Absolute safety barriers, 24
Accident, 7
Accident investigation, 143–148; medical, 146–148; purpose of, 145; root cause analysis (RCA), 143–145
Accident models, 23; accident trajectory, 25–26; mechanisms contributing to accidents in complex systems, 25; safety barriers, 24–25
Accident prevention, 218
Accident trajectory, 25–26
Accidents, defined, 144
Accountability, for administration of medication, 344–345
Action plans, 163; error containment, 165, 168
Active failures, 23–24
Administration errors, 346–347
Administration of medication, See Medication delivery
Administrative data, collecting, 85–87
Advancing Excellence in America’s Nursing Homes, 237
Adverse drug events, 335
Adverse drug reactions, 358, 359; rate of, 360
Adverse events, 16; investigation techniques, 172–182
Adverse reaction, 234
American Academy of Orthopaedic Surgeons (AAOS), 226
American Hospital Association, 335
American Society of Health-System Pharmacists (ASHP), and medication safety, 337–338
Analysis, defined, 173
Anesthesia, wrong method used for, 27
Anesthesiology, error reduction in, 218
Anonymous Medication Error Report, 348
Anticipatory failure analysis, 148–153, 153; FMEA (Failure Mode and Effect Analysis), 150–151; formal methods, 149–152; FTA (Fault Tree Analysis), 151–152; HACCP (Hazard Analysis and Critical Control Point), 151; HAZOP (Hazard and Operability Study), 152; HFMEA® (Healthcare Failure Mode and Effect Analysis), 151
Apollo Associated Services, 179
Australian Commission on Safety and Quality in Health Care, 238
Automation, 219; automated medication storage and dispensing cabinets, 357; in health care organizations (HCOs), 269–271
Bar code scanning devices, 270
Bar-coded patient identification (ID) band, 227, 357
Barriers, 7, 10; to medication safety improvement, 340–342; safety, 24–25
Behavioral health, and continuum of care, 80
Beth Israel Hospital (New York), 234
Bhopal chemical plant disaster, 23
Blood and blood products, acute and ambulatory surgery, 76–77
Blood transfusion process flowchart, 97
Bluetooth, 286
Bourns Bear 2® ventilator, 228–229
Breach of a defense, 10
Caresetting, structure/characteristics of, 63–64
Case studies, 24; teamwork failures, 302; ten times the prescribed amount of insulin administered, 31; wrong
drug vial taken off shelf, 24; wrong method used for anesthesia, 27
Catastrophic process, 49
Causal tree, 178
Cause-and-effect diagram, See Ishikawa diagram
Centers for Medicare and Medicaid Services (CMS): and electronic, computer-based technology, 358; and medication safety, 337
Change-of-shift reports, 355
Checklist for Auditing the Safety of the Physical Environment, 232
Checklist for Proactive risk-reduction activities, 213–214
Checklists, 13
Chernobyl nuclear accident, 23
Chief executive officer, 326
Children’s Hospital and Regional Medical Center (Seattle, WA), 222
Children’s Hospital Boston (MA), 84
Cincinnati (Ohio) Children’s Hospital, 233–234
Clinical Modification (ICD-9-CM), 86–87
Clinical pathways, 203–204
Close call events, 12
Closed Claims Project, 114
Collective mindfulness, 36–38; commitment to resilience, 37; deference to expertise, 37; preoccupation with failure, 37; reluctance to simplify interpretations, 38; sensitivity to operations, 37
Commitment to resilience: and collective mindfulness, 37; health care organizations, 41
Common cause variation, 110–112
Communication, improving, 232–233
Complex system, 7, 32
Computerized Physician Order Entry/Clinical Provider Order Entry (CPOE), 269, 271–272, 278, 286, 358–359
Confidence factor, 186
Constraining functions, 226–227
Consumers Advancing Patient Safety, 238
Continuum of care, 80
 Contributing causes: accidents, 23–24; taxonomy of, 162
Control charts, 110–112
Corrective actions, 10
Council on Surgical and Perioperative Safety, 238
Coupling, 204
CPOE, See Computerized Physician Order Entry/Clinical Provider Order Entry (CPOE)
CPT (Current Procedural Terminology), 280
Crew resource management, 205
Culture change, 16–17
D
Dashboards, 104–106
Data collection, 5 Ps of, 181–182
Data definitions: applicable to reporting to a patient safety organization, 92–93; incident reports, 90–93
Data table, 104; defined, 104
DEB analysis, 157–158, 169; case study, 166–168
Decision Systems, Inc., 179
Deductive analysis, 178, 192; application of, 180–183; process overview, 180–183; tools, 177–178; using, 189–190; using to examine adverse events, 171–194
Defects: defined, 257; as waste, 247
Deference to expertise: and collective mindfulness, 37; health care organizations, 40–41
Delays, as waste, 247
Department clinical leadership, 326
Department nurse director, 326
Department physician director, 326
Diagnosis, 206–207
Direct observation of patient care practices, 82–84
Discharge instructions, 362
Dispensing and preparation errors, 346
Disposable blood bag combination locks, 227
DNV Healthcare, Inc., 340
Do-not-use abbreviations, 355–356
Double checks, 357; independent, 228
DSM (Diagnostic and Statistical Manual of Mental Disorders), 280
Duke University Medical Center, 41
Dynamics Research Corporation, 330
E
Electronic billing records, 66–87
Electronic health record (EHR) system, 84–85, 270, 272–274, 277, 281
Electronic patient identification standards, 281–282
Electronic prescribing software, 358
Environment: adjusting, 231–232; as contributing cause, 162
Error chains, 145, 302
Error containment, 59
Error detection, 227–229
Error elimination, 220
Error management, 93–95
Error management strategies: communication, improving, 232–233; constraining functions, 226–227; designing for errors, 227–228; environment, adjusting, 231–232; forcing functions, 226–227; information access,
improving, 13–14, 225–226; patients and family members, engaging, 235–236; radio frequency identification technology (RFID), 220–221; reliance on memory, reducing, 13–14, 223–224; safety training, 234–235; simplifying the process, 222; staff selection, 235; standardization, 222–223; vigilance, decreasing reliance on, 233–234; work schedules, adjusting, 230–231

