
dc voltage regulator, 184–185
energy balance inside simplified sinusoidal source current strategy with, 217–218
experimental waveforms with, 161f–162f
experimental waveforms without, 164f
low-voltage transformerless hybrid, 268–271
power circuit of, 158f
seventh harmonic voltage source and, 163f
in shunt selective harmonic compensation, 230f
three-phase four-wire shunt active filters, 184–185
of UPLC, 388
active impedance
equivalent circuit for, 241f
fundamental frequency and, 241
harmonic compensation and, 241
in shunt passive filter, 241

Hirofumi Akagi, Edson Hirokazu Watanabe and Mauricio Aredes.
© 2017 by The Institute of Electrical and Electronics Engineers, Inc. Published 2017 by John Wiley & Sons, Inc.
INDEX

active power, 18. See also instantaneous active power
average, 185
 in p-q theory, 205
conventional concepts of, 19f
phase shifting and, 336
power definition, 23, 27
in UPFC series converter, 338
in UPFC shunt multipulse converter, 334–336
active voltage, 27
A/D unit, 175–177
aggregate current, 33
aggregate voltage, 33
air pollution, 7t
Akagi, H., 1, 204, 253
αβ-transformation, 4, 38, 47, 207–208
antiresonance, 240
apparent power, 20, 397
 power definition, 23, 27
arc furnace system, 227f
 with hybrid filter, 228f
auxiliary real power, 156
average active power, 185
 in p-q theory, 205
average energy, 114
average negative-sequence, 137
average real power, 190
balanced linear load, 365
balanced voltages, 29f
 p-q theory and, 49–50
basic series active filter, 237–239, 238f
Buchholz, F., 88n
Budeanu, C. I., 2–3, 17, 33
 power definitions by, 22–27
Butterworth filters, 126f–127f
 cutoff frequencies of, 129
 fifth-order, 128, 196, 360
capacitance basis, 398
capacitive loads
 p-q theory and, 49–50
 three-phase diode rectifier with, 10f
capacitors
 of active filter, 422–423
dc, 193t, 377
 reduced, 130f
 for series active filter, 423
for shunt active filter, 423
 in UPLC, 408–409
 voltages, 198f, 361f
overheating of, 4
split, 182, 184f, 393
voltages, 183t
Clarke components, 79, 82
 three-phase instantaneous active power and, 43–44
Clarke transformation, 4, 39–40, 147, 419
 avoidance of, 75–77
 graphical representation of, 155f
 inverse, 76, 326–327
 for compensating voltages, 379
Park transformation and, 155f, 374
p-q theory and, 75–77, 154, 219
 simplification of, 325
three-phase sinusoidal voltage source and,
 67–68
in UPFC controller design, 325
Clean Air Act, Amendments of 1970, 6
combined series and shunt converters
 for ac and dc sides of three-phase rectifiers, 411–427
 active filters in, 386f
 common dc link, 421–424
 control algorithm of, 418–421
 digital simulation, 424–426
 experimental results, 426–427
 for FACTS, 316f
 power flow control capabilities of, 386f
 shunt active filter in, 419f
combined series and shunt filter
 power diagram, 414f
 three-phase rectifiers and, 414–415
 common dc link, 421–424
communications systems, interference with, 5
commutation reactors, 193t
compensated current, 405f
 imaginary power and, 56f–58f
 real power and, 56f–58f
 shunt active filter, 424f
 of source, 125f
 in three-phase four-wire UPQC, 359f, 366f–367f
 in three-phase three-wire shunt active filters, 124f
compensated line currents, 133f
compensating power reference, 123f
compensating power signals, 130f
compensating voltages, 359f, 425f
in hybrid UPQC, 378
inverse Clarke transformation for, 379
of series converter, 319f
UPFC and, 321
of UPFC series converter, 326, 328
UPLC series converter, 403f
of UPQC series active filter, 373–374
compensation methods
p-q-r theory, 101
p-q theory, 218–224
compensation principle, 390
of three-phase three-wire shunt active filters, 151f
complex impedance, 20–21
complex power
instantaneous, 44
power definitions and, 21–22
three-phase, 32
components
abc-phase, 39
Clarke, 79, 82
three-phase instantaneous active power
and, 43–44
CPC theory, 97
fundamental, 374
fundamental positive-sequence, 192
frequency, 141
phase angle, 141
orthogonal, 321f
parallel, 320
control of, by imaginary power, 321f
power, 95–97
imaginary power in, 95
real power in, 95
zero-sequence power in, 95
of p-q-r theory, 100
current, 101
reactive power, 101
symmetrical, 71–72
zero-sequence, 74, 79, 327, 368
current and, 41–42
exclusion of, 41–42
in UPFC controller design, 325
voltage and, 41–42
conservative power theory (CPT), 97
constant instantaneous power control strategy, 210
active filter controllers, 116
control block for, 122f
optimal compensation from, 120, 121f
p-q theory and, 117
results from, 116f
three-phase four-wire shunt active filters, 187–189
constant power, 194
optimal power flow conditions, 187
constant power consumption, 119–135
constant power control strategy, 196f
constant real power, 135
constant source power, 197f
constant three-phase instantaneous active power, 89
control algorithm, 93f
control block
for constant instantaneous power control strategy, 122f
diagram
hybrid active filters for three-phase
six-pulse diode rectifier, 279f
series active filter, 420f
shunt active filter, 419f–420f
for sinusoidal current control, 136f
three-phase four-wire shunt active filters, 188f, 191f
UPFC, 323f
voltage-balancing control, 298f
power angle, 338f
of UPFC shunt multipulse converter, 337
three-phase three-wire shunt active filters, 119
controlled transmission line, 387
currents of, 406f, 410f
during imaginary power changes, 407f
instantaneous powers of, 405f
power reversion in, 408–409
during real power changes, 407f
UPLC, 410f
UPLC series converter and, 406–407
converters. See also combined series and shunt converters; shunt multipulse converter, UPFC

- current-source, 313
 - in shunt active filtering, 113
 - VSC and, 115

- PWM, 313
 - current harmonics generated by, 114
 - neutral-point-clamped, 275–276, 293, 298–299
 - series, 341, 355, 395–396
 - shunt, 354
 - for shunt active filtering, 113–115, 114f
 - switching frequency of, 381
 - three-phase four-wire, 181f

