<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbe’s equation: near-field scanning optical microscope</td>
<td>640–642</td>
</tr>
<tr>
<td>optical microscopy</td>
<td>609–612</td>
</tr>
<tr>
<td>Ablation regions, signal axis quantification, molecular mass</td>
<td>197–198</td>
</tr>
<tr>
<td>distribution</td>
<td></td>
</tr>
<tr>
<td>Absolute degree of crystallinity, X-ray</td>
<td>755–756</td>
</tr>
<tr>
<td>diffraction</td>
<td></td>
</tr>
<tr>
<td>Ablation regions, signal axis quantification, molecular mass</td>
<td>125–127</td>
</tr>
<tr>
<td>distribution</td>
<td></td>
</tr>
<tr>
<td>Acoustic microscopy: micromechanical analysis, 778</td>
<td></td>
</tr>
<tr>
<td>Acoustic microscopy: optical imaging, 644</td>
<td></td>
</tr>
<tr>
<td>acoustic/ultrasonic polymer testing, 367</td>
<td></td>
</tr>
<tr>
<td>Acrylic polymers, secondary ion mass spectrometry, side-chain</td>
<td>313–318</td>
</tr>
<tr>
<td>functionality</td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile-butadiene-styrene (ABS), one- and two-dimensional</td>
<td></td>
</tr>
<tr>
<td>spectral-spatial electron spin resonance imaging, spatially resolved</td>
<td></td>
</tr>
<tr>
<td>degradation</td>
<td>921–926</td>
</tr>
<tr>
<td>Active thermography, nondestructive polymer characterization, 367</td>
<td></td>
</tr>
<tr>
<td>Addition reaction, polymer formation and, 1–3</td>
<td></td>
</tr>
<tr>
<td>Additives, polymer composition and structure, 35–38</td>
<td></td>
</tr>
<tr>
<td>Adhesion properties: atomic force microscopy analysis, 453–454</td>
<td></td>
</tr>
<tr>
<td>heterogeneous polymers, microspectroscopic analysis, 574–575</td>
<td></td>
</tr>
<tr>
<td>nondestructive testing, 369–370</td>
<td></td>
</tr>
<tr>
<td>scanning force microscopy measurement, 467–469</td>
<td></td>
</tr>
<tr>
<td>compositional mapping, 486–489</td>
<td></td>
</tr>
<tr>
<td>Adiabatic calorimetry (AC), molecular organization and dynamic</td>
<td>13–16</td>
</tr>
<tr>
<td>behavior of polymers, 13–16</td>
<td></td>
</tr>
<tr>
<td>Advanced Light Source (ALS), near-edge x-ray absorption fine structure spectroscopy, 388–391</td>
<td></td>
</tr>
<tr>
<td>A&D Weighing SV-10 viscometer, rheological viscosity measurement, 726</td>
<td></td>
</tr>
<tr>
<td>Aging processes, elastomers: nuclear magnetic resonance imaging, 171</td>
<td></td>
</tr>
<tr>
<td>parameter mapping, 176–177</td>
<td></td>
</tr>
<tr>
<td>Air-water interface, vibrational spectroscopy, surface analysis, 585</td>
<td></td>
</tr>
<tr>
<td>Alkaline halide devices, transmission infrared spectroscopy, 94–95</td>
<td></td>
</tr>
<tr>
<td>n-Alkanes, spherulite morphology, 285–286</td>
<td></td>
</tr>
<tr>
<td>crystalline structure, 288–289</td>
<td></td>
</tr>
<tr>
<td>Alpha (α) transition: dielectric relaxation of polymers, 890–893</td>
<td></td>
</tr>
<tr>
<td>dynamic mechanical analysis: amorphous and crystalline polymer</td>
<td></td>
</tr>
<tr>
<td>relaxation, 854–855</td>
<td></td>
</tr>
<tr>
<td>impact testing, 863–864</td>
<td></td>
</tr>
<tr>
<td>plasticizer and moisture effects, 858–860</td>
<td></td>
</tr>
<tr>
<td>Amorphous polymers: deformation analysis, 780–785</td>