Error mechanisms in SRK model, 29–31; knowledge-based errors, 30–31; rule-based errors, 29–30; skill-based errors, 29

Error-producing factors, 59

Error reduction, 59; multiple improvements, need for, 236–239; through work system improvements, 217–244

Error-reduction strategies, 11–14; automation, 219

Errors: active failures, 23; administration, 346–347; defined, 208; dispensing and preparation, 346; error elimination, 220; error-proofing, 197–215; formula for, 3–20; knowledge-based, 30–31; latent failures, 23; medication, 335–348; operator, 7; pharmacist, 346; prescription, 345; psychological mechanisms, 10; rule-based, 29–30; safety-critical, 10; skill-based, 29; transcription, 345–346

Evidence-based medicine, 351
Excessive fatigue, 231
Exempla Lutheran Hospital (Denver, CO), 237
Exxon Valdez oil spill, 23

F

Failure effects, 206
Failure Mode and Effect Analysis, See FMEA (Failure Mode and Effect Analysis)

Failure modes, 149
Failure to report, 93–94
Fairview Health Services (Minneapolis, MN), 227
Fatigue management, 231
Fatigued health care workers, 231
Fault Tree Analysis (FTA), 207
Fault trees, 177–178
Federal Drug Administration (FDA), and medication safety, 337
Fishbone diagram, See Ishikawa diagram
5 Ps of data collection, 181–182
5 Whys technique, 174–175
5S events, 251–254
Float staff, 235
FMEA (Failure Mode and Effect Analysis), 12, 150–151, 206–207
Food and Drug Administration (FDA), 115, 357; MedWatch program, 65, 337
Forcing functions, 226–227; integrated into computer-user interface, 227; use of, 13
FTA (Fault Tree Analysis), 151–152