- quasi 24-pulse, 332–334
 - basic configuration of, 333f
 - transformer connections for, 333f

- series
 - compensating voltage of, 319f
 - power flow control by, 319f
 - UPFC, 319f, 326, 328, 338
 - UPLC, 403f, 406–407, 407f

- shunt
 - compensating currents of, 405f
 - controller for, 327
 - instantaneous powers of, 408f
 - secondary functions of, 327
 - of UPFC, 318f
 - of UPLC, 390, 404
 - voltage regulation, 410

- single-phase, 114

- six-pulse
 - phase voltages, 331f
 - in UPFC shunt multipulse converter, 328–332, 330f

- voltage-source, 313

- CSC and, 115
 - idealized, 329f
 - line voltages of, 330f
 - PWM-controlled, 412
 - in shunt active filtering, 113

- coupling transformer, 193t

- CPC theory, see currents physical components theory

- CPT, see conservative power theory

- CSC, see current-source converters current. See also specific types
 - active, 27, 82
 - instantaneous, 45

- instantaneous zero-sequence, 78

- means of minimization method for calculating, 83–88

- active filter
 - for constant power control strategy, 196f
 - for sinusoidal current control strategy, 195f

- aggregate, 33
 - basis, UPLC, 398

- calculation of, 41–42

- compensated, 405f
 - imaginary power and, 56f–58f
 - real power and, 56f–58f
 - shunt active filter, 424f
 - of source, 125f
 - in three-phase four-wire UPQC, 359f, 366f–367f
 - in three-phase three-wire shunt active filters, 124f

- compensated line, 133f

- components of p-q-r theory, 101

- control circuit per phase, 159f

- of controlled transmission line, 406f, 410f

- control methods, 177–180

- dc
 - of thyristor bridge, 128
 - UPLC, 398

- dc midpoint, 301

- digital controllers, 177–180

- distortion in, 69–73

- harmonics
 - high-order, 131
 - PWM converter generation of, 114
 - in shunt selective harmonic compensation, 230f
 - spectra, 230f

- hidden
 - appearance of, 59–63
 - p-q theory and, 59–63

- imbalances in, 69–73

- instantaneous reactive, 45, 79
 - in three-phase three-wire shunt active filters, 120

- line
 - compensated, 133f
 - instantaneous, 71

- of load, 195f

- of nonlinear loads, 122f

- of power subsystem GI, 406
INDEX 435

- linearity, 86f
- minimized, 85f, 145–149
- neutral compensation by reference power control method, 209
- in three-phase four-wire UPQC, 367f
- UPLC, 402f
- nonactive, 82
- means of minimization method for calculating, 83–88
- phasors, 20–21
- reactive, 27
- instantaneous, 45
- instantaneous zero-sequence, 78
- sinusoidal, 49, 187
- sinusoidal source, 197f
- strategy, 214
- supply in series active filter, 267f
- THD and, 306t–307t
- three-phase three-wire shunt active filters for minimization of, 145–149
- waveforms of, 11f–12f, 125f
- zero-sequence compensation, 214
- fundamental, 184
- oscillating portion of, 394
- zero-sequence components and, 41–42
- current-source converters (CSC), 313
- in shunt active filtering, 113
- VSC and, 115
- currents physical components (CPC) theory, 97
- Custom Power concept, 13
- cutoff frequencies, 126f
- of Butterworth filters, 129
- cycloconverter, 3, 38

D/A converters, 256
Dai, X., 81
dc capacitors, 193t, 377
- reduced, 130f
- for series active filter, 423
- for shunt active filter, 423
- in UPLC, 408–409
voltages: three-phase four-wire shunt active filters, 198f
- three-phase four-wire UPQC, 361f
dc current of thyristor bridge, 128
- UPLC, 398
dc link, common, 421–424
dc midpoint current, 301
dc resistance basis, UPLC, 398
dc side of three-phase rectifiers, instantaneous power in, 416–418
dc voltage, 335
- deviations, 199
- filtered output, 427f
- in hybrid active filters, 279
- load, 425f
- regulator, 119–121, 130, 137, 193t, 217–218
- active filter, 184–185
- fast response in, 130f
- in shunt active filter, 376–377
- three-phase four-wire shunt active filters, 184–185
- of UPLC controller, 390
- ripple, 422
deadbeat control, 178–179
Depenbrock, M., 81
digital controllers, three-phase three-wire shunt active filters, 171–180
- A/D unit in, 175–177
- current control methods, 177–180
- deadbeat control, 178–179
- frequency response of current control, 179–180
- modeling, 177
- PLL in, 172–175
- proportional control, 178
- PWM in, 172–175
- specification of, 173
- system configuration for, 172–177
- timing diagram of, 175f
diédt, 119, 129, 132, 202
displacement factor, 26
distorted voltages, 29f
distortion. See also total harmonic distortion in currents, 69–73
- power definition, 23–24
- power tetrahedron and, 25–27
- in voltages, 69–73, 131
distributed-constant model
- harmonic voltages, 168f
- three-phase three-wire shunt active filters, 167
distribution factor, 245
double-series diode rectifier, series active filter and, 253–268
characteristics comparison and, 260–263
circuit configuration, 255–257
delay time, 255–257, 258f
experimental results, 266–268
experimental waveforms in, 259f, 266f
first generation control circuits, 255–258
open-loop frequency responses, 262f
second-generation control circuit, 258–259
stability, 257–258, 260–263
supply current in, 267f
switching-ripple filter, 263–266
THD in, 267
transfer function on control circuits, 260–261
d-q reference frame, 14
d-q transformation, 225
dual p-q theory, 63–65
shunt current compensation in, 63–64
duty factor, 301
dynamic hysteresis-band current controller, 182–184