<td></td>
</tr>
<tr>
<td>dielectric relaxation, 888–893</td>
<td></td>
</tr>
<tr>
<td>differential scanning calorimetry, glass transition temperature, 818</td>
<td></td>
</tr>
<tr>
<td>dynamic mechanical analysis: basic principles, 846–848</td>
<td></td>
</tr>
<tr>
<td>glass transition temperatures, 853</td>
<td></td>
</tr>
<tr>
<td>plasticizer and moisture effects, 855–860</td>
<td></td>
</tr>
<tr>
<td>relaxation processes, 854–855</td>
<td></td>
</tr>
<tr>
<td>rubbery plateau, 661–662</td>
<td></td>
</tr>
<tr>
<td>molecular organization and dynamic behavior, 11–18</td>
<td></td>
</tr>
<tr>
<td>thermal analysis, 13–14</td>
<td></td>
</tr>
<tr>
<td>structure and classification, 203</td>
<td></td>
</tr>
<tr>
<td>toughness enhancement, 788–792</td>
<td></td>
</tr>
<tr>
<td>vibrational spectroscopy, low-frequency analysis, 556–558</td>
<td></td>
</tr>
<tr>
<td>Amplification factor, vibrational spectroscopy, phase transformation,</td>
<td>560–561</td>
</tr>
<tr>
<td>508–514</td>
<td></td>
</tr>
<tr>
<td>Angular range, neutron scattering experiments,</td>
<td></td>
</tr>
<tr>
<td>Anisotropic assessment: electron spin resonance spectroscopy, 897–898</td>
<td></td>
</tr>
<tr>
<td>polarized light microscopy, 612–615</td>
<td></td>
</tr>
</tbody>
</table>
Anisotropic assessment—cont.
proton multiple-quantum nuclear magnetic
resonance, mechanical deformation, 135
vibrational spectroscopy, 575–579
Annealing process, vibrational spectroscopy,
unit-size analysis, 553–556
Antiplasticizers, dynamic mechanical analysis,
impact testing, 861–864
Anti-Stokes Raman scattering:
Raman microprobe techniques, 623–624
vibrational analysis, 534–535
Apochromatic principles, optical microscopy,
609–612
Apodization, Fourier transform infrared
spectrometry, 92–93
Apparent degree of crystallinity, X-ray
diffraction, 754–757
Arc resistance testing, electrical properties of
copolymers, 55
Aromatic hydrocarbon polymers, secondary ion
mass spectrometry, 312
Arrhenius relationship:
dielectric relaxation of polymers, 888–893
dynamic mechanical thermal analysis, 43–45
rheological viscosity measurement:
melt polymers, 690
temperature effects, 684–685
Artifacts, atomic force microscopy imaging,
421–426
Artificial neural networks (ANNs), infrared
spectroscopy, quantitative analysis, 104
Asbestos identification, polarized light
microscopy, 615
ASTM tests:
electrical properties of polymers, 54–55
environmental effects of polymers, 51–53
flammability of polymers, 55–56
Asynchronous spectrum, double modulation
spectroscopy, 593–594
Atmospheric turbulence, thermogravimetric
analysis, 826–827
Atomic force microscopy (AFM):
analytical techniques, 421–434
developing techniques, 431–434
imaging analysis, 421–426
mechanical analysis, 426–431
basic principles, 419–421, 601–602
comparison with other techniques, 602–604
micromechanical properties analysis, 773–775
morphological polymer characterization, 21
near-field scanning optical microscope,
641–642
optical imaging, 637–640
polymer characterization, 434–453
biopolymers, 437
blended polymers and copolymers, 447–451
Atomic force microscopy—cont.