G

Gaps in clinical information and the billing context, 87
Gathering data for judging current process reliability, 51
Good health care performance, requirements of, 62
Gross underreporting of patient incidents, 109

H

HACCP (Hazard Analysis and Critical Control Point), 151
Hand-offs, 199; reducing the number of, 13–14, 233
Harm, 6
Hawthorne effect, 82
Hazard analyses, 149
Hazards, 7
HAZOP (Hazard and Operability Study), 152
HCOs, See Health care organizations (HCOs)
Health care delivery, unreliability of, 36
Health care organizations (HCOs): automation in, 269–271; commitment to resilience, 41; deference to expertise, 40–41; as high-risk systems, 35–36; HRO self-assessment, 42–44; preoccupation with failure, 40; reluctance to simplify interpretations, 41–42; safety culture vs. high-reliability principles, 45–46; sensitivity to operations, 39–40; structure of, 39; workflow and process change in, 270–271

Health care performance measures, 59–60
Health care process, See also Process failure causes: anatomy and physiology of, 198–199; and automation, 219; causes of process failure, 202–205; determining the treatment, 207–210; diagnosis, 206–207; error elimination, 220; error-proofing, 197–215; failure effects, 206; failure of, 199–202; follow-up, 212–213; implementing the treatment, 210–212; medical management of, 206–214; radio frequency identification technology (RFID), 220–221; system design, 220; work system improvement principles, 221–222

Health care production, 32
Health care services, delivery of, 38–39
Health care system: accident models, 23; design, 220; loosely coupled, 22; as socio-technical system, 22–26; tightly coupled, 22; units/disciplines, 22
Health information technology (HIT), 269, See also Information technology (IT); communication responsibilities, 291–292; data structure and content standards, 280–281; electronic patient identification standards, 281–282; HIT tool viewed as member of health care team, 291; implementation challenges, 278–285; implementation scenario, 284; leadership involvement, 291; performance management, fear of, 285; research/practice, knowledge derived from, 271–278; resistance to workflow redesign, 283; security standards, 281; sociological challenges, 282–285; staging implementation, 291; stakeholder involvement, 291; technological challenge solutions, 286–287; technological challenges, 279–282; user training, 291; vocabulary standards, 279–280; work-around scenario, 284–285

Health Insurance and Portability and Accountability Act (HIPAA) (1996), 281

Health literacy, 362

HFMEA® (Healthcare Failure Mode and Effect Analysis), 151

High reliability, and patient safety, 35–56

High-reliability organizations (HROs), 35–36, 336, 344; applying HRO principles to health care, 38–46; factors contributing to the creation of, 35; self-assessment, 42–44

High-reliability principles, 36–38; collective mindfulness, 36

High-risk patients, 61–62

High-risk processes, monitoring, 60–62

Highly reliable processes, creating, 46–52

HIT, See Health Information Technology (HIT)

Hospital Corporation of America (HCA), standardization techniques used by, 223

Hospital medication administration process, 344

Hospital Survey on Patient Safety Culture Comparative Database (AHRQ), 114

HPES (Human Performance Enhancement System) 158, 161; See also MTO (Man-Technique-Organization) analysis

HROs, See High-reliability organizations (HROs)

Human factors analysis, 11

Human factors engineering (HFE), 11–12

Human fallibility, 10

Human resource director, 326

Human root causes, 188–189

Humans as problem solvers, 26–31; error mechanisms in the SRK model, 29–31; long-term memory/working memory, 26–27; skill-based/rule-based/knowledge-based problem solving, 27–29