electrical motors, 4
electric power theory
concept and evolution of, 1–4
in three-phase systems, 28–34
11th-harmonic frequency, in three-phase
12-pulse diode rectifier, 304
Emanuel-Eigeles, A., 3
energy balance inside active filter, 217–218
energy basis, UPLC, 399
energy sources, in p-q-r theory, 214
energy storage element, 129
Erlicki, M. S., 3, 81
FACTS, see flexible ac transmission systems
feedback control loop, 352
PWM voltage control with, 345–346, 396f
feeder length, in three-phase three-wire shunt active filters, 169f
feedforward control, 151
in pure active filter, 272–273
fictitious power, 141
fifth harmonic
load current, 60–62
in series active filter, 383–384
voltage source, 170f
fifth-order Butterworth filters, 128, 196, 360
filters, see specific types
first winding, hybrid active filter on, 305f
fixed-point DSP, 219
flexible ac transmission systems (FACTS), 13–14, 140
combined series and shunt converters for, 316f
second generation, 315
FLL, see frequency-locked loop
fourth-order Bessel type low-pass filter, 356
fourth-order harmonics, 21
fourth winding, hybrid active filter on, 305f, 307f
four-winding transformer, 294–295
electrical specifications, 297t
LC filter constants for connection to, 297t, 303t
line-to-neutral voltage in, 300
systems configurations, 297
frequency, 140. See also specific types
fundamental positive-sequence component, 141
resonant, 270
in sinusoidal current control strategy, 189
in three-phase three-wire shunt active filters, 169f
frequency domain, 17
frequency-locked loop (FLL), 216
frequency response of current control, 179–180
frequency spectra, in series active filter, 250f
Fryze, S., 3, 17, 33
on instantaneous reactive power, 82
power definitions by, 27–28
Fujita, H., 253
Fukao, T., 3
fundamental components, in hybrid UPQC, 374
fundamental frequency, active impedance and, 241
fundamental positive-sequence component, 192
frequency, 141
phase angle, 141
fundamental reactive power, 137
fundamental zero-sequence current, 184
INDEX

437

generalized Fryze currents, 88
application of, 91f
control strategy, 117
active filter controllers, 116
design of, 147
real implementation of, 148f
results from, 116f
minimization method, 88–91
GTOs, 328
Gyugyi, L., 3, 38, 111
Harashima, F., 3, 8
harmonic compensation. See also shunt
selective harmonic compensation
active filter controllers and, 117–118
active impedance and, 241
basic principles of, 9–13
harmonic content, in hybrid UPQC, 376
harmonic currents
 generation of, 111
nonlinear loads and, 111
principle of superposition and, 373
series active filter and, 244–246
series resistance for, 347
shunt passive filter and, 244–246
suppression of, 394
of symmetrical components, 71–72
in three-phase four-wire UPQC, 347
in UPLC controller, 394
in UPQC with passive filter, 372–373
voltage sources and, 8–9
harmonic damping
active filter controller and, 156–171
in three-phase four-wire UPQC, 365
three-phase three-wire shunt active filters
for, 149–180
harmonic filtering, 1
hybrid active filters, 275
harmonic pollution, 1
air pollution and, 7f
harmonic-producing loads, 380
disconnection of, 381
experimental results with, 384f
identified, 6–7
unidentified, 6–7
harmonic propagation, 6, 158
harmonic-sensitive loads, 380
experimental results with, 384f
in series active filters, 382f
harmonic terminators, 152
harmonic voltages, 111
distributed-constant model, 168f
in power systems, 5–6
shunt passive filter, 245
of symmetrical components, 71–72
in UPLC, 387
hidden currents
appearance of, 59–63
p–q theory and, 59–63
high-order current harmonics, 131
high-pass filters, 188, 193f
in series active filter, 356
of shunt PWM converter, 354
in three-phase four-wire UPQC, 349
high voltage dc (HVDC), 412
homopolar-mode, 212
HVDC, see high voltage dc
hybrid active filters, 252–253. See also
three-phase 12-pulse diode rectifier,
hybrid active filter for; three-phase
six-pulse diode rectifier, hybrid
active filters for
active, 268–274
circuit configuration of, 269f
control system, 269f
on first winding, 305f
on fourth winding, 305f, 307f
harmonic filtering, 275
low-voltage transformerless, 268–271
for medium-voltage motor drives,
274–308
PWM of, 274
resonant frequency in, 270
simulated waveforms of, 273f
simulation results, 273–274
waveforms, 305f
hybrid filters
arc furnace system with, 228f
resonant frequency in, 270
waveforms of, 273f
hysteresis-band PWM current control, 183f
ideal synchronous condenser, 317
identified harmonic-producing loads, 6–7
IEEE 519-1992, 7
IEEE Transactions on Industry Applications,
3, 38
IGBTs, see insulated-gate bipolar transistors
imaginary current compensation, control
algorithm for, 93f
Index

- **imaginary power**, 326, 419
- compensated current and, 56f–58f
- controlled transmission lines and, 407f
- defining, 48
- instantaneous, 48, 404f
 - ac source, 415–416
- load, 58, 134
 - of nonlinear load, 390, 404f, 408
- parallel components control of, 321f
- physical meaning of, 48f, 74–75
- in power component selection, 95
- in *p-q* theory, 205
- in sinusoidal current control strategy, 117
- source, 135f
- three-phase four-wire shunt active filters, 198f
 - in three-phase four-wire UPQC, 361f
- in three-phase three-wire shunt active filters, 124f, 150f
- UPFC and, 320
- in UPLC, 387
 - of UPQC shunt active filter, 362f
- vectors, 81
- imbalances
 - in currents, 69–73
 - voltage, 131
 - in voltages, 69–73
- impedance
 - active
 - equivalent circuit for, 241f
 - fundamental frequency and, 241
 - harmonic compensation and, 241
 - in shunt passive filter, 241
 - complex, 20–21
 - series, 315
 - of series PWM converter, 355
 - shunt active filtering and, 112
 - in UPLC, 398
 - inductance basis, UPLC, 398
 - inertia, 130
 - in-phase, 216–217
 - instantaneous *abc* theory, 81–91
 - instantaneous active current, 45, 79–80
 - oscillating portion of, 120
 - in three-phase three-wire shunt active filters, 120
 - instantaneous active power, 46
 - in *p-q* theory, 205
 - three-phase, 94
 - Clarke components and, 43–44
- constant, 89
 - of load of shunt active filter, 150f
 - instantaneous active three-phase power, 368
 - instantaneous active voltage, 64
 - instantaneous complex power, 44
 - instantaneous current vector, 207
 - instantaneous energy balance, 211
 - instantaneous energy flow, 74–75
 - instantaneous imaginary power, 48, 404f
 - ac source, 415–416
 - instantaneous line currents, 71
 - instantaneous phase voltages, 136–137
 - instantaneous power. *See also* constant
 - instantaneous power control strategy
 - of controlled transmission line, 405f
 - in dc side of rectifier, 416–418
 - of *p-q* theory, 44, 348
 - in three-phase rectifiers, 418
 - of UPLC series converter, 407f
 - of UPLC shunt converter, 408f
 - instantaneous reactive current, 45, 79
 - in three-phase three-wire shunt active filters, 120
 - instantaneous reactive power, 3–4, 46
 - Fryze on, 82
 - literature on, 81
 - instantaneous reactive voltage, 64
 - instantaneous real power, 404f
 - ac source, 415–416
 - instantaneous zero-sequence active current, 78
 - instantaneous zero-sequence power, 48
 - instantaneous zero-sequence reactive current, 78
 - insulated-gate bipolar transistors (IGBTs), 3, 232, 328, 357
 - reverse-blocking, 115
 - in shunt active filtering, 113
 - switching operation, 176–177
 - inverse Clarke transformation, 76, 326–327
 - for compensating voltages, 379
 - inverse matrix transformation, 102
 - inverse of powers, 55
 - inverse transformations, 100

