CHAPTER 1

INTRODUCTION

The instantaneous active and reactive power theory, or the so-called “p-q theory,” was introduced by Akagi, Kanazawa, and Nabae in 1983. Since then, it has been extended by the authors of this book, as well as other research scientists. This book deals with the theory in a complete form for the first time, including comparisons with other sets of instantaneous power definitions. The usefulness of the p-q theory is confirmed in the following chapters dealing with applications in controllers of compensators that are generically classified here as active power line conditioners.

The term “power conditioning” used in this book has much broader meaning than the term “harmonic filtering.” In other words, the power conditioning is not confined to harmonic filtering, but contains harmonic damping, harmonic isolation, harmonic termination, reactive-power control for power factor correction, power flow control, and voltage regulation, load balancing, voltage-flicker reduction, and/or their combinations. Active power line conditioners are based on leading edge power electronics technology that includes power conversion circuits, power semiconductor devices, analog/digital signal processing, voltage/current sensors, and control theory.

Concepts and evolution of electric power theory are briefly described later. Then, the need for a consistent set of power definitions is emphasized to deal with electric systems under nonsinusoidal conditions. Problems with harmonic pollution in alternating current systems (ac systems) are classified, including a list of the principal harmonic-producing loads. Basic principles of harmonic compensation are introduced. Finally, this chapter describes the fundamentals of power flow control. All these topics are the subjects of scope and will be discussed deeply in the following chapters of the book.

1.1. CONCEPTS AND EVOLUTION OF ELECTRIC POWER THEORY

One of main points in the development of alternating current (ac) transmission and distribution power systems at the end of the nineteenth century was based on sinusoidal voltage at constant-frequency generation. Sinusoidal voltage with constant frequency has made easier the design of transformers and transmission lines, including very long distance lines. If the voltage were not sinusoidal, complications...
CHAPTER 1 INTRODUCTION

would appear in the design of transformers, machines, and transmission lines. These complications would not allow, certainly, such a development as the generalized “electrification of the human society.” Today, there are very few communities in the world without ac power systems with “constant” voltage and frequency.

With the emergence of sinusoidal voltage sources, the electric power network could be made more efficient if the load current were in phase with the source voltage. Therefore, the concept of reactive power was defined to represent the quantity of electric power due to the load current that is not in phase with the source voltage. The average of this reactive power during one period of the line frequency is zero. In other words, this power does not contribute to energy transfer from the source to the load. At the same time, the concepts of apparent power and power factor were created. Apparent power gives the idea of how much power can be delivered or consumed if the voltage and current are sinusoidal and perfectly in phase. The power factor gives a relation between the average power actually delivered or consumed in a circuit and the apparent power at the same point. Naturally, the higher the power factor, the better the circuit utilization. As a consequence, the power factor is more efficient not only electrically but also economically. Therefore, electric power utilities have specified lower limits for the power factor. Loads operated at low power factor pay an extra charge for not using the circuit efficiently.

For a long time, one of the main concerns related to electric equipment was power factor correction, which could be done by using capacitor banks or, in some cases, reactors. For all situations, the load acted as a linear circuit drawing a sinusoidal current from a sinusoidal voltage source. Hence, the conventional power theory based on active-, reactive-, and apparent-power definitions was sufficient for design and analysis of power systems. Nevertheless, some papers were published in the 1920s, showing that the conventional concept of reactive and apparent power loses its usefulness in nonsinusoidal cases [1,2]. Then, two important approaches to power definitions under nonsinusoidal conditions were introduced by Budeanu [3,4] in 1927 and Fryze [5] in 1932. Fryze defined power in the time domain, whereas Budeanu did it in the frequency domain. At that time, nonlinear loads were negligible, and little attention was paid to this matter for a long time.

Since power electronics was introduced in the late 1960s, nonlinear loads that consume nonsinusoidal current have increased significantly. In some cases, they represent a very high percentage of the total loads. Today, it is common to find a house without linear loads such as conventional incandescent lamps. In most cases, these lamps have been replaced by electronically controlled fluorescent lamps. In industrial applications, an induction motor that can be considered as a linear load in a steady state is now equipped with a rectifier and inverter for the purpose of achieving adjustable speed control. The induction motor together with its drive is no longer a linear load. Unfortunately, the previous power definitions under nonsinusoidal currents were dubious, thus leading to misinterpretations in some cases. Chapter 2 presents a review of some theories dealing with nonsinusoidal conditions.