I

Iatrogenic conditions/post-operative complications, 113

ICD (International Classification of Disease), 280

Improvement barriers, to medication safety, 340–342

In-hospital medication ordering systems, 358

Incident contributors, 6–7

Incident-reporting system, and climate of trust, 90

Incident reports, See Patient incident reports

Independent backups, 357

Independent double checks, 228

Indianapolis Coalition for Patient Safety, 354

Information access, improving, 13–14

Information technology (IT), 269–296, See also Health information technology (HIT); bar code scanning devices, 270; computer analysis of laboratory data, 270; Computerized Physician Order Entry/Clinical Provider Order Entry (CPOE), 269; electronic health record (EHR) system, 270; picture archiving and communications system (PACS), 270

Institute for Healthcare Communication, 238

Institute for Healthcare Improvement, 238; National Collaborative on Reducing Adverse Drug Events and Medical Errors, 90

Institute for Healthcare Improvement (IHI), steps for leaders, 15

Institute for Safe Medication Practices (ISMP), 81, 114–115, 238, 337, 349, 362; and medication safety, 338

Institute of Medicine (IOM), 297, 335, 361; To Err Is Human report, 297; and medication safety, 338

International Classification of Diseases, 9th Revision, 86

Intravenous (IV) medications, administration errors, 346–347

Inventory, as waste, 247

Ishikawa diagram, 175–176, 191–192

ISMP, See Institute for Safe Medication Practices (ISMP)
J
Joint Commission, The (TJC), 6, 184, 233, 238, 335, 340, 350; do-not-use abbreviations, 355–356; fatigue management, 231; RCA framework, 177; National Patient Safety Goals, 340; and risk assessments, 149; Universal Protocol, 14; website, 340
Just culture, 342

K
Kaizen, event summary, 262–263
Keeping Patients Safe: Transforming the Work Environment of Nurses (IOM), 230
King’s Cross metro station fire, 23
Knowledge-based errors, 30–31
Knowledge-based problem solving, 28–29

L
Laboratory data, computer analysis of, 270
Lapses, errors as, 29
Latent failures, 10, 23–24; in industrial systems, 144
Latent root causes, 188–189
Lean events, defined, 256
Lean manufacturing, 245–246
Lean organization, becoming, 264
Lean philosophy, 246–248
Lean processes, 248–250; implementation, 246–248; standard work, 248–249; unobstructed throughput, 248–250; user-friendliness, 248, 249
Lean tools/techniques, 245–265; 5S methodology, 251–254; kaizen, 259–263; kanbans, 256–257; methodology, 251–254; mistake-proofing, 256–259; successful implementation of, 264; value stream mapping, 261; visual controls, 254–256
Leapfrog Group, and medication safety, 339
Levels of analysis, 200–201
Logic tree, 182–183; deconstruction of, 183–192
Long-term memory, 26–27, 32
Look-alike/sound-alike medication names, 11, 354
Lund University, 165