 - Kanazawa, Y., 1
 - Kim, H., 204
Lagrange multiplier method, 82–83
LC filter constants, for connection to
 four-winding transformer, 297t, 303f
linearity
 currents, 86f
 voltages, 86f
line currents
 compensated, 133f
 instantaneous, 71
 of load, 195f
 of nonlinear loads, 122f
 of power subsystem GI, 406
line-frequency, 299
line-to-neutral voltage, 300
line voltages, 329
 UPLC, 397
 VSC, 330f
load convention, 323
load current, 366f
 compensation, 118–119, 118f
 fifth harmonic, 60–62
 line current, 195f
 phase voltages, 133f
 in p-q-r theory, 220f
 in p-q theory, 220f
 seventh harmonic in, 62–63
 shunt active filter, 118–119, 118f
 three-phase four-wire UPQC, 360f, 366f
 waveforms, 133f
load dc voltage, 425f
load imaginary power, 58, 134
loading conditions, three-phase four-wire
 UPQC, 365
load power, 123f
load real power, 134f
load terminal
 phase voltages at, 194f, 365
 voltages at, 366f, 369
low-pass filters, 121, 193t
 fourth-order Bessel type, 356
 in hybrid UPQC, 376
low-power diode rectifiers, 7
low-voltage transformerless hybrid active
 filters, 268–271
low-voltage transformerless pure shunt
 active filters, 271–273
Machida, T., 3
matrix transformations, 100
 inverse, 102
means of minimization method
 active current calculated with, 83–88
 generalized Fryze currents, 83–88
 nonactive current calculated with, 83–88
 medium-voltage high-power motor drive
 systems, 274–308
 modified p-q theory, 77–81, 98
 MOSFET, 290, 298
Nabae, A., 1
 negative-sequence, 30f
 average, 137
 components, 68–69
 imbalances due to, 370–371
 power, 137
 in shunt selective harmonic compensation,
 229f
 in UPLC, 388–389
 voltage detector, 153, 156
neutral currents
 compensation
 p-q-r theory, 221f
 p-q theory, 221f
 by reference power control method,
 209
 in three-phase four-wire UPQC,
 367f
 UPLC, 402f
neutral-point-clamped PWM converter,
 275–276, 293, 298–299
neutral wire, three-phase systems without,
 350
no-load conditions, waveforms at, 289f
nonactive current, 82
 means of minimization method for
 calculating, 83–88
non-homopolar, 215
nonlinear load, 205–206
 harmonic currents and, 111
 imaginary power of, 390, 404f, 408
 line currents of, 122f
 p-q theory and, 50–54
 problems, 2–3
 real powers, 404f
 with shunt passive filter, 239f
 three-phase four-wire shunt active filters
 and, 196f
 three-phase four-wire UPQC, 357
 totalized currents of, 404f
 in UPLC, 404f
nonsinusoidal conditions
power definitions under, 22–28
special cases under, 87f
open-loop frequency responses, series active filter, 262f
optimal power flow conditions
constant power, 187
sinusoidal currents, 187
three-phase four-wire shunt active filters, 185–187
orthogonal, 137
components, 321f
control of, by real power, 321f
currents, 319
sinusoidal current control strategy, 189
oscillating portion, of instantaneous active current, 120
oscillating power, 19
oscillation damping, 348f
overheating
of capacitors, 4
of electrical motors, 4
of transformers, 4
parallel components, 320
control of, by imaginary power, 321f
Park transformation, 155–156
Clarke transformation and, 155f, 374
graphical representation of, 155f
passive filter. See also shunt passive filter
circuit constants of, 380t
in hybrid UPQC, 383
installation of, 157
resonant frequency of, 270
UPQC with, 370–385
harmonic currents in, 372–373
PCC, see point of common coupling
pconst curve, 197
PD, see proportional derivative
Pelly, B. R., 3, 38
Peng, F. Z., 79
phase angle, 137, 140
displacement, 315
fundamental positive-sequence component, 141
in sinusoidal current control strategy, 189
phase delay, 134
phase-locked-loop (PLL) circuits, 103, 138, 233
α-phase voltage in, 143
block diagram, 174f
in digital controllers, 172–175
dynamic behavior of, 144f, 376
functional block diagram of, 141f
positive-sequence detector and, 215–217
simplified sinusoidal source current strategy and, 215–217
stable points, 142
in three-phase three-wire shunt active filters, 141–145
UPFC shunt multipulse converter control, 337–338
phase shifting, active power and, 336
phase-to-neutral voltages, 332
phase voltages, 86f
abc, 92
α, 128
in PLL circuit, 143
instantaneous, 136–137
load current waveforms, 133f
at load terminal, 194f, 203f, 365
six-pulse converter, 331f
on UPLC, 397, 402
phasor diagram
for hybrid UPQC, 378f
for power flow control, 320f
UPFC, 318f
in UPLC controller, 394–395
for voltage, 14f
PID, see proportional-integral-derivative PLDs, see programmable logic devices
PLL, see phase-locked-loop circuits
point of common coupling (PCC), 6, 230, 254
in three-phase three-wire shunt active filters, 118
positive-sequence, 30f
fundamental positive-sequence component, 192
frequency, 141
phase angle, 141
in shunt selective harmonic compensation, 229f
in UPLC, 388–389
positive-sequence detector, 137
based on p-q theory, 217f
based on q-PLL, 217f
based on second-order generalized integrators, 216f
PLL circuits and, 215–217
positive-sequence voltage detector, 138–145
in UPLC controller, 393
power angle control block, 338f
of UPFC shunt multipulse converter, 337
power circuit
of active filter, 158f
of three-phase four-wire UPQC, 343–344
power components, selection of, 95–97
imaginary power in, 95
reactive, 101
real power in, 95
zero-sequence power in, 95
power conditioning, 1
power definitions
active power, 23, 27
apparent power, 23, 27
by Budeanu, 22–27
complex impedance and, 20–21
complex power and, 21–22
current phasors and, 20–21
distortion power, 23–24
by Fryze, 27–28
under nonsinusoidal conditions, 22–28
power factor and, 21–22
reactive power, 23, 27
under sinusoidal conditions, 18–20
voltages and, 20–21
power distribution
feeder, 157
line, 157–158
line simulator
with seventh harmonic current source, 164f
with seventh harmonic voltage source, 160f
power electronics, 2
power expressions, 72–73
generic, 73
power factor, 26
correction, 2
power definitions and, 21–22
power flow control. See also unified power flow controller
basic principle of, 13–15
of combined series and shunt converters, 386f
functionality, 322
phasors diagram for, 320f
principle
by series converter, 319f
UPFC, 318–321
power subsystem GI, 406, 406f
line currents of, 406
power system parameters, three-phase four-wire UPQC, 353–355
power tetrahedron, distortion factor and, 25–27
pq-plane, 208
pq reference frames, 98, 100
p-q-r theory, 97–104
alternative control method, 213–215
compensation methods, 101, 103, 204–224
components of, 100
current components of, 101
energy sources in, 214
load current in, 220f
neutral current compensation, 221f
p-q theory control methods compared with, 218–224
reference current control method, 211–213
reference power control method, 206–211
simplified sinusoidal source current strategy and, 215–218
system voltages in, 220f
variables, 102
p-q theory, 1, 111, 148, 152
abc theory and, 91–97
alternative control methods, 220–221
average active power in, 205
balanced voltages and, 49–50
basis of, 37–44
capacitive loads and, 49–50
Clarke transformation and, 75–77, 154, 219
compensation methods, 218–224
constant instantaneous power control strategy and, 117
criticisms, 59
dual, 63–65
fifth harmonic in load current, 60–61
general expressions of, 115
hidden currents and, 59–63
history of, 3–4, 38
imaginary power in, 205
INDEX