As pointed out earlier, the problems related to nonlinear loads have significantly increased with the proliferation of power electronics equipment. The modern equipment behaves as a nonlinear load drawing a significant amount of harmonic current from the power network. Hence, power systems in some cases have to be analyzed
under nonsinusoidal conditions. This makes it imperative to establish a consistent
set of power definitions that are also valid during transients and under nonsinusoidal
conditions.

The power theories presented by Budeanu [3,4] and Fryze [5] had basic con-
cerns related to the calculation of average power or root-mean-square values (rms
values) of voltage and current. The development of power electronics technology has
brought new boundary conditions to the power theories. Exactly speaking, the new
conditions have not emerged from the research of power electronics engineers. They
have resulted from the proliferation of power converters using power semiconductor
deVICES such as diodes, thyristors, insulated-gate bipolar transistors (IGBTs), gate-
turn-off thyristors, and so on. Although these power converters have a quick response
in controlling their voltages or currents, they may draw reactive power as well as har-
monic current from power networks. This has made it clear that conventional power
theories based on average or rms values of voltages and currents are not applicable to
the analysis and design of power converters and power networks. This problem has
become more serious and clear during comprehensive analysis and design of active
filters intended for reactive-power compensation as well as harmonic compensation.

From the end of the 1960s to the beginning of the 1970s, Erlicki and Emanuel-
Eigeles [6], Sasaki and Machida [7], and Fukao et al. [8] published their pioneer
papers presenting what can be considered as a basic principle of controlled reactive-
power compensation. For instance, Erlicki and Emanuel-Eigeles [6] presented some
basic ideas like “compensation of distortive power is unknown to date…..” They also
determined that “a non-linear resistor behaves like a reactive-power generator while
having no energy-storing elements” and presented the very first approach to active
power-factor control. Fukao et al. [8] stated that “by connecting a non-active-power
source in parallel with the load, and by controlling it in such a way as to supply
reactive power to the load, the power network will only supply active power to the
load. Therefore, ideal power transmission would be possible.”

Gyugyi and Pelly [9] presented the idea that reactive power could be compen-
sated by a naturally commutated cycloconverter without energy storage elements.
This idea was explained from a physical point of view. However, no specific math-
ematical proof was presented. In 1976, Harashima et al. [10] presented, probably for
the first time, the term “instantaneous reactive power” for a single-phase circuit. That
same year, Gyugyi and Strycula [11] used the term “active ac power filters” for the
first time. A few years later, in 1981, Takahashi et al. published two papers [12,13]
giving a hint of the emergence of the instantaneous power theory or “p-q theory.” In
fact, the formulation they reached can be considered a subset of the p-q theory that
forms the main scope of this book. However, the physical meaning of the variables
introduced to the subset was not explained by them.

The p-q theory in its first version was published in the Japanese language in
Engineers of Japan [15]. With a minor time lag, a paper was published in English
in an international conference in 1983 [16], showing the possibility of compensating
for instantaneous reactive power without energy storage elements. Then, a more com-
plete paper including experimental verifications was published in the IEEE Transac-
tions on Industry Applications in 1984 [17].
CHAPTER 1 INTRODUCTION

The $p-q$ theory defines a set of instantaneous powers in the time domain. Since no restrictions are imposed on voltage or current behaviors, it is applicable to three-phase systems with or without neutral conductors, as well as to generic voltage and current waveforms. Thus, it is valid for steady and transient states. Contrary to other traditional power theories treating a three-phase system as three single-phase circuits, the $p-q$ theory deals with all the three phases at the same time, as a unity system. Therefore, this theory always considers three-phase systems together, not as a superposition or sum of three single-phase circuits. It was defined by using the $\alpha\beta0$ transformation, also known as the Clarke transformation [18], which consists of a real matrix that transforms three-phase voltages and currents into the $\alpha\beta0$-stationary reference frames. As will be seen in this book, the $p-q$ theory provides a very efficient and flexible basis for designing control strategies and implementing them in the form of controllers for power conditioners based on power electronics devices.