M
Malpractice claims, 61; and administrative data, 85–86; Closed Claims Project, 114
Management Oversight and Risk Tree (MORT) Accident/Incident Investigation Manual, 218
Measurement data collection, 81–96; administrative data, 85–87; direct observation of patient care practices, 82–84; patient and family feedback, 95–96; patient incident reports, 87–95; patient records, 84–85; patient safety data, primary sources of, 82
Medical accident investigation, 146–148; case studies, 146–148; sentinel events, occurrence of, 148
Medical accident investigations, 32
Medical accidents: MTO (Man-Technique-Organization) analysis, 157, 158–165; proactive safety improvements, framework for, 165–168
Medical Device Amendments (1992), 115
Medical Errors Reporting Program, 114–115
Medical mistakes: human side of, 21–34; learning from, 3–20; why they occur, 7–9
Medical practice standard, 3
Medicare, 87
Medicare Quality Improvement Community, 238
Medication administration record (MAR), 285
Medication delivery: measuring and improving the quality of, 359–361; process redesign, 352–353; risk points in, 345–348
Medication error prevention strategies, 349–359; evidence-based medicine, 351; human factors, 350–351; process redesigns, 352–357; supportive culture, 349–350; technological issues, 357–359
Medication errors, 61, 354, 359; administration errors, 346–347; Anonymous Medication Error Report, 348; defined, 335–336; dispensing and preparation errors, 346; hospital medication administration process (chart), 344; Medication System Error Analysis, 348; prescription errors, 345; risk points, 345–348; transcription errors, 345–346; understanding, 344–348
Medication labeling, errors in, 346
Medication management: acute/emergent/ambulatory care, 75–76; behavioral health care, 76; home care, 76; skilled/residential care, 76
Medication near miss rate, 360
Medication packaging, and pharmacist errors, 346
Medication reconciliation process, 356–357
Medication safety, 335–367; accreditation groups, 339–340; Agency for Healthcare Research and Quality (AHRQ), 336–337; American Society of Health-System Pharmacists (ASHP), 337–338; Centers for Medicare and Medicaid
Services (CMS), 337; change-of-shift reports, 355; color-coded medication safety (CCMS) system, 354; decision and memory aids, building into the system, 354; desired action, making the default choice, 355; DNV Healthcare, Inc., 340; do-not-use abbreviations, 355–356; Federal Drug Administration (FDA), 337; improvement barriers, 340–342; independent backups, 357; infrastructure, 361; Institute for Safe Medication Practices (ISMP), 338; Institute of Medicine (IOM), 338; Joint Commission, The (TJC), 340; Leapfrog Group, 339; look-alike medication names, 354; medication measures, 360; National Coordinating Council for Medication Error Reporting and Prevention (NCC MERP), 339; national efforts to improve, 336–342; organizational culture, impact of, 342–344; redundant processes, creating, 356–357; role of patients in, 361–362; U.S. Pharmacopeia (USP), 339

Medication Safety Alert newsletter, 115

Medication System Error Analysis, 348

MedTeams, 297–301; Teamwork Failure Checklist, 301

MedTeams Project, 205; team activities, 309–316; team characteristics, 307; team definition and composition, 304–305; team responsibilities, 305; teamwork dimensions and behaviors, 306–309; Teamwork Failure Checklist, 314–315

MedWatch Program, Food and Drug Administration (FDA), 65, 337

Memory, reducing reliance on, 13–14, 223–224

Metathesaurus®, 280

Misdiagnosis, related harm, 64

Mistake-prone conditions, situations contributing to, 258

Mistake-proof processes, 13

Mistake-proofing, 256–259; case study in perioperative services, 260–261; creating a device/method to detect/prevent reoccurrence, 259; defining the mistake, 258; design of health care processes, 238; idea generation, 259; investigating the root cause of the mistake, 259; red flags, identifying, 258–259; steps for, 257–258; tasks, 53

Mistakes, See also Administration errors; Errors; Medical mistakes; Medication errors

Modes, 182

Motion, as waste, 247

MTO (Man-Technique-Organization) analysis, 157, 158–165, 168; acting on results of, 163–165; action plan, 163; completing, 161–163; mapping the event, 159–161; process owners, 163; steps in, 158–159; team formation, 159

N

NASA Aviation Safety Reporting System, 89

Natchaug Hospital (Mansfield Center, CT), 254

National Academy for State Health Policy, 115

National Association of Health Data Organizations, 115

National Center for Missing and Exploited Children, 72

National Center for Patient Safety, patient safety improvement action categories, 47–48

National Collaborative on Reducing Adverse Drug Events and Medical Errors, 90

National Coordinating Council for Medication Error Reporting and Prevention (NCC MERP), 90–91; medication error, definition of, 335–336; and medication safety, 339

National Database of Nursing Quality Indicators®, National Center for Nursing Quality (NDNQI), 91

National Healthcare Quality Report, 93, 113–114

National Initiative for Children’s Healthcare Quality, 238

National Integrated Accreditation for Healthcare Organizations (NIAHO), 340

National Library of Medicine, Unified Medical Language System® (UMLS) project, 280