p-q theory (Continued)
- instantaneous active power in, 205
- instantaneous powers of, 44, 348
- load currents in, 220f
- modified, 77–81
- modified control algorithm based on, 214
- neutral current compensation, 221f
- nonlinear loads and, 50–54
- positive-sequence detector based on, 217f
- power electronic equipment and, 4–5
- p-q-r theory control methods compared with, 218–224
- on reactive power, 219
- series voltage compensation, 66
- seventh harmonic and, 62–63
- for shunt current compensation, 54–63
- simplified sinusoidal source current strategy and, 222
- sinusoidal balanced voltage and, 50–54
- sinusoidal currents and, 49
- sinusoidal voltages and, 49
- system voltages in, 220f
- in three-phase four-wire systems, 65–81
- in three-phase three-wire systems, 44–65
- in UPFC controller design, 323, 324f
- UPLC, 406
- visualization of, 72

PREF, 322
- principle of superposition, 372
- programmable logic devices (PLDs), 174–175

- proportional control, digital controllers, 178
- proportional derivative (PD), 346
- proportional-integral-derivative (PID), 346
- pr-plane, 212

- pulse width modulation (PWM), 240. See also PWM converter; PWM voltage control
- block diagram, 174f, 225
- current-source, 11
- in digital controllers, 172–175
- hybrid active filters, 274
- space-vector, 42
- UPFC shunt multipulse converter, 336–337
- voltage-source, 11
- pure active filter, 268–274
- control system, 272
- feedforward control in, 272–273

- low-voltage transformerless shunt, 271–273
- simulated waveforms, 274
- pure resistive load, 117
- PWM, see pulse width modulation
- PWM-controlled VSC, 412
- PWM converter, 313
- current harmonics generated by, 114
- neutral-point-clamped, 275–276, 293, 298–299
- series
 - impedances of, 355
 - in UPLC controller, 395–396
 - of UPQC, 341
 - shunt, 354
 - for shunt active filtering, 113–115, 114f
 - switching frequency of, 381
 - three-phase four-wire, 181f
- PWM voltage control
 - with feedback control loop, 345–346, 396f
 - in three-phase four-wire UPQC, 344–346
 - UPLC, 389
 - in UPLC controller, 396f

- q-PLL, 216
- positive-sequence detector based on, 217f

- QREF, 322
- quasi 24-pulse converter, UPFC shunt multipulse converter, 332–334
- basic configuration of, 333f
- transformer connections for, 333f

- reactive current, 27
 - instantaneous, 45
 - instantaneous zero-sequence, 78

- reactive power, 18, 206
 - components, 101
 - conventional concepts of, 19f
 - factor, 27
 - fundamental, 137
 - instantaneous, 3–4, 46
 - Fryze on, 82
 - literature on, 81
 - power definition, 23, 27

- p-q theory on, 219
- three-phase, 32
 - in UPFC series converter, 338
 - in UPFC shunt multipulse converter, 334–336
 - UPLC controller, 395
reactive voltage, 27
real control power, 326
real power, 48, 186
auxiliary, 156
average, 190
calculations of, 121–122
compensated current and, 56f–58f
constant, 135
deregulated transmission lines and, 407f
instantaneous, 404f
ac source, 415–416
load, 134f
of nonlinear load, 404f
orthogonal component control by, 321f
physical meaning of, 48f, 74–75
in power component selection, 95
in sinusoidal current control strategy, 117
in source, 123f
in three-phase four-wire UPQC, 361f
in three-phase three-wire shunt active filters, 119, 150f
in UPLC, 387
of UPQC series active filter, 362f
of UPQC shunt active filter, 362f
rectifiers, see specific types
reduced dc capacitor, compensating power signals for, 130f
reference current control method, 204, 206
modification of, 212–213
power mismatch verification, 223
p-q-r theory, 211–213
reference power control method, 204
abc theory and, 209–210
composition of, 207
neutral current compensation by, 209
p-q-r theory, 206–211
resistor for feedback (RFB), 256
resonance phenomena, 348f
series, 240f
resonant frequency
in hybrid filters, 270
of passive filter, 270
reverse-blocking IGBT, 115
RFB, see resistor for feedback
RLC filters, in three-phase four-wire UPQC, 352

