CONTENTS

Contributors xiii

1 Introduction 1
Franklin (Feng) Tao, William F. Schneider, and Prashant V. Kamat

2 Chemical Synthesis of Nanoscale Heterogeneous Catalysts 9
Jianbo Wu and Hong Yang

2.1 Introduction, 9
2.2 Brief Overview of Heterogeneous Catalysts, 10
2.3 Chemical Synthetic Approaches, 11
 2.3.1 Colloidal Synthesis, 11
 2.3.2 Shape Control of Catalysts in Colloidal Synthesis, 12
 2.3.3 Control of Crystalline Phase of Intermetallic Nanostructures, 14
 2.3.4 Other Modes of Formation for Complex Nanostructures, 17
2.4 Core–Shell Nanoparticles and Controls of Surface Compositions and Surface Atomic Arrangements, 21
 2.4.1 New Development on the Preparation of Colloidal Core–Shell Nanoparticles, 21
 2.4.2 Electrochemical Methods to Core–Shell Nanostructures, 22
 2.4.3 Control of Surface Composition via Surface Segregation, 24
2.5 Summary, 25
3 Physical Fabrication of Nanostructured Heterogeneous Catalysts

Chunrong Yin, Eric C. Tyo, and Stefan Vajda

3.1 Introduction, 31

3.2 Cluster Sources, 34
 3.2.1 Thermal Vaporization Source, 34
 3.2.2 Laser Ablation Source, 36
 3.2.3 Magnetron Cluster Source, 37
 3.2.4 Arc Cluster Ion Source, 38

3.3 Mass Analyzers, 39
 3.3.1 Neutral Cluster Beams, 40
 3.3.2 Quadrupole Mass Analyzer, 41
 3.3.3 Lateral TOF Mass Filter, 42
 3.3.4 Magnetic Sector Mass Selector, 43
 3.3.5 Quadrupole Deflector (Bender), 44

3.4 Survey of Cluster Deposition Apparatuses in Catalysis Studies, 44
 3.4.1 Laser Ablation Source with a Quadrupole Mass Analyzer at Argonne National Lab, 44
 3.4.2 ACIS with a Quadrupole Deflector at the Universität Rostock, 46
 3.4.3 Magnetron Cluster Source with a Lateral TOF Mass Filter at the University of Birmingham, 47
 3.4.4 Laser Ablation Cluster Source with a Quadrupole Mass Selector at the Technische Universität München, 48
 3.4.5 Laser Ablation Cluster Source with a Quadrupole Mass Analyzer at the University of Utah, 49
 3.4.6 Laser Ablation Cluster Source with a Magnetic Sector Mass Selector at the University of California, Santa Barbara, 49
 3.4.7 Magnetron Cluster Source with a Quadrupole Mass Filter at the Toyota Technological Institute, 51
 3.4.8 PACIS with a Magnetic Sector Mass Selector at Universität Konstanz, 52
 3.4.9 Magnetron Cluster Source with a Magnetic Sector at Johns Hopkins University, 53
 3.4.10 Magnetron Cluster Source with a Magnetic Sector at HZB, 53
 3.4.11 Magnetron Sputtering Source with a Quadrupole Mass Filter at the Technical University of Denmark, 54
 3.4.12 CORDIS with a Quadrupole Mass Filter at the Lausanne Group, 56
 3.4.13 Electron Impact Source with a Quadrupole Mass Selector at the Universität Karlsruhe, 56
 3.4.14 CORDIS with a Quadrupole Mass Analyzer at the Universität Ulm, 58
 3.4.15 Magnetron Cluster Source with a Lateral TOF Mass Filter at the Universität Dortmund, 59
 3.4.16 Z-Spray Source with a Quadrupole Mass Filter for Gas-Phase Investigations at FELIX, 60
3.4.17 Laser Ablation Source with an Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Investigations at the Technische Universität Berlin, 61

4 Ex Situ Characterization

Minghua Qiao, Songhai Xie, Yan Pei, and Kangnian Fan

4.1 Introduction, 69
4.2 Ex Situ Characterization Techniques, 70
 4.2.1 X-Ray Absorption Spectroscopy, 71
 4.2.2 Electron Spectroscopy, 72
 4.2.3 Electron Microscopy, 74
 4.2.4 Scanning Probe Microscopy, 75
 4.2.5 Mössbauer Spectroscopy, 76
4.3 Some Examples on Ex Situ Characterization of Nanocatalysts for Energy Applications, 77
 4.3.1 Illustrating Structural and Electronic Properties of Complex Nanocatalysts, 77
 4.3.2 Elucidating Structural Characteristics of Catalysts at the Nanometer or Atomic Level, 81
 4.3.3 Pinpointing the Nature of the Active Sites on Nanocatalysts, 85
4.4 Conclusions, 88