National Nosocomial Infections Surveillance, 113

National Patient Safety Agency (UK), 238

National Patient Safety Foundation, 238

National Patient Safety Goals, 340

National Quality Measures Clearinghouse Web site, 68

Nebraska Medical Center, reduced incidence of deep vein thrombosis, 224

Noncatastrophic process, 47

O

Occurrence reports, See Patient incident reports

Operative procedure: acute and ambulatory surgery, 74; behavioral health care, 74
Operator errors, 7
Opportunity Analysis (OA),
120–138; calculating the loss,
132–133; data collection,
130–132; defined, 120; goals,
121; issuing the report, 135–
138; lead analyst, 122;
literature sources, 132; OA
worksheet, setting up, 126–
130; preparatory work, 123–
125; query information
systems, 131–132;
“significant few” modes,
defining, 133–135; steps,
122–138; team, 122–123;
team meetings, 130–131
Oral communication, as
contributing cause, 162
Organizational culture, impact
on medical safety, 342–344
OSF St. Francis Medical
Center (Peoria, IL), reduced
incidence of pressure ulcer,
224–225
Outcome measures, 63, 64–71;
Patient Safety Indicators
(PSIs), 65–67
Overprocessing, as waste, 247
Overproduction, as waste, 247

P
Paper-based deductive analysis
tools, 178, 182, 188,
192–193
Patient assessment, 77–78;
acute care, 77–78;
ambulatory, 78; home care,
78
Patient care, 78–79; acute and
emergency care, 78–79;
ambulatory care, 79; home
management community, 95;
Sample summary report of
incidents for one month, 94;
willingness to report, 88
Patient incidents, 6
Patient injury, practices
associated with greater risk
of, 61
Patient records, 84–85, 346
Patient rights/organizational
ethics, 77
Patient safety: errors, formula
for, 3–20; and high reliability,
35–56; and information
technology, 269–296; lean
techniques, 245–265; and
senior leaders, 15–16
Patient Safety and Quality
Improvement Act (2005)
(Patient Safety Act), 91–93
Patient safety culture
assessment tools, 81; See also
Safety culture
Patient safety data, primary
sources of, 82
Patient safety improvements,
17
Patient Safety Indicators (PSIs),
65–67
Patient safety measurement:
creating, 62–63; high-risk
patients, 61–62; high-risk
processes, monitoring, 60–62;
performance measurement,
62–81; purpose of, 60
Patient Safety Organizations
(PSOs), 91, 113
Patient safety performance:
analyzing, 109–113; common
cause variation, 110–112;
comparison of, 113–116;
control charts, 110–112;
control limits, 110;
dashboards, 104–106;
graphical representations,
106; need for action,
determining, 116;
performance trends, 104;
safety measurement data,
reporting, 103–106; safety
measurement results, 106–
116; safety-related data
strengths/weaknesses,
understanding, 108–109;
safety-related measures,
compiling, 107–108; special
cause variation, 110–112;
statistical process control,
110; tabular reports,
104–106
Patient safety performance
analysis, 103–118
Pediatric Perioperative Cardiac
Arrest, 114
Peer monitoring, 299
Pennsylvania Patient Safety
Authority, 238
Performance data, See also
Opportunity Analysis (OA);
using to prioritize safety
improvement projects,
119–139
Performance expectations, 117
Performance gap, 117
Performance measurement,
62–81; collecting
measurement data, 81–96;
general risk-related
performance measures,
68–71; health care processes,
63; outcome measures,
64–71; process measures,
63–64; for safety-critical tasks
in major patient care
functions, 74–80; safety-
critical tasks, measuring,
71–80; safety culture,
measuring, 80–81; ultimate
purpose of, 63
Performance trends, 104
Pharmacists, as safeguards in
the medication delivery
system, 346
Physical root causes, 188
Physician autonomy, 39
Picture archiving and
communications system
(PACS), 270
Point-of-care access to
pharmaceutical decision
support resources, 341–342
Point-of-care bar-coding
system, 14
Poka-Yoke, 256–257
Poorly designed patient hospital rooms, 25