composition and structure, 35–38
filled composites, 446
hybrid organic-inorganic polymers, 451–452
hyperbranched polymers/dendrimers,
444–446
Langmuir-Blodgett films, 434–436
liquid crystalline polymers, 443–444
microporous membranes, 446–447
oligomeric self-assembled monolayers, 436
thermoplastics, 439–443
thermosets, 437–439
scanning force microscopy and, 460–461
scanning probe microscopy and, 634–637
surface analysis, 453–456
adhesion, 453–454
friction, 454–455
modifications, 455–456
morphology and orientation, 453
roughness characteristics, 453
Atomic probe field ion microscopy (APFIM),
optical imaging, 642
Atomic probe microscopy, optical imaging, 642
Attenuated total reflectance (ATR) spectroscopy:
molecular structure characterization, 5–6
sampling methods, 95–97
surface analysis, 581–590
Auger electrons:
scanning auger microscopy, 633–634
X-ray photoelectron spectroscopy, 297–300
Autoanalysis techniques, differential scanning
calorimetry, 816–818
Autocorrelation function (ACF), dielectric
relaxation of polymers, 887–888
Automated capillary viscometers, rheological
viscosity measurement, 707–711
Automation Products Dynatrol viscometer,
rheological viscosity measurement, 726
Average molar mass, polymer characterization,
8–10
Avogadro’s number, size exclusion
chromatography, separation techniques,
235–236
Axial instrumentation, dynamic mechanical
analysis, 654–656
Backscatter electrons (BSEs):
scanning auger microscopy, 633–634
scanning electron microscopy, 631–633
Bagley plot, rheological viscosity measurement,
capillary viscometers, 710, 714
Baker-Williams fractionation:
liquid chromatography and, 252–253
molecular weight distribution, 77
Banded growth patterns, spherulite morphology,
286–288
Base line parameters, differential scanning
calorimetry, 813–814
Beer-Lambert law:
 infrared spectroscopy, quantitative analysis, 102–104
 X-ray photoelectron spectroscopy, 299–300
Bertrand lens, optical microscopy, 608–609
Beta (β) transition:
 dielectric relaxation of polymers, 890–893
dynamic mechanical analysis:
 amorphous and crystalline polymer relaxation, 854–855
 impact testing, 861–864
 plasticizer and moisture effects, 857–860
 thermoplastic/thermoset polymers, 657–664, 659
Biaxial extensional viscosity measurement, 728–729
Binding energy (BE), X-ray photoelectron spectroscopy:
 basic principles, 298–300
 core levels, 302–304
Bingham flow model, viscosity measurement, 679–681
Biological agents, environmental effects testing, 52–53
Biological molecules, infrared spectroscopy characterization, 105
Biopolymers:
 atomic force microscopy, 437
 electron spin resonance imaging, 906–909
 high-performance liquid chromatography, separation, 263–264
 matrix-assisted laser desorption/ionization (MALDI) spectrometry, 188
 salt selection, 196
 solid matrices, 194–196
 molecular mass distribution, mass axis quantification, 196–197
 scanning force microscopy, real-time structure development and processes, 496–497
 time-of-flight-matrix-assisted laser desorption/ionization (TOF-MALDI) spectrometry, 190–191
 vibrational spectroscopy, surface analysis, 586–590
Blended polymers. See also Heterogeneous polymers
 elastomers, parameter mapping, 175–176
 neutron scattering, 520–524
 mean-field to ising behavior crossover, 523–524
 spinodal decomposition, 520–523
 thermogravimetric analysis, 833
toughness assessment, 794–795
 vibrational spectroscopy, heterogeneous compounds, 561–566
 Bloch equations, nuclear magnetic resonance relaxation times, 115–116
Block copolymers:
 atomic force microscopy imaging, 447–451
 matrix-assisted laser desorption/ionization (MALDI) spectrometry, chromatographic detection and, 203–204
 near-edge x-ray absorption fine structure spectroscopy, thin films, 403–405
 pulsed electron spin resonance studies, 915–920
 scanning force microscopy, surface mechanical properties, 489–492
 yielding in, 797–803
Boersma thermocouple heat flux differential scanning calorimeter, 809–810
Boltzmann constant, laser light scattering, 218
Bond orientation:
 infrared spectroscopy, spectral analysis, 100–101
 proton multiple-quantum nuclear magnetic resonance, segmental anisotropy, 135
Born Oppenheimer approximation, vibrational spectroscopy, 535–541
“Bounce-back mechanism,” dielectric relaxation of polymers, 888
Bragg’s law:
 micromechanical properties analysis, 776
 X-ray photoelectron spectroscopy, surface analysis, 300–302
Branched polymers, molecular mass distribution, signal axis quantification, 200
Bremsstrahlung radiation, penetrating radiation testing, 362–364
Bridging forces, scanning force microscopy, 484–489
Brittle fracture:
 dynamic mechanical analysis, impact testing, 860–864
 fractographic analysis:
 fatigue fractures, 346, 349
 load fractures, 343–344
 Brominated poly(isobutylene-co-4-methylstyrene) (BIMS), near-edge x-ray absorption fine structure spectroscopy, elastomeric composites, 412–413
Brookfield viscometer, rheological viscosity measurements, 722–723
Brownian motion, rheological viscosity measurement, dispersed polymer systems, 692–693
Bubble tube vicimeter, rheological viscosity measurement, 725
Buoyancy corrections, thermogravimetric analysis, 826–827
Butadiene rubber (BR):
 near-edge x-ray absorption fine structure spectroscopy, elastomeric composites, 412–413
Butadiene rubber—cont.