There are other approaches to power definitions in the time domain. Chapter 3 is dedicated to the time-domain analysis of power in three-phase circuits, and it is especially dedicated to the $p-q$ Theory.

1.2. APPLICATIONS OF THE $p-q$ THEORY TO POWER ELECTRONICS EQUIPMENT

The proliferation of nonlinear loads has spurred interest in research on new power theories, thus leading to the $p-q$ theory. This theory can be used for the design of power electronics devices, especially those intended for reactive-power compensation. Various problems related to harmonic pollution in power systems have been investigated and discussed for a long time. These are listed as follows:

- **Overheating of transformers and electrical motors.** Harmonic components in voltage and/or current induce high-frequency magnetic flux in their magnetic core, thus resulting in high losses and overheating of these electrical machines. It is common to oversize transformers and motors by 5–10% to overcome this problem [19].
- **Overheating of capacitors for power-factor correction.** If the combination of line reactance and the capacitor for power-factor correction has a resonance at the same frequency as a harmonic current generated by a nonlinear load, an overcurrent may flow through the capacitor. This may overheat it, possibly causing damage.
- **Voltage waveform distortion.** Harmonic current may cause voltage waveform distortion that can interfere with the operation of other electronic devices. This is a common fact when rectifiers are used. Rectifier currents distort the voltage waveforms with notches that may change the zero-crossing points of the voltages. This can confuse the rectifier control circuit itself, or the control circuit of other equipment.
- **Voltage flicker.** In some cases, the harmonic spectra generated by nonlinear loads have frequency components below the line frequency. These undesirable
frequency components, especially in a frequency range of 8–30 Hz, may cause a flicker effect in incandescent lamps, which is a very uncomfortable effect for people’s eyes. The arc furnace is one of the main contributors to this kind of problem.

- Interference with communication systems. Harmonic currents generated by nonlinear loads may interfere with communication systems such as telephones, radios, television sets, and so on.

In the past, these problems were isolated and few. Nowadays, with the increased number of nonlinear loads present in the electric grid, they are much more common. On the other hand, the need for highly efficient and reliable systems has forced researchers to find solutions to these problems. In many cases, harmonic pollution cannot be tolerated.

As will be shown in Chapter 3, the $p\!-\!q$ theory that defines the instantaneous real and imaginary powers is a flexible tool, not only for harmonic compensation, but also for reactive-power compensation. For instance, FACTS (Flexible AC Transmission System) equipment that was introduced in [20] can be better understood if one has a good knowledge of the $p\!-\!q$ theory.

All these problems have encouraged the authors to write this book, which contributes to harmonic elimination from power systems. Moreover, an interesting application example of the $p\!-\!q$ theory will be presented, dealing with power flow control in a transmission line. This theory can also be used to control grid-connected converters like those used in solar energy systems [21] and can also be extended to other distributed power generation systems such as wind energy systems and fuel cells.

1.3. HARMONIC VOLTAGES IN POWER SYSTEMS

Tables 1-1 and 1-2 show the maximum and minimum values of total harmonic distortion (THD) in voltage and dominant voltage harmonics in a typical power system in Japan, measured in October 2001 [22]. The individual harmonic voltages and the resulting THD in high-voltage power transmission systems tend to be less than those in the 6.6-kV power distribution system. The primary reason is that the expansion and interconnection of high-voltage power transmission systems has made the systems stiffer with an increase of short-circuit capacity. For the distribution system, the maximum value of fifth harmonic voltage in a commercial area that was

<table>
<thead>
<tr>
<th>TABLE 1-1 THD in voltage and fifth harmonic voltage in a high-voltage power transmission system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 187 kV</td>
</tr>
<tr>
<td>THD</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
</tbody>
</table>
investigated exceeded its allowable level of 3%, considering Japanese guidelines, whereas the maximum THD value in voltage was marginally lower than its allowable level of 5%.