Sasaki, H., 3
secondary windings, 383
second-harmonic voltages injection, 299. See also three-phase second-harmonic negative sequence voltage injection in four-winding transformer, 300
second-order generalized integrators, 216f
selective filter basic cell (SFBC), 224
block diagram, 224f
modified, 225f
series active filter. See also double-series diode rectifier, series active filter and basic, 237–239, 238f
combined, shunt passive filter and, 239–253
compensation principles, 243–245
compensation voltage, 425f
connection of, 357, 369f
control block diagram, 420f
control circuit, 246–248
controller, 350–352	hree-phase four-wire UPQC, 346–350
dc capacitor for, 423
experimental results, 249–252
in experimental system, 242–252
tenth harmonic in, 383–384
filtering characteristics, 245–248
frequency spectra in, 250f
harmonic current and, 244–246
harmonic-sensitive loads in, 382f
high-pass filters in, 356
open-loop frequency responses, 262f
output voltage, 244
series connection of, 252
shunt active filter successive connection with, 358f
currents from, 364f
voltages from, 364f
single-phase equivalent circuit for, 243f
specifications of, 254t
in three-phase four-wire UPQC, 350–352
in three-phase rectifiers, 413f
UPQC compensating voltage of, 373–374
ideal gain of, 381
imaginary power of, 362f
real power of, 362f
voltage, 425f
waveforms, 250
series converter. See also combined series and shunt converters
compensating voltage of, 319f
dc capacitor for, 423
dc voltage regulator in, 376–377
experimental prototypes, 126
experimental results, 367f
general description of, 113–118
IGBTs in, 113
imperfection and, 112
introduction of, 111
for load current compensation, 118–119, 118f
low-voltage transformerless pure, 271–273
PWM converter in, 113–115, 114f
series active filter successive connection with, 358f
currents from, 364f
voltages from, 364f
in three-phase four-wire UPQC, 350–352
three-phase instantaneous active power of
load of, 150f
in three-phase rectifiers, 412, 413f
of UPLC controller, 390
UPQC
imaginary power of, 362f
real power of, 362f
VSC in, 113
shunt compensator, 92
shunt concept, 111–112
shunt converter. See also combined series and shunt converters
of UPFC, 318f
controller for, 327
secondary functions of, 327
of UPLC, 390, 404
compensating currents of, 405f
instantaneous powers of, 408f
voltage regulation, 410
shunt current compensation
basic principle of, 54f, 103f
color control method for, 55f, 80f
in dual p-q theory, 63–64
general principles of, 115
p-q theory for, 54–63
principle of, 111–112
in three-phase four-wire system, 103f
shunt multipulse converter, UPFC
active power in, 334–336
basic configuration of, 333f
controller, 336–339
INDEX 445

output voltages, 330f
PLL control, 337–338
principle of power control in, 336f
PWM control, 336–337
quasi 24-pulse converter, 332–334
reactive power in, 334–336
six-pulse converter in, 328–332
switching logic circuit of, 337
transformer connections, 333f
shunt passive filter, 239–253
active impedance in, 241
combined series active filter and, 239–253
compensation principles, 243–245
circuit control, 246–248
experimental results, 249–252
in experimental system, 242–252
filtering characteristics, 245–248
harmonic current and, 244–246
harmonic voltage, 245
measure voltages on, 375
nonlinear load with, 239f
parameters of, 243t
series connection of, 252
switching ripple suppression, 248–249
waveforms, 250
shunt PWM converter, high-pass filter of, 354
shunt selective harmonic compensation, 224–231
active filter in, 230f
compensation scheme in, 226f
current harmonic spectra in, 230f
load current, 229f
negative-sequence in, 229f
parallel calculation method, 227f
performance of, 226–227
positive-sequence in, 229f
series calculation method, 226f
transfer function, 228f
simplified sinusoidal source current strategy
compensated currents, 222, 223f
with energy balance inside active filter, 217–218
PLL circuit and, 215–217
p-q-r theory and, 215–218
p-q theory and, 222
single-phase apparent power basis, UPLC, 397
single-phase converters, 114
single-phase systems, 18, 68
sinusoidal balanced voltage
p-q theory and, 50–54
UPLC controller and, 393
sinusoidal conditions, power definitions
under, 18–20
sinusoidal current control
circuit block diagram for, 136f
strategy
active filter controllers, 116
active filter currents for, 195f
frequency in, 189
imaginary power in, 117
orthogonal, 189
phase angle in, 189
real power in, 117
results from, 116f
three-phase four-wire shunt active filters, 189–192
three-phase three-wire shunt active filters, 135–145
sinusoidal currents
optimal power flow conditions, 187
p-q theory and, 49
sinusoidal source current, 197f
strategy, 214
sinusoidal voltages, 1–2
p-q theory and, 49
three-phase, 67–68
six-pulse converter
phase voltages, 331f
in UPFC shunt multipulse converter, 328–332
output voltages, 330f
sixth-harmonic zero-sequence voltage
injection, 280f
in hybrid active filters, 281–283
waveforms, 287f
solar energy systems, 5
source imaginary power, 135f
space-vector PWM, 42
split capacitor, 182, 184f, 393
Sriangthumrong, S., 253
stand-alone series active filter, 12f, 13t
stand-alone shunt active filter, 11f, 13t
STATCOM, 15, 232, 315, 387, 405, 417
steady state, 131
step-down transformers, 294
Strycula, E. C., 3, 38, 111
subharmonics, 201
amplitude of, 195
superposition, see principle of superposition
supply currents
 in series active filter, 267f
 THD and, 306t–307t
supply voltages, 202
 three-phase four-wire UPQC, 360f
 unbalanced, 132f
switching logic circuit, 338–339
 of UPFC shunt multipulse converter, 337
switching-ripple filter
 design principle, 263
 double-series diode rectifier, 263–266
 experimental testing, 264–266
 experimental waveforms, 264t, 265
 system stability, 263–264
switching ripple suppression, shunt passive filter, 248–249
symmetrical components
 harmonic currents of, 71–72
 harmonic voltages of, 71–72
synchronous sampling, 176f
system voltages
 in p-q-r theory, 220f
 in p-q theory, 220f
terminal voltage, 315
test case, see power distribution line for, 157–158
THD, see total harmonic distortion
three-leg conventional converter, three-phase four-wire shunt active filters, 187f
three-phase 12-pulse diode rectifier, hybrid active filter for, 292–308
control system, 298–300
 current block diagram, 298f
 electrical specifications, 295t
 11th-harmonic frequency in, 304
 experimental results, 303–308
 experimental system, 295–298
 feasible system configurations, 294f
 medium-voltage high-power motor drive systems, 293–295
 overall system efficiency, 308
THD in, 304, 305t
three-phase second-harmonic negative sequence voltage injection, 300–303
three-phase active filters, 114
three-phase active powers, 223f
three-phase apparent power basis, UPLC, 397
three-phase complex power, 32, 90
three-phase diode rectifier, 8–9
 with capacitive load, 10f
three-phase four-wire PWM converters, 181f
three-phase four-wire shunt active filters, 180–204
active filter dc voltage regulator, 184–185
circuit diagram, 200f
constant instantaneous power control strategy, 187–189
control block diagram, 188f, 191f
 converter topologies for, 181–182
dc capacitor voltages, 198f
dynamic behavior in, 203f–204f
dynamic hysteresis-band current controller, 182–184
dynamic response of, 193–198
 economical aspects, 198–199
 experimental results, 199–204
 imaginary power, 198f
 nonlinear load and, 196f
 optimal power flow conditions, 185–187
 parameter optimization, 192–204
 performance analysis, 192–204
 simulated system, 194f
 sinusoidal current control strategy, 189–192
 system parameters, 192–193
 three-leg conventional converter, 187f
three-phase four-wire systems, 90
 general case, 69–73
 p-q theory in, 65–81
 shunt current compensation in, 103f
three-phase four-wire UPQC, 342
 analysis of dynamic, 353–370
 compensated current in, 359f, 367f
 compensated voltages in, 359f
 control algorithm, 348
 control systems, 355–357
dc capacitor voltages, 361f
dc voltage regulator, 365
development of, 348–349
 equivalent circuits, 354f
 functional blocks, 345
 general aspects, 352
 harmonic currents in, 347
 harmonic damping in, 365
 harmonic resistance in, 349–350
 high-pass filters in, 349
 imaginary power in, 361f
INDEX

