Contents

Preface xv

PART I A PROCEDURAL MONTE CARLO METHOD IN VBA 1

1 The Monte Carlo Method 3
 1.1 The Monte Carlo valuation method 3
 1.2 Issues with Monte Carlo 8
 1.3 Computational issues 12
 1.4 Summary 16
 1.5 Exercises 16

2 Levels of Programming Sophistication 19
 2.1 What makes a good application? 19
 2.2 A high-level design 19
 2.3 Progressing towards the ideal 21
 2.4 Summary 22
 2.5 Exercises 22

3 Procedural Programming: Level 1 25
 3.1 Designing a Monte Carlo valuation application 25
 3.2 Deficiencies of the level 1 code 35
 3.3 Summary 36
 3.4 Exercises 36

4 Validation and Error Handling: Level 2 39
 4.1 Validation and error handling 40
 4.2 Encapsulating functionality 45
 4.3 The level 2 main() 48
 4.4 Summary 50
 4.5 Exercises 51
PART II OBJECTS AND POLYMORPHISM

5 Introducing Objects: Level 3
5.1 Objects in VBA
5.2 An example: The StopWatch object
5.3 Further helpful VBA features
5.4 Objects in the Monte Carlo application
5.5 Summary
5.6 Exercises

6 Polymorphism and Interfaces: Level 4
6.1 Polymorphism
6.2 Interfaces in VBA
6.3 Implementing a polymorphic stopwatch
6.4 Polymorphism and the Monte Carlo application
6.5 Assessment of the polymorphic design
6.6 Summary
6.7 Exercises

7 A Slice-Based Monte Carlo
7.1 The revised Monte Carlo application object
7.2 The option object
7.3 The evolver object
7.4 Summary
7.5 Exercises

8 An Embryonic Factory: Level 5
8.1 Events
8.2 The Level 5 Monte Carlo application
8.3 The Factory object
8.4 Output
8.5 Summary
8.6 Exercises

PART III USING FILES WITH VBA

9 Input and Output to File in VBA
9.1 File handling in VBA
9.2 The TextStream and FileSystemObject objects
9.3 Intrinsic VB language functions
9.4 Example: Reading and writing to sequential and random files
9.5 Summary
9.6 Exercises

10 Valuing a Book of Options
10.1 Outline of the application
10.2 Timings
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Summary</td>
<td>176</td>
</tr>
<tr>
<td>10.4</td>
<td>Exercises</td>
<td>176</td>
</tr>
<tr>
<td>PART IV POLYMORPHIC FACTORIES IN VBA</td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>11</td>
<td>The VBE Object Library and a Simple Polymorphic Factory</td>
<td>179</td>
</tr>
<tr>
<td>11.1</td>
<td>Using the VBE object library</td>
<td>179</td>
</tr>
<tr>
<td>11.2</td>
<td>A simple factory illustration</td>
<td>183</td>
</tr>
<tr>
<td>11.3</td>
<td>Summary</td>
<td>190</td>
</tr>
<tr>
<td>11.4</td>
<td>Exercises</td>
<td>190</td>
</tr>
<tr>
<td>12</td>
<td>A Fully Polymorphic Factory: Level 6</td>
<td>193</td>
</tr>
<tr>
<td>12.1</td>
<td>Conceptual features</td>
<td>193</td>
</tr>
<tr>
<td>12.2</td>
<td>The polymorphic factory</td>
<td>197</td>
</tr>
<tr>
<td>12.3</td>
<td>Using the <code>Factory</code> object</td>
<td>206</td>
</tr>
<tr>
<td>12.4</td>
<td>Summary</td>
<td>208</td>
</tr>
<tr>
<td>12.5</td>
<td>Exercises</td>
<td>209</td>
</tr>
<tr>
<td>13</td>
<td>A Semi-Polymorphic Factory: Meta-Classes</td>
<td>211</td>
</tr>
<tr>
<td>13.1</td>
<td>The structure of the application</td>
<td>211</td>
</tr>
<tr>
<td>13.2</td>
<td>Meta-class objects</td>
<td>212</td>
</tr>
<tr>
<td>13.3</td>
<td>The semi-polymorphic factory</td>
<td>216</td>
</tr>
<tr>
<td>13.4</td>
<td>Summary</td>
<td>228</td>
</tr>
<tr>
<td>13.5</td>
<td>Exercises</td>
<td>228</td>
</tr>
<tr>
<td>PART V PERFORMANCE ISSUES IN VBA</td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>14</td>
<td>Performance and Cost in VBA</td>
<td>233</td>
</tr>
<tr>
<td>14.1</td>
<td>Arithmetic operations</td>
<td>236</td>
</tr>
<tr>
<td>14.2</td>
<td>Procedure calls</td>
<td>242</td>
</tr>
<tr>
<td>14.3</td>
<td>Data typing issues</td>
<td>244</td>
</tr>
<tr>
<td>14.4</td>
<td>Summary</td>
<td>247</td>
</tr>
<tr>
<td>14.5</td>
<td>Exercises</td>
<td>248</td>
</tr>
<tr>
<td>15</td>
<td>Level and Performance</td>
<td>249</td>
</tr>
<tr>
<td>15.1</td>
<td>Variations of the level 0 application</td>
<td>249</td>
</tr>
<tr>
<td>15.2</td>
<td>Effect of level on times</td>
<td>254</td>
</tr>
<tr>
<td>15.3</td>
<td>Summary</td>
<td>258</td>
</tr>
<tr>
<td>15.4</td>
<td>Exercises</td>
<td>259</td>
</tr>
<tr>
<td>16</td>
<td>Evolution and Data Structures</td>
<td>261</td>
</tr>
<tr>
<td>16.1</td>
<td>Data structures in VBA</td>
<td>261</td>
</tr>
<tr>
<td>16.2</td>
<td>Using VBA containers</td>
<td>264</td>
</tr>
<tr>
<td>16.3</td>
<td>Numerical comparisons</td>
<td>271</td>
</tr>
<tr>
<td>16.4</td>
<td>Summary</td>
<td>277</td>
</tr>
<tr>
<td>16.5</td>
<td>Exercises</td>
<td>277</td>
</tr>
</tbody>
</table>
PART VI VARIANCE REDUCTION IN THE MONTE CARLO METHOD