thermogravimetric analysis, 832–833
Cahn electrobalance, thermogravimetric analysis, 825
Cahn-Hilliard-Cook theory, spinodal decomposition, polymer blends, neutron scattering, 523
Calcium/calcium activation of myosin light chain kinase (MLCK), neutron scattering experiments, protein structure, 526–527
Calcium oxalate, thermogravimetric analysis, 829–830
Calibration methods:
differential scanning calorimetry, 810–812
size exclusion chromatography, 249–250
thermogravimetric analysis, 828–832
thermomechanical analysis, temperature effects, 840
Cannon-Fenske viscometer, rheological viscosity measurement, 704–711
Capillary Breakup Extensional Rheometer (CaBER), extensional viscosity measurement, 726–729
Capillary melt viscosity, processing test techniques, 46–47
Capillary viscometers, rheological viscosity measurement, 703–711
Carbon black, thermogravimetric analysis of elastomers, 835–836
Carbon-carbon double bonds:
near-edge x-ray absorption fine structure spectroscopy, 379–386
vibrational analysis, phase transformation, 558–561
Carbon-13 (\(^{13}\)C NMR) nuclear magnetic resonance:
Crystallinity determination, 766–768
molecular structure characterization, 6–7
polymer composition and structure, 34–38
residual dipolar couplings, multiblock copolymer, 151–153
Carbon fiber-reinforced polymers (CFRP): electromagnetic testing, 364–365
mechanical testing, 359
smart monitoring techniques, 368–369
thermal testing, 367
Carbon-hydrogen dipolar couplings:
extraordinary infrared spectroscopy, 535–536
molecular vibration analysis, 531–535
Carbon-nitrogen dipolar couplings:
extrinsic infrared spectroscopy, 531–535
molecular vibration analysis, 531–535
Carbonyl functional groups, near-edge X-ray absorption fine structure spectroscopy, basic principles, 379–386
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences, nuclear magnetic resonance relaxation times, 115–116
Casseein condenser, infrared spectroscopy, microsampling techniques, 97–98
Casson flow model, viscosity measurement, 679–681
Cathodoluminescence microscopy, basic principles, 622
Cationization:
matrix-assisted laser desorption/ionization mass spectrometry, salt selection, 196
organic molecule surface analysis, 320–321
Caustics techniques, environmental effects testing, 51–53
Cavitation mechanism, amorphous polymer toughness enhancement, 788–792
Cell design, laser light scattering, 224
Chain-chain interactions. See also In-chain atomic force microscopy, 431–434
dielectric relaxation of polymers, 888–893
molecular organization and dynamic behavior of polymers, 12–18
one-dimensional nuclear magnetic resonance studies:
dipolar correlation orientation and slow dynamics, 140–142
transverse relaxation, network properties, 136–140
proton multiple-quantum nuclear magnetic resonance, segmental chain heterogeneity, grafted polymers, 132–135
two-dimensional nuclear magnetic resonance, viscoelastic polymers, 142–147
Chain conformation:
blended polymers, yield stress, 795–797
double modulation spectroscopy, 592–594
melted polymers, neutron scattering, 516–517
vibrational spectroscopy:
disordered conformation, 546–550
normal coordinate analysis, 541
ordered conformation, 549–546
structural analysis, 542–543
surface analysis, 585–590
unit-size analysis, 552–556
Chainfolding:
advanced materials, mechanical properties and morphology, 290–291
lamellae, inference, 268–269
melt-crystallized lamellae morphology, 278
spherulite morphology, crystal structure, 288–289
Chain packing, scanning force microscopy, semicrystalline polymer morphology, 475–479
Charge-coupled device (CCD) detectors,
Raman scattering, vibrational analysis, 533–535
INDEX 937

Charge-potential model, X-ray photoelectron spectroscopy, core level binding energy, 302–304
Chemical analysis, nondestructive polymer characterization, 367
Chemical exposure tests: corrosive stress cracking, fractographic analysis, 348, 350
environmental effects testing, 51–53
Chemical force microscopy (CFM): atomic force microscopy imaging and, 424–426
compositional mapping by, 485–489
scanning force microscopy, adhesion force measurement, 469
Chemical properties of polymers, matrix-assisted laser desorption/ionization (MALDI) spectrometry, 205–206
Chemical shielding interaction, nuclear magnetic resonance technology, contrast parameters, 164–166