integration of filter controllers in, 350–352
load currents in, 360f, 366f
loading conditions, 365
neutral currents in, 367f
nonlinear load, 357
power circuit of, 343–344
power system parameters, 353–355
PWM voltage control in, 344–346
real power in, 361f
RLC filters in, 352
series active filter controller in, 346–352
shunt active filter controller in, 350–352
simulation results, 357–363
supply voltages, 360f
three-phase instantaneous active power, 94
Clarke components and, 43–44
constant, 89
of load of shunt active filter, 150f
tree-phase power distribution, 157, 158f
tree-phase reactive power, 32
tree-phase rectifiers
ac and dc sides of, 411–427
ac source
instantaneous imaginary powers, 415–416
instantaneous real powers, 415–416
combined series and shunt filter and, 414–415
dc side, instantaneous power in, 416–418
experimental results, 426–427
instantaneous powers in, 418
series active filter in, 413f
shunt active filter in, 412, 413f
thyristor-based, 412
three-phase second-harmonic negative sequence voltage injection
hybrid active filters and, 283–286
experimental results, 286–291
experimental systems, 277, 278f
experimental waveforms, 285f
sixth-harmonic zero-sequence voltage injection, 281–283
specifications and parameters of, 279f
system configuration, 275–277
THD, 290
three-phase second-harmonic negative sequence voltage injection, 283–286
voltage-injection methods, 280f
tree-phase systems
classifications of, 28–34
electric power in, 28–34
tree-phase three-wire shunt active filters, 118–180. See also digital controllers,
tree-phase three-wire shunt active filters
abc theory and, 147–148
active filter controller in, 119, 152–156
active filter gain in, 167–171
compensated current in, 124f
compensation principle of, 151f
for constant power consumption, 119–135
for current minimization, 145–149
distributed-constant model, 167
energy storage element of, 129
experimental compensation systems, 128
experimental results, 159–167
feeder length in, 169f
frequency in, 169f
functional control blocks, 119
generalized Frye current control strategy, 147
for harmonic damping, 149–180
imaginary powers in, 124f, 150f
instantaneous active current in, 120
instantaneous reactive current in, 120
PCC in, 118
PLL in, 141–145
real power in, 119, 150f
seven-harmonic current source, 163–164
seven-harmonic voltage source, 160–161
simulation results, 145
sinusoidal current control, 135–145
tree-phase three-wire systems, p-q theory in, 44–65
voltage detector in, 138–140, 151–152
wavelength in, 169f
three-phase thyristor rectifier, 90
three-phase unbalanced systems, 33–34
three-phase Y-Y transformer, 332
three-winding transformer, 294–295
thyristor-based compensators, 316
thyristor-based rectifiers, 412
waveform, 415f
thyristors
bridge, 202
dc current of, 128
development of, 412
rectifier, 50f
total harmonic distortion (THD), 5, 5t
in hybrid active filters, 290
measurement of, 291f
in series active filter, 267
supply currents and, 306t–307t
in three-phase 12-pulse diode rectifier, 304, 305t
totalized currents, of nonlinear load, 404f

Transactions of the Institute of Electrical Engineers of Japan, 3, 38
transfer function, 355
series active filter, 260–261
shunt selective harmonic compensation, 228f
transformer leakage inductance, 419
transformers, overheating of, 4
12th-harmonic zero-sequence voltage, 299
24-pulse voltage, 335