Potential adverse drug events, 340
Potential Error and Event Reporting System (PEERs), Trinity Health System, 40
Prelabeled syringes, 357
Preoccupation with failure: and collective mindfulness, 37; health care organizations, 40
Prescription errors, 345
Present on admission (POA) indicators, 87
Preventable deaths, 6
PROACT®, 179, 180–182
PROACT® logic tree, 182–183, 185, 192–193; compared to decision/causal factor trees, 188; deconstruction of, 183–192
PROACT® methodology rule set, 188
Proactive risk assessments, 149
Proactive risk-reduction activities checklist, 213–214
Proactive safety improvements, framework, 165–168; DEB analysis case study, 166–168
Process failure causes, 202–205; complexity, 203; hierarchical culture, 205; human intervention, 204–205; inconsistency, 203–204; tight coupling, 204; tightening of time constraints, 205; variable input, 202
Process reliability, 35; agreeing on reliability measure, 50–51; baseline performance, measuring, 51; creating, 46–52; process reliability levels and related improvement strategies, 49–50; reliability goals, establishing, 52; stepwise improvements, 52
Processes, 21; documentation, 212; measures, 63–64; probability of success in, 203; simplification, 227; variation in, 204
Promising Practices, 238
Prompt lists, 176–177, 191–192
Prompts, 226
Prospective risk assessment methods, 165
Radio frequency identification technology (RFID), 220–221
Random charts, auditing, 356
RCA, See Root cause analysis (RCA)
RealityCharting®, 179
REASONS®, 179
Red flags, identifying, 258–259 “Red man syndrome;” 346–347
Redundancy, 209
Relative safety barriers, 24
Reliability Center, Inc., 179
Reliability science, 46
Reliable processes, See Process reliability
Reliance on memory, reducing, 13–14, 223–224
Reluctance to simplify interpretations: and collective mindfulness, 38; health care organizations, 41–42
Reported medication error rate, 360
Risk, 7
Risk assessment, 211; teams, 41; technique, 12
Risk management, 11, 25, 31–32; in complex technical systems, 32; conceptual framework for, 21
Risk points: locating, 347; in medication delivery, 345–348
Risk-reduction strategies, 210, 214–215
Root Cause Analysis in Health Care: Tools and Techniques (Croteau), 218
Root cause analysis (RCA), 143–144, 153–154; adverse event investigation techniques, 172–182; common tools, 173–182; deductive analysis, 171–194; deductive analysis tools, 177–178; defined, 171–172; and error chain, 145; 5 Whys technique, 174–175; Ishikawa diagram, 175–176; prompt lists, 176–177; proprietary software products, 179; steps in, 145
Root causes, 143; human, 188–189; latent, 188–189; physical, 188–189
Rule-based errors, 29–30
Rule-based problem solving, 28
Run chart, 109
Safe Medical Devices Act (1990), 115
Safety barriers, 24–25
Safety-critical errors, 10
Safety culture: changing, 16; defined, 15–16; high-reliability principles vs., 45–46; measuring, 80–81; patient safety culture assessment tools, 81
Safety improvement, involving patients and family members in, 235–236
Safety of Nuclear Installations, Advisory Committee’s definition of safety culture, 15–16
Safety performance dashboard, creating, 105
Safety performance measures, 62
Safety-related structural components, measures of, 63–64
Safety training, 234–235
Schmatas, 26–27
Security standards, 281
Senior leaders, 326–327; actions necessary to support teamwork implementation, 327; and patient safety, 15–16
Sensitivity to operations: and collective mindfulness, 37; health care organizations, 39–40
Sentinel Event Alert newsletter, 115, 276
Sentinel events, 68, 148, 197
Sharp end staff, 23–24
Simulation training, 234–235
Situational factors, 23–24, 161–162
Skill-based errors, 29
Skill-based problem solving, 28
Slips, errors as, 29
SNOMED (Systematized Nomenclature of Medicine), 280
Socio-technical system, health care as, 22–26
Special cause variation, 110–112