Chemimetrics, molecular weight distribution, 78
Chlorosulfonation, melt-crystallized lamellae morphology, 275–278
Chromatography. See also specific techniques, e.g. Size-exclusion chromatography
matrix-assisted laser desorption/ionization (MALDI) spectrometry, 205–206
molecular mass distribution, 201–203
molecular weight distribution, 77–81
polymer characterization, theoretical principles, 261–263
Chromatography-infrared spectroscopy, basic principles, 98–99
Cilia structures, spherulite morphology: n-alkanes, 285–286
growth patterns, 283–284
Classical least squares (CLS), infrared spectroscopy, quantitative analysis, 104
Cleavage stops, brittle fractures, 343
Coacervate extraction, molecular weight distribution, 76–77
Coaxial/concentric cylinder viscometer, rheological viscosity measurement, 718–723
Coefficient of linear thermal expansion (CLTE), thermomechanical analysis, 42–45
probe configuration, 841–843
Coefficient of thermal expansion (CTE): atomic force microscopy, 433–434
thermomechanical analysis, 840–841
Cold crystallization peak, differential scanning calorimetry, polymer characterization, 815–816
Colligative properties, number-average molecular weight, 69–70
Collimated beam, infrared spectroscopy, 91–93
Collision cascade, secondary ion mass spectrometry, surface analysis, 307–308
Colloidal particles: laser light scattering analysis, 220–221
scanning force microscopy (SFM), surface forces and energies, 485–489
Column technology:
high-performance liquid chromatography, stationary and mobile phases, 254–256
liquid chromatography, history of, 252–253
size exclusion chromatography:
basic properties, 239–240
dispersion mechanisms, 237–239
Commission Internationale de l’Eclairage (CIE) color test, optical properties of polymers, 53–54
Compensator plates, polarized light microscopy, 612–615
Complex heat capacity, modulated differential scanning calorimetry, 822–823
Compliance, mechanical testing of polymers, 359
Compositional analysis of polymers, testing methods for analysis of, 32–38
Compton back-scattering, penetrating radiation polymer testing, 363–364
Computed radiography (CR), penetrating radiation polymer testing, 363–364
Computed tomography (CT): penetrating radiation polymer testing, 364
size determination of polymers, 369
Computer-aided design (CAD), polymer size and geometric determination, 369
Computer-assisted contrast, optical microscopy, 624–625
Concentration detectors, size exclusion chromatography, 243–244
Concurrent thermal analysis, defined, 806–807
Condensation, thermogravimetric analysis, 826–827
Cone-plate viscometer, rheological viscosity measurement, 720–723
Confocal microscopy, basic principles, 621–622
Confocal scanning light microscopy, fractographic analysis, 332–333
Confocal spectroscopy, heterogeneous polymers, vibrational spectroscopic techniques, 567–575
Conformations and configurations, neutron scattering, polymer melt chain conformation, 517
Conservation equations, laser light scattering, 212
Constant height mode, contact mode scanning force microscopy (SFM), 463–464
Constant load testing, environmental effects, 51–53
Contact mode atomic force microscopy, imaging techniques, 425–426
Contact mode scanning force microscopy (SFM), 462–464
lamellar crystal morphology, 477–479
later force measurements, 471–474
multilamellar crystals, hedrites, and spherulites, 479–480
Contact radiography, optical imaging, 643–644
Contaminants, fractographic analysis, 352–356
CONTIN program, dynamic laser light scattering, 216–218
Continuous-wave electron spin resonance (CW-ESR):
block copolymers, 915–920
future research issues, 926–929
Contrast matching, neutron scattering experiments, 509–514
protein structure, 526–527
Contrast parameters:
atomic force microscopy, 420–421
near-edge x-ray absorption fine structure spectroscopy, 389–391
nuclear magnetic resonance imaging, 162–170
magnetization filters, 166–170
material properties, 163–166
optical microscopy, 609–612
Controlled rate thermogravimetry, basic principles, 836–837
Controlled stress viscometers, rheological viscosity measurements, 722–723
fluid polymers, 736–737
Controller systems, thermogravimetric analysis, 825–826
Cooperative domain model, dynamic mechanical analysis, impact testing, 863–864
Copolymers—cont.