UCC, 129–130
unbalanced supply voltages, 132f
unbalanced systems, three-phase, 33–34
unbalanced voltages, 29f
unidentified harmonic-producing loads, 6–7
unified power flow controller (UPFC), 15, 314–330. See also three-phase converter, UPFC
block diagram, 15f
compensating voltage and, 321
control algorithm, 328
control block diagram, 323f
controller design, 321–328
Clarke transformation in, 325
load convention in, 323
measurements in, 322
p-q theory in, 323, 324f
reference values, 323–324
zero-sequence components in, 325
defined, 315
functionality of, 322f
imaginary power and, 320
phasor diagrams, 318f
power flow control principle, 318–321
series converter, 319f
active power in, 338
compensating voltage of, 326, 328
reactive power in, 338
shunt converter of, 318f
controller for, 327
secondary functions of, 327
voltage regulation principle, 317
unified power quality conditioner (UPQC), 314, 339–385. See also three-phase four-wire UPQC
assignments for, 341f
basic configuration of, 340f
general description of, 340–342
hybrid approach, 371
compensating voltages in, 378
controller of, 374–379
experimental results, 380
experimental values in, 385t
fundamental components in, 374
harmonic content, 376
low-pass filters in, 376
passive filters in, 383
phasor diagram, 378f
single-phase equivalent circuit, 378f
parts of, 340–341
passive filter, 370–385
harmonic currents in, 372–373
series active filter
compensating voltage of, 373–374
ideal gain of, 381
imaginary power of, 362f
real power of, 362f
series PWM converter of, 341
shunt active filter
imaginary power of, 362f
real power of, 362f
single-phase equivalent circuits, 372f
universal active power line conditioner (UPLC), 314, 428
active filtering of, 388
assignments for, 389t
capacitance basis in, 398
control circuit, 401
controlled transmission line, 410f
controller of, 389–397
configuration #2, 396–397
dc voltage regulator of, 390
harmonic currents in, 394
phasor diagram in, 394–395
positive-sequence voltage detector in, 393
PWM voltage control in, 396f
reactive power, 395
series PWM converter, 395–396
shunt active filter, 390
sinusoidal balanced voltage and, 393
current basis, 398
dc capacitors in, 408–409
dc current, 398
dc resistance basis, 398
digital simulation, 399f, 400
dynamic response of, 400
energy basis, 399
general description of, 386–389
harmonic voltages in, 387
imaginary powers in, 387
impedance, 398
inductance basis, 398
line voltages, 397
negative-sequence components in,
388–389
neutral currents, 402f
nonlinear load in, 404f
normalized system parameters,
397–409
performance of, 397–411
phase voltages on, 397, 402
positive-sequence components in,
388–389
p-q theory in, 406
principal parameters, 400t
PWM voltage control, 389
real powers in, 387
series converter
compensating voltages, 403f
controlled transmission line and,
406–407
instantaneous powers of, 407f
shunt converter, 390, 404
compensating currents of, 405f
instantaneous powers of, 408f
voltage regulation, 410
simulation results
of configuration #1, 401–409
of configuration #2, 409–411
general aspects, 411
single-phase apparent power basis, 397
three-phase apparent power basis, 397
three-phase circuit of, 399f
UPFC, see unified power flow controller
UPLC, see universal active power line
conditioner
UPQC, see unified power quality conditioner
VCO, see voltage-controlled oscillator
voltage. See also specific types
active, 27
aggregate, 33
balanced, 29f
calculation of, 41–42
capacitor, 183t
compensating, 359f, 425f
in hybrid UPQC, 378
inverse Clarke transformation for, 379
of series converter, 319f
UPFC and, 321
of UPFC series converter, 326, 328
UPLC series converter, 403f
of UPQC series active filter, 373–374
detector
active filter controller and, 152–156
main circuit of, 138–140
negative-sequence, 153, 156
positive-sequence, 138–145
in three-phase three-wire shunt active filters, 138–140, 151–152
difference, 182–183
distortion in, 29f, 69–73, 131
flicker, 4
harmonic current and, 8–9
imbbalances in, 69–73, 131
instantaneous active, 64
line, 329
UPLC, 397
VSC, 330f
linearity, 86f
at load terminal, 366f, 369f
phasor diagram for, 14f
power definitions and, 20–21
reactive, 27
regulation
principle, 317
UPFC, 317
UPLC shunt converter, 410
INDEX

voltage. See also specific types (Continued)
- series active filter, 425f
- sources, 8–9
- supply, 202
 - three-phase four-wire UPQC, 360f
 - unbalanced, 132f
- system, 220f
- terminal, 315
- three-phase sinusoidal balanced, 115–116
 - unbalanced, 29f
- waveforms of, 11f–12f, 125f
- distortion, 4
- zero-sequence, 366
- zero-sequence components and, 41–42
- voltage-balancing control, 302
- control block diagram, 298f
- voltage-controlled oscillator (VCO), 172, 174
- voltage-magnifying factor
 - fifth harmonic voltage source and, 170f
 - seventh harmonic voltage source, 170f
- voltage-source converter (VSC), 313
 - CSC and, 115
 - idealized, 329f
- line voltages of, 330f
- PWM-controlled, 412
 - in shunt active filtering, 113

- waveforms
 - active filter, 161f–162f, 164f
 - of currents, 11f–12f, 125f
 - double-series diode rectifier and, 259f, 266f
 - at 15 kW, 288f
 - hybrid active filters, 285f, 305f
 - of hybrid filters, 273f
 - at no-load conditions, 289f
 - pure active filter, 274

- series active filter, 250, 266f
- shunt passive filter, 250
- sixth-harmonic zero-sequence voltage injection, 287f
- switching-ripple filter and, 264t, 265
 - at 10 kW, 288f
- three-phase second-harmonic negative sequence voltage injection, 286f
- thyristor-based rectifiers, 415f
 - at 2 kW, 289f
- of voltages, 11f–12f, 125f
- wavelength, in three-phase three-wire shunt active filters, 169f
- wind energy systems, 5
- Wirkstrom, 82
- zero-order hold, 256
- zero-sequence active current, instantaneous, 78
- zero-sequence components, 74, 79, 327, 368
 - current and, 41–42
 - exclusion of, 41–42
 - in UPFC controller design, 325
 - voltage and, 41–42
- zero-sequence current compensation, 214
 - fundamental, 184
 - oscillating portion of, 394
- zero-sequence phasors, 30, 30f
- zero-sequence power, 72
 - instantaneous, 48
 - physical meaning of, 74–75
 - in power component selection, 95
 - in three-phase sinusoidal voltage source, 67–68
- zero-sequence reactive current, instantaneous, 78
- zero-sequence voltages, 366