17 Wiener Sample Paths and Antithetic Variates 283
 17.1 Generating Wiener sample paths 283
 17.2 Antithetic variates 283
 17.3 Numerical assessment 288
 17.4 Summary 289
 17.5 Exercises 289

18 The Wiener Process and Stratified Sampling 291
 18.1 Stratified sampling 291
 18.2 Implementing stratified sampling 298
 18.3 Numerical assessment 298
 18.4 Summary 304
 18.5 Exercises 305

19 Low-Discrepancy Sampling 307
 19.1 Low-discrepancy sampling 307
 19.2 Implementing LD sampling 310
 19.3 Numerical assessment 314
 19.4 Summary 316
 19.5 Exercises 316

20 Variance Reduction with Control Variates 317
 20.1 Control variates 317
 20.2 Examples of control variates 319
 20.3 Auxiliary model control variates 325
 20.4 Summary 331
 20.5 Exercises 331

21 Implementing Control Variates 333
 21.1 A control variate application 333
 21.2 Numerical assessment 338
 21.3 Summary 344
 21.4 Exercises 344

22 Extreme Options and Importance Sampling 345
 22.1 Importance Sampling 345
 22.2 Valuing an OTM digital option 346
 22.3 Choices for the IS density 348
 22.4 Implementing importance sampling 352
 22.5 Numerical assessment 362
 22.6 Summary 368
 22.7 Exercises 368

23 Combining Variance Reduction Methods 371
 23.1 Combining CV and IS 371
 23.2 Implementing variance reduction methods in combination 372
PART VII THE MONTE CARLO METHOD: CONVERGENCE AND BIAS

24 The Monte Carlo Method: Convergence and Bias
 24.1 Reducing bias
 24.2 Bias reduction methods
 24.3 Bias and barrier options
 24.4 Summary
 24.5 Exercises

25 Discretization Methods
 25.1 Discretization and convergence
 25.2 Itô–Taylor discretization schemes
 25.3 Schemes in 1-dimension
 25.4 Predictor–corrector simulation
 25.5 Numerical assessment for benchmark processes
 25.6 Summary
 25.7 Exercises

26 Applications to Models
 26.1 The CIR process
 26.2 Simulating discount factors
 26.3 Summary
 26.4 Exercises

27 Valuation in the Heston Model
 27.1 Discretizing the Heston model
 27.2 Convergence in the Heston model
 27.3 Option valuation in the Heston model
 27.4 Summary
 27.5 Exercises

PART VIII VALUING AMERICAN OPTIONS BY SIMULATION

28 Valuing American and Bermudan Options
 28.1 American options
 28.2 Monte Carlo and American options
 28.3 Summary
 28.4 Exercises

29 Estimating the Early Exercise Boundary
 29.1 Approximating the continuation value function
 29.2 Choices for basis functions