thermogravimetric compositional analysis, 833
Core level binding energy, X-ray photoelectron spectroscopy, 302–304
Core-shell particles, amorphous polymer toughness enhancement, 788–792
Corrosive stress cracking, fatigue fractures, 346–348, 350
Cosine function, Fourier transform infrared spectrometry, 92–93
Cost issues, nondestructive testing, 370–371
Coupled oscillator vibration model, vibrational spectroscopy, 536–541
Coupled techniques, thermal analysis, 807
Covulcanization, elastomers, parameter mapping, 172–175
Crack stop mechanisms, toughness enhancement, heterogeneous polymers, 785–792
Crankshaft mechanism, dynamic mechanical analysis, thermoplastic/thermoset polymers, 656–664
Crazing:
amorphous glassy polymers, 780–785
amorphous polymer toughness enhancement, 789–792
block copolymers, yield stress, 798–803
fractographic analysis, 338–340, 342
Creep tests:
amorphous polymer toughness enhancement, 789–792
dynamic mechanical analysis:
free resonance analyzer, 652–653
melt polymers, 664–668
fractographic analysis, vibration-induced creep fracture, 343–345
polymer characterization, 17–18
techniques, 49–50
viscoelastic rheological measurement, 729–733
time-temperature superposition, 737–739
Critical, isobaric temperature rising elution fractionation (CITREF), polymer characterization, 4
Critical point of adsorption (CPA), high-performance liquid chromatography:
gradient elution, 259–260
isocratic elution, 258–259
Critical stress intensity factor (KIC), test techniques, 50
Cross-correlation function (CCF), dielectric relaxation of polymers, 887–888
Cross flow equation, viscosity measurement, 681
Cross-linked polymers:
dynamic mechanical analysis:
cure characterization, 865–867
Cross-linked polymers—cont.
glass transition temperatures, 853, 864–865
impact testing, 863–864
thermoplastic/thermoset terminal regions, 662–663
elastomers:
load fracture characteristics, 336–343
one-dimensional nuclear magnetic resonance studies, chain orientation and slow dynamics, 141–142
parameter mapping,
vulcanization/covulcanization, 172–175
natural rubber species, one-dimensional nuclear magnetic resonance studies, Van Vleck moments, 127
near-edge x-ray absorption fine structure spectroscopy, lightly cross-linked superabsorbent homopolymers, 395–396, 398–399
styrene-butadiene rubber (SBR):
proton multiple-quantum NMR analysis, residual dipolar couplings, 153
two-dimensional proton magnetization exchange, chain orientation, 143–147
thermogravimetric analysis, 832–833
Cross-polarized light (XPL):
carbon-13 (13C NMR) nuclear magnetic resonance, crystallinity determination, 766–768
optical microscopy, 608–609
PPL and DIC techniques compared with, 619–621
Cryoscopy, number-average molecular weight determination, 71–72
Crystalline melting peak, differential scanning calorimetry, polymer characterization, 815–816
Crystalline polymers. See also Semicrystalline polymers
basic principles, 752
classification, 2–3
molecular organization and dynamic behavior, 11–18
thermal analysis, 14–16
dielectric relaxation, 888–893
double modulation spectroscopy, 590–594
dynamic mechanical analysis:
glass transition temperatures, 853
relaxation processes, 854–855
thermoplastic/thermoset polymers, rubbery plateau, 661–662
lamellae:
melt crystallization, 274–281
lateral habits, 278–280
surface morphology, 280–281
solution-based chainfolding, 269
Crystalline polymers—cont.