Staff selection, 235
Standard work, 248–249
Standardization: of electronic patient identification, 281–282; as error management strategy, 222–223; of security, 281; of tasks, 13–14; of vocabulary, 279–280
Statistical process control, 110
Stepwise improvements, 52
Stop the line, use of term, 234
Supportive culture, medication error prevention, 349–350
Surgery, on wrong patient, 4–9
Surgical fire example, 184–187; analyzing using the 5 Whys method, 191; body of logic tree for, 187; drill down of modes in, 185–186; Modes, 185; Top Box, 184–185
Surgical Safety Checklist (WHO), 14
Swedish National Board of Health and Welfare, 157
Swiss cheese model (Reason), 10
System defenses, 10, 25
System failure, 7
System Improvements, Inc., 179
System safeguards, 10
Systems theory, 21
Tabular report, 104–106; of inpatient patient safety measures, 104–105
TapRooT®, 179
Task Criticality Scoring System, 73
Tasks: criticality, 74–80; safety-critical, 74–80; standardization of, 13–14; task supervision, as contributing cause, 162
TeamSTEPPS® system, 235, 297
Teamwork: challenges in emergency care, 302–304; chief executive officer, 326; defined, 299; department clinical leadership, 326; department nurse director, 326; department physician director, 326; human resource director, 326; implementing a system, 326–330; implementing a teamwork system, 326–330; most frequent errors, 303; senior leaders, 326–327; system, 304–316; system implementation, 328–330; vice president of clinical services, 326
Teamwork dimensions/behaviors, 306–309
Teamwork Failure Checklist, 301, 314–315; potential uses of, 324–325
Teamwork failures, 302–304, 316–326; completion of the checklist, 316–322; teamwork failure assessments, use of, 322
Teamwork training, 299–301
Texas Board of Nursing Examiners, 230
The Joint Commission, See Joint Commission, The
Three Mile Island nuclear accident, 23
“Ticket to ride” process, and patient hand-offs, 233
Tightly coupled processes, 204
Time-out, 226
TJC, See Joint Commission, The
To Err Is Human (Institute of Medicine), 237
Top Box, 183, 184
Total parenteral nutrition (TPN), errors in administration of, 222
Toyota Motor Corporation, 245–246, 263
Training: as contributing cause, 162; safety, 234–235; simulation, 234–235; teamwork, 299–301; user, 291
Transcription errors, 345–346
Transportation, as waste, 247
Trinity Health System, Potential Error and Event Reporting System (PEERs), 40
Unified Medical Language System® (UMLS) project, 280
University Children’s Hospital (Zurich, Switzerland), 96
University of Pittsburgh Medical Center (UPMC), deference to expertise, 41
University of Virginia Health Systems (Charlottesville VA), 220
Unobstructed throughput, 248, 249–250
Unreliable process, defined, 46
U.S. Pharmacopeia (USP), 337; and medication safety, 339
User-friendliness, 248, 249
V
Variable input, 202
Variance reports, See Patient incident reports
Venous thromboembolism (VTE), 223–225
Veterans Administration (VA), 42; National Center for Patient Safety, 238
Vice president of clinical services, 326
Vigilance, decreasing reliance, 233–234
Virginia Mason Medical Center (Seattle, WA), 234
Visual aid for clinical staff managing behavioral health patient, 255
Vocabulary standards, 279–280

W
Waste, categories of, 247
Willingness to report, 88
Work schedules, adjusting, 230–231
Work system improvements, See Error management strategies; Error reduction
Working environment, as contributing cause, 162
Working memory, 26–27, 32
Workplace design/physical environment, as contributing cause, 162
World Health Organization (WHO): Collaborating Centre for Patient Safety Solutions, 238; Surgical Safety Checklist, 14
Written procedures, as contributing cause, 162
Wrong patient surgery, 4–9

Y
Yielding the greatest results, in improvement projects, 119
Yielding unsatisfactory results, through hearsay and assumptions, 180–181