According to Reference [23], the maximum value of fifth harmonic voltage in the downtown area of a 6.6-kV power distribution system in Japan exceeds 7% under light-load conditions at night. They also have pointed out another significant phenomenon. The fifth harmonic voltage increases on the 6.6-kV bus at the secondary of the power transformer installed in a substation, whereas it decreases on the 77-kV bus at the primary, under light-load conditions at night. These observations based on the actual measurement suggest that the increase of fifth harmonic voltage on the 6.6-kV bus at night is due to “harmonic propagation” as a result of series and/or parallel harmonic resonance between line inductors and shunt capacitors for power-factor correction installed on the distribution system. This implies that not only harmonic compensation, but also harmonic damping, is a viable and effective way to solve harmonic pollution in power distribution systems. Hence, electric power utilities should have responsibility for actively damping harmonic propagation throughout power distribution systems. Individual consumers and end-users are responsible for keeping the current harmonics produced by their own equipment within specified limits. Both problems of harmonic elimination and harmonic damping are exhaustively discussed and analyzed in this book.

1.4. IDENTIFIED AND UNIDENTIFIED HARMONIC-PRODUCING LOADS

Nonlinear loads drawing nonsinusoidal currents from three-phase, sinusoidal, balanced voltages are classified as identified and unidentified loads. High-power diode or thyristor rectifiers, cycloconverters, and arc furnaces are typically characterized as identified harmonic-producing loads, because electric power utilities identify the individual nonlinear loads installed by high-power consumers on power distribution systems in many cases. Each of these loads generates a large amount of harmonic current. The utilities can determine the point of common coupling (PCC) of high-power
1.4 IDENTIFIED AND UNIDENTIFIED HARMONIC-PRODUCING LOADS

consumers who install their own harmonic-producing loads on power distribution systems. Moreover, they can determine the amount of harmonic current injected from an individual consumer.

A “single” low-power diode rectifier produces a negligible amount of harmonic current compared with the system total current. However, multiple low-power diode rectifiers can inject a significant amount of harmonics into the power distribution system. A low-power diode rectifier used as a utility interface in an electric appliance is typically considered as an unidentified harmonic-producing load.

So far, less attention has been paid to unidentified loads than identified loads. Harmonic regulations or guidelines such as IEEE 519-1992 are currently applied, with penalties on a voluntary basis, to keep current and voltage harmonic levels in check. The final goal of the regulations or guidelines is to promote better practices in both power systems and equipment design at minimum social cost.

Table 1-3 shows an analogy in unidentified and identified sources between harmonic pollution and air pollution. The efforts by researchers and engineers in the automobile industry to comply with the Clean Air Act Amendments of 1970 led to success in suppressing CO, HC, and NOx contained in automobile exhaust. As a result, the reduction achieved was 90% when gasoline-fueled passenger cars in the 1990s are compared with the same class of cars at the beginning of the 1970s. Moreover, state-of-the-art technology has brought much more reductions in the exhaust of modern gasoline-fueled passenger cars. It is interesting that the development of the automobile industry, along with the proliferation of cars, has made it possible to absorb the increased cost related to the reduction of harmful components in exhaust emitted by gasoline-fueled vehicles [24].

Harmonic regulations or guidelines are effective in overcoming “harmonic pollution.” Customers pay for the cost of high performance, high efficiency, energy savings, reliability, and compactness brought by power electronics technology. However, they are unwilling to pay for the cost of solving the harmonic pollution generated by power electronics equipment unless regulations or guidelines are enacted. It is expected that the continuous efforts by power electronics researchers and engineers will make it possible to absorb the increased cost for solving the harmonic pollution.

TABLE 1-3 Analogy between harmonic pollution and air pollution

<table>
<thead>
<tr>
<th>Sources</th>
<th>Harmonic pollution</th>
<th>Air pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidentified</td>
<td>• TV sets and personal computers</td>
<td>• Gasoline-fueled vehicles</td>
</tr>
<tr>
<td></td>
<td>• Inverter-based home appliances such as adjustable-speed heat pumps for air conditioning</td>
<td>• Diesel-fueled vehicles</td>
</tr>
<tr>
<td>Identified</td>
<td>• Adjustable-speed motor drives</td>
<td>• Chemical plants</td>
</tr>
<tr>
<td></td>
<td>• Bulk diode/thyristor rectifiers</td>
<td>• Coal and oil steam power plants</td>
</tr>
<tr>
<td></td>
<td>• Cycloconverters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Arc furnaces</td>
<td></td>
</tr>
</tbody>
</table>
1.5. HARMONIC CURRENT AND VOLTAGE SOURCES

In most cases, either a harmonic current source or a harmonic voltage source can represent a harmonic-producing load, from a practical point of view.