nuclear magnetic resonance, 764–768
carbon-13 NMR, 766–768
Fourier transform NMR, 765–766
proton NMR, 764–765
polarized light microscopy, 612–615
polymer morphology, basic principles, 267–268
rheological viscoelasticity measurement, 737–739
scanning force microscopy:
real-time structure development and processes, 492–494
semicrystalline polymer morphology, 475–479
spherulite morphology, 288–289
thermal analysis, 757–760
vibrational spectroscopy, 539–541, 760–762
heterogeneous compounds, 565–566
volumetric methods, 763–764
X-ray diffraction, 752–757
absolute degrees of crystallinity, 755–756
small-angle x-ray scattering, 756–757
Crystallinity index, X-ray diffraction, 752–757
Crystallization fractionation (CRYSTAF), molecular weight determination, 39
Cure profile:
differential scanning calorimetry, glass transition temperature, 818–819
thermomechanical analysis, 845–846
thermosets:
dielectric analysis, 867–877
differential scanning calorimetry, 818–819
dynamic mechanical analysis, 668–670, 865–867
Curie temperature, thermogravimetric analysis, temperature calibration curve, 831–832
Curve-fitting procedures, infrared spectroscopy, spectrum manipulation, 102
Cyclic trimer crystals, secondary ion mass spectrometry, oligomer detection and imaging, 322–327
Damping, dynamic mechanical analysis techniques, 649–650
Darkfield illumination, optical microscopy, 615–617
Dashpot model, rheological mechanical analysis, 697
Data analysis:
high-performance liquid chromatography, 257
matrix-assisted laser desorption/ionization (MALDI) spectrometry, signal axis quantification uncertainties, 198–200
size exclusion chromatography, 247–250
Davies electron nuclear double resonance, 904
Debye equation:
neutron scattering:
polymer melt chain conformation, 517
structural analysis applications, 515–516
static laser light scattering, 213–214
Decay times:
dynamic mechanical analysis, free resonance analyzer, 652–653
one-dimensional nuclear magnetic resonance studies, transverse relaxation, network properties, 138–140
Defect analysis, polymer-matrix composite testing, 368
Deformation:
amorphous homopolymers, 780–785
anisotropic assessment, vibrational spectroscopy, 575–579
elastomers, parameter mapping, 177–178
lamellae, 291–293
micromechanical properties analysis, 773–775
rheological measurement, 767–767
elasticity/viscoelasticity, 696–697
practical application, 739–741
viscoelasticity, 729–733
spherulitic materials, 291–293
Degradation processes, one-dimensional and two-dimensional spectral-spatial electron spin resonance imaging, 920–926
Delayed extraction, mass spectrometry separation, 193
Dendrimers:
atomic force microscopy imaging, 444–446
neutron scattering, end group location, 518–519
Density:
crystallinity determination, volumetric methods, 763–764
polymer characterization, 25
Density correlation function, neutron scattering, structural analysis applications, 514–516
Density operator, nuclear magnetic resonance spin coherences, 116–118
Depolarization ratio:
Raman scattering, vibrational analysis, 535
vibrational spectroscopy, amorphous polymers, low-frequency analysis, 558
Depth of field (DOF), optical microscopy resolution and contrast, 611–612
Derivative differential scanning calorimetry (DerDSC), glass transition temperature, 817–818
Derivative thermogravimetric analysis (DTGA):
copolymer compositional analysis, 833
elastomer identification, 836
mass calibration, 830
polymer thermal stability, 832–833
rubber vulcanizates, 833–836
Derivative thermomechanical analysis (DTMA):
basic principles, 843–844
expansion mode, 844
Derivatization, X-ray photoelectron spectroscopy, functional group labeling, 305–307
Detectors:
high-performance liquid chromatography, 256–257
laser light scattering, 224–226
matrix-assisted laser desorption/ionization (MALDI) spectrometry, 193
signal axis quantification uncertainties, 198–200
size exclusion chromatography:
concentration detectors, 243–244
molecular weight sensitive detectors, 244