5 Applications of Soft X-Ray Absorption Spectroscopy for In Situ Studies of Catalysts at Nanoscale

Xingyi Deng, Xiaoli Gu, and Franklin (Feng) Tao

5.1 Introduction, 93
5.2 In Situ SXAS under Reaction Conditions, 96
5.3 Examples of In Situ SXAS Studies under Reaction Conditions Using Reaction Cells, 99
 5.3.1 Atmospheric Corrosion of Metal Films, 99
 5.3.2 Cobalt Nanoparticles under Reaction Conditions, 101
 5.3.3 Electrochemical Corrosion of Cu in Aqueous NaHCO₃ Solution, 108
5.4 Summary, 112

6 First-Principles Approaches to Understanding Heterogeneous Catalysis

Dorrell C. McCalman and William F. Schneider

6.1 Introduction, 115
6.2 Computational Models, 116
 6.2.1 Electronic Structure Methods, 116
 6.2.2 System Models, 117
6.3 NOₓ Reduction, 118
6.4 Adsorption at Metal Surfaces, 119
 6.4.1 Neutral Adsorbates, 119
 6.4.2 Charged Adsorbates, 122
6.5 Elementary Surface Reactions Between Adsorbates, 125
 6.5.1 Reaction Thermodynamics, 125
 6.5.2 Reaction Kinetics, 129
6.6 Coverage Effects on Reaction and Activation Energies at Metal Surfaces, 131
6.7 Summary, 135

7 Computational Screening for Improved Heterogeneous Catalysts and Electrocatalysts 139
 Jeffrey Greeley
 7.1 Introduction, 139
 7.2 Trends-Based Studies in Computational Catalysis, 140
 7.2.1 Early Groundwork for Computational Catalyst Screening, 140
 7.2.2 Volcano Plots and Rate Theory Models, 141
 7.2.3 Scaling Relations, BEP Relations, and Descriptor Determination, 144
 7.3 Computational Screening of Heterogeneous Catalysts and Electrocatalysts, 148
 7.3.1 Computational Catalyst Screening Strategies, 149
 7.4 Challenges and New Frontiers in Computational Catalyst Screening, 153
 7.5 Conclusions, 155

8 Catalytic Kinetics and Dynamics 161
 Rafael C. Catapan, Matthew A. Christiansen, Amir A. M. Oliveira, and Dionisios G. Vlachos
 8.1 Introduction, 161
 8.2 Basics of Catalyst Functionality, Mechanisms, and Elementary Reactions on Surfaces, 163
 8.3 Transition State Theory, Collision Theory, and Rate Constants, 166
 8.4 Density Functional Theory Calculations, 168
 8.4.1 Calculation of Energetics and Coverage Effects, 169
 8.4.2 Calculation of Vibrational Frequencies, 172
 8.5 Thermodynamic Consistency of the DFT-Predicted Energetics, 172
 8.6 State Properties from Statistical Thermodynamics, 176
 8.6.1 Strongly Bound Adsorbates, 177
 8.6.2 Weakly Bound Adsorbates, 177
 8.7 Semiempirical Methods for Predicting Thermodynamic Properties and Kinetic Parameters, 178
8.7.1 Linear Scaling Relationships, 178
8.7.2 Heat Capacity and Surface Entropy Estimation, 179
8.7.3 Brønsted-Evans-Polanyi Relationships, 180
8.8 Analysis Tools for Microkinetic Modeling, 181
8.8.1 Rates in Microkinetic Modeling, 181
8.8.2 Reaction Path Analysis and Partial Equilibrium Analysis, 181
8.8.3 Rate-Determining Steps, Most Important Surface Intermediates, and Most Abundant Surface Intermediates, 184
8.8.4 Calculation of the Overall Reaction Order and Apparent Activation Energy, 186
8.9 Concluding Remarks, 187

9 Catalysts for Biofuels

Gregory T. Neumann, Danielle Garcia, and Jason C. Hicks

9.1 Introduction, 191
9.2 Lignocellulosic Biomass, 192
 9.2.1 Cellulose, 192
 9.2.2 Hemicellulose, 194
 9.2.3 Lignin, 195
9.3 Carbohydrate Upgrading, 195
 9.3.1 Zeolitic Upgrading of Cellulosic Feedstocks, 196
 9.3.2 Levulinic Acid Upgrading, 199
 9.3.3 GVL Upgrading, 201
 9.3.4 Aqueous-Phase Processing, 202
9.4 Lignin Conversion, 205
 9.4.1 Zeolite Upgrading of Lignin Feedstocks, 206
 9.4.2 Catalysts for Hydrodeoxygenation of Lignin, 208
 9.4.3 Selective Unsupported Catalyst for Lignin Depolymerization, 211
9.5 Continued Efforts for the Development of Robust Catalysts, 212