Figure 1-1(a) shows a three-phase diode rectifier with an inductive load. Note that a dc inductor L_{dc} is directly connected in series to the dc side of the diode rectifier. Here, L_{ac} is the ac inductor existing downstream of the PCC. This inductor may be connected to the ac side of the diode rectifier, or it may be the leakage inductance of a transformer installed at the ac side of the rectifier for voltage matching and/or electrical isolation. Note that this transformer is disregarded in Fig. 1-1(a). On the other hand, L_S represents a simplified equivalent inductance of the power system existing upstream of the PCC. In most cases, the inductance value of L_S is much smaller than that of L_{ac}. In other words, the short-circuit capacity upstream of the

![Diagram of a three-phase diode rectifier with an inductive load](image)

Figure 1-1 A three-phase diode rectifier with an inductive load. (a) Power circuit (b) equivalent circuit for harmonic voltage and current on a per-phase basis, (c) simplified circuit.
1.6 BASIC PRINCIPLES OF HARMONIC COMPENSATION

PCC is much larger than that downstream of the PCC, so that L_S is very small and might be neglected.

Since the inductance value of L_{dc} is larger than that of the ac inductor L_{ac} in many cases, the waveform of i_{Sh} is independent of L_{ac}. This allows us to treat the rectifier as a harmonic current source when attention is paid to harmonic voltage and current, as shown in Fig. 1-1(b). Strictly speaking, the current waveform is slightly influenced by the ac inductance because of the so-called “current overlap effect” as long as L_{ac} is not equal to zero. Note that the system inductor L_S plays an essential role in producing the harmonic voltage at the PCC, whereas the ac inductor L_{ac} makes no contribution.

Figure 1-1(c) shows a simplified circuit derived from Fig. 1-1(b), where I_{Shn} is not an instantaneous current but an rms current at the nth-order harmonic frequency and, moreover, L_{ac} is hidden in the harmonic current source. The product of the system reactance X_{Sn} (at nth order of harmonic frequency) and the harmonic current I_{Shn} gives the rms value of the nth-order harmonic voltage V_{Shn} appearing at the PCC.

Figure 1-2(a) shows a three-phase diode rectifier with a capacitive load. Unlike Fig. 1-1(a), a dc capacitor C_{dc} is directly connected in parallel to the dc side of the diode rectifier. As a result, the diode rectifier, seen from the ac side, can be characterized as a harmonic voltage source v_h, as shown in Fig. 1-2(b). Note that it would be difficult to describe the waveform of v_h because i_S is a discontinuous waveform and, moreover, the conducting interval of each diode depends on L_{ac} among other circuit parameters. The reason why the rectifier can be considered as harmonic voltage source is that the harmonic impedance downstream of the ac terminals of the rectifier is much smaller than that upstream of the ac terminals. This means that the supply harmonic current i_{Sh} is strongly influenced by the ac inductance L_{ac}. Unless the ac inductance exists, the rectifier would draw a distorted pulse current with an extremely high peak value from the ac mains because only the system inductor L_S, which is too small in many cases, would limit the harmonic current. Invoking the so-called “equivalent transformation between a voltage source and a current source” allows us to obtain Fig. 1-2(c) from Fig. 1-2(b). Here, I_{Shn} and V_{Shn} are the rms current and the rms voltage at the nth order harmonic frequency, respectively. Assuming that the inductance value of L_{ac} is much larger than that of L_S allows us to eliminate L_{ac} from Fig. 1-2(c). This results in a simplified circuit, as shown in Fig. 1-2(d). It is quite interesting that the diode rectifier including the ac inductance L_{ac} is not a harmonic voltage source but a harmonic current source as long as it is seen downstream of the PCC, although the diode rectifier itself is characterized as a harmonic voltage source.

1.6. BASIC PRINCIPLES OF HARMONIC COMPENSATION

Figure 1-3 shows a basic circuit configuration of a shunt active filter in a three-phase, three-wire system. This is one of the most fundamental active filters intended for harmonic-current compensation of a nonlinear load. For the sake of simplicity, no
system inductor exists upstream of the PCC. This shunt active filter equipped with a current minor loop is controlled to draw the compensating current \(i_C \) from the ac power source, so that it cancels the harmonic current contained in the load current \(i_L \).

Figure 1-4 depicts voltage and current waveforms of the ac power source \(v_a \), the source current \(i_{Sa} \), the load current \(i_{La} \), and the compensating current \(i_{Ca} \) in the a-phase, under the following assumptions. The smoothing reactor \(L_{dc} \) in the dc side of the rectifier is large enough to keep constant the dc current, the active filter operates as an ideal controllable current source, and the ac inductor \(L_{ac} \) is equal to zero. The shunt active filter should be applied to a nonlinear load that can be considered as a harmonic current source, such as a diode/thyristor rectifier with an inductive load, an
arc furnace, and so on. At present, a voltage-source pulse-width-modulation (PWM) converter is generally preferred as the power circuit of the active filter, instead of a current-source PWM converter. A main reason is that the IGBT, which is one of the most popular power switching devices, is integrated with a freewheeling diode, so that such an IGBT is much more cost effective in constructing the voltage-source PWM converter than the current-source PWM converter. Another reason is that the dc capacitor indispensable for the voltage-source PWM converter is more compact and less heavy than the dc inductor for the current-source PWM inverter.

In addition to harmonic-current compensation, the shunt active filter has the capability of reactive-power compensation. However, adding this function to the shunt active filter brings an increase in current rating to the voltage-source PWM converter. Chapter 4 describes the shunt active filter in detail.

Figure 1-5 shows a basic circuit configuration of a series active filter in three-phase, three-wire systems. The series active filter consists of either a three-phase voltage-source PWM converter or three single-phase voltage-source PWM converters, and it is connected in series with the power lines through either a three-phase
变压器或三个单相变压器。与并联主动滤波器不同，串联主动滤波器作为可控电压源，因此，电压源 PWM 变换器没有电流辅助环。这使得串联主动滤波器适合作为补偿一个谐波电压源，如三相整流器与一个电容性负载。图 1-6 描述了主电压 v_a，供应电流 i_{sa}，负载电压 v_{La}（整流器的交流侧电压），以及补偿电压 v_{Ca} 在 a 相的波形。这里，以下假定是作出的：整流器直流侧的电容 C_{dc} 大到足以保持恒定的直流电压，主动滤波器作为理想的可控电压源，以及交流电感 L_{ac} 等于零。在实际系统中，如果没有交流电感，串联主动滤波器将不能正常工作。换句话说，一个交流电感是必须的，即使串联主动滤波器假设是理想的。图

![Figure 1-5](image1.png)

Figure 1-5 System configuration of a stand-alone series active filter.

![Figure 1-6](image2.png)

Figure 1-6 Waveforms of currents and voltages in Fig. 1-5
TABLE 1-4 Comparisons between shunt and series active filters

<table>
<thead>
<tr>
<th></th>
<th>Shunt active filter</th>
<th>Series active filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit configuration</td>
<td>Fig. 1-3 Voltage-source PWM converter with current minor loop</td>
<td>Fig. 1-5 Voltage-source PWM converter without current minor loop</td>
</tr>
<tr>
<td>Power circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Current source: i_C</td>
<td>Voltage source: v_C</td>
</tr>
<tr>
<td>Suitable nonlinear load</td>
<td>Diode / thyristor rectifier with inductive load</td>
<td>Diode rectifier with capacitive load</td>
</tr>
<tr>
<td>Additional function</td>
<td>Reactive-power compensation</td>
<td>ac voltage regulation</td>
</tr>
</tbody>
</table>

reason is that the ac inductor plays an important role in supporting voltage difference between source voltage v_S and the sum of the compensating voltage v_C and the load voltage v_L. Since the supply current is identical to the input current of the rectifier, it is changed from a distorted discontinuous waveform to a sinusoidal, continuous waveform as a result of achieving harmonic-voltage compensation. This means that the conducting interval of each diode becomes 180°.

When the series active filter is intended only for harmonic compensation, the compensating voltage v_C has no fundamental-frequency component. The dc voltage of the diode rectifier can be regulated by intentionally controlling the fundamental-frequency component of the compensating voltage.

Table 1-4 summarizes comparisons between the shunt and series active filters. Note that the series active filter has a “dual” relationship in each item with respect to the shunt active filter. Chapter 5 presents discussions of the series active filter.

Considering that the distribution system is based on the concept that a voltage source is delivered to the final user, it is common to consider it as an almost ideal voltage source. Therefore, in most cases where the source impedance is relatively small, the voltage waveform is considered purely sinusoidal even when the load is nonlinear and the current is distorted. In this case, the basic compensation principle is based on a shunt active filter, as shown in Fig. 1-3.

1.7. BASIC PRINCIPLE OF POWER FLOW CONTROL

This book is mainly dedicated to the problems related to power quality, for which harmonic elimination and damping are two of the major concerns. In fact, these points are more closely related to the Custom Power concept introduced in Reference [25], which is normally applied to low-voltage systems or distribution systems. Chapters 4, 5, and 6 will present shunt, series, and combined shunt–series active filters, respectively. Moreover, it will be seen that the use of the p-q theory makes it easy to perform reactive-power compensation. On the other hand, the concept of FACTS, as introduced in Reference [20], has the main objective of improving controllability of power transmission systems that are operated at higher voltage and power level than power distribution systems can be. This improvement of controllability actually means a fast, continuous, and dynamic reactive-power control, as well as power-flow control.
CHAPTER 1 INTRODUCTION

or active-power control. Reactive-power control is used for power-factor correction, voltage regulation, and stability improvement. Power-flow control is important only in enhancing the power transfer capability of a given transmission line. The enhanced transmission capability leads to avoiding construction of new parallel lines. Naturally, this is an important solution to mitigating an environmental impact issue that is a worldwide concern nowadays.

Many concepts dealt with in this book can be extended to FACTS applications. Some of the FACTS applications can be imported to harmonic-eliminating devices to improve their performance. If a lossless transmission line with the same voltage magnitude at both terminals is considered, the power flow through it is given by

\[P = \frac{V^2}{X_L} \sin \delta \]

(1.1)

where \(V \) is the rms value of the terminal line voltage, \(X_L \) is the line series reactance, and \(\delta \) is the phase-angle displacement between the sending-end and receiving-end voltages. It is clear under the constant-voltage condition that power flow can be controlled by adjusting the line reactance \(X_L \) or the phase angle \(\delta \).

Figure 1-7 shows a simplified transmission system. Let the sending (source) and receiving (load) terminal voltages be \(v_S \) and \(v_L \), respectively. The transmission-line series inductance is represented by \(L_L \), and \(v_C \) is the compensating voltage of the series compensator based on power electronics. If \(v_C \) is a voltage in quadrature with respect to the line current \(I \), and has a magnitude proportional to this current, this compensator works like a capacitor or an inductor, which can be used to increase or to

Figure 1-8 Phasor diagram for the voltages in Fig. 1-7.
decrease the transmitted power. In this case, the voltage source v_C does not generate or absorb any active power. However, in a more general case, the magnitude of v_C is limited only by the voltage rating of the series compensator, although the voltage source has no limitation in phase angle.

Figure 1-8 shows the phasor diagram for the system in Fig. 1-7, with focus on a generic compensating voltage v_C. It also shows the locus of the phasor associated with v_C. Since the line current and the compensating voltage are not in quadrature, the series compensator has to absorb or generate active power. When the controllable series voltage source is in fact implemented by a voltage-fed PWM converter, an energy source or sink is necessary at the dc side of the series converter. In this sense, the concept of the unified power flow controller (UPFC) was proposed in Reference [20], where a shunt converter is coupled to the series one through the common dc link, keeping energy balanced between the two converters. Figure 1-9 shows the basic conceptual diagram of the UPFC.

The UPFC consists of series and shunt compensators based on voltage-fed converters. As the series compensator needs an energy source or sink in its dc side, both converters are connected back to back, so that power can be exchanged between the two converters. The shunt converter is normally operated as a STATCOM (static synchronous compensator) [20] for the purpose of controlling reactive power at the ac side, or regulating the ac bus voltage. It also can adjust the active power flowing into, or out of, the dc link. The series converter is operated to control the active power flowing through the transmission line. These concepts are explained in Chapter 6, and a controller based on the p-q theory is also presented. By joining the concepts behind the UPFC and the concepts of shunt and series active filtering, a new device, referred to as universal active power line conditioner, is also introduced in Chapter 6.

REFERENCES

CHAPTER 1 INTRODUCTION