10 Development of New Gold Catalysts for Removing CO from H₂

Zhen Ma, Franklin (Feng) Tao, and Xiaoli Gu

10.1 Introduction, 217
10.2 General Description of Catalyst Development, 218
10.3 Development of WGS catalysts, 220
 10.3.1 Initially Developed Catalysts, 220
 10.3.2 Fe₂O₃-Based Gold Catalysts, 221
 10.3.3 CeO₂-Based Gold Catalysts, 221
 10.3.4 TiO₂- or ZrO₂-Based Gold Catalysts, 223
 10.3.5 Mixed-Oxide Supports with 1:1 Composition, 223
 10.3.6 Bimetallic Catalysts, 224
10.4 Development of New Gold Catalysts for PROX, 225
10.4.1 General Considerations, 225
10.4.2 CeO₂-Based Gold Catalysts, 226
10.4.3 TiO₂-Based Gold Catalysts, 227
10.4.4 Al₂O₃-Based Gold Catalysts, 228
10.4.5 Mixed Oxide Supports with 1:1 Composition, 228
10.4.6 Other Oxide-Based Gold Catalysts, 229
10.4.7 Supported Bimetallic catalysts, 229

10.5 Perspectives, 229

11 Photocatalysis in Generation of Hydrogen from Water

Kazuhiro Takanabe and Kazunari Domen

11.1 Solar Energy Conversion, 239
11.1.1 Solar Energy Conversion Technology for Producing Fuels and Chemicals, 239
11.1.2 Solar Spectrum and STH Efficiency, 242

11.2 Semiconductor Particles: Optical and Electronic Nature, 244
11.2.1 Reaction Sequence and Principles of Overall Water Splitting and Reaction Step Timescales, 244
11.2.2 Number of Photons Striking a Single Particle, 245
11.2.3 Absorption Depth of Light Incident on Powder Photocatalyst, 247
11.2.4 Degree of Band Bending in Semiconductor Powder, 248
11.2.5 Band Gap and Flat-Band Potential of Semiconductor, 250

11.3 Photocatalyst Materials for Overall Water Splitting: UV to Visible Light Response, 251
11.3.1 UV Photocatalysts: Oxides, 251
11.3.2 Visible-Light Photocatalysts: Band Engineering of Semiconductor Materials Containing Transition Metals, 253
11.3.3 Visible-Light Photocatalysts: Organic Semiconductors as Water-Splitting Photocatalysts, 255
11.3.4 Z-Scheme Approach: Two-Photon Process, 257
11.3.5 Defects and Recombination in Semiconductor Bulk, 257

11.4 Cocatalysts for Photocatalytic Overall Water Splitting, 259
11.4.1 Metal Nanoparticles as Hydrogen Evolution Cocatalysts: Novel Core/Shell Structure, 259
11.4.2 Reaction Rate Expression on Active Catalytic Centers for Redox Reaction in Solution, 261
11.4.3 Measurement of Potentials at Semiconductor and Metal Particles Under Irradiation, 264
11.4.4 Metal Oxides as Oxygen Evolution Cocatalyst, 266

11.5 Concluding Remarks, 268
CONTENTS

12 Photocatalysis in Conversion of Greenhouse Gases 271
 Kentaro Teramura and Tsunehiro Tanaka

 12.1 Introduction, 271
 12.2 Outline of Photocatalytic Conversion of CO₂, 273
 12.3 Reaction Mechanism for the Photocatalytic Conversion of CO₂, 276
 12.3.1 Adsorption of CO₂ and H₂, 276
 12.3.2 Assignment of Adsorbed Species by FT-IR Spectroscopy, 279
 12.3.3 Observation of Photoactive Species by Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) Spectroscopies, 281
 12.4 Summary, 283

13 Electrocatalyst Design in Proton Exchange Membrane Fuel Cells for Automotive Application 285
 Anusorn Kongkanand, Wenbin Gu, and Frederick T. Wagner

 13.1 Introduction, 285
 13.2 Advanced Electrocatalysts, 288
 13.2.1 Pt-Alloy and Dealloyed Catalysts, 288
 13.2.2 Pt Monolayer Catalysts, 290
 13.2.3 Continuous-Layer Catalysts, 293
 13.2.4 Controlled Crystal Face Catalysts, 296
 13.2.5 Hollow Pt Catalysts, 298
 13.3 Electrode Designs, 299
 13.3.1 Dispersed-Catalyst Electrodes, 299
 13.3.2 NSTF Electrodes, 302
 13.4 Concluding Remarks, 307

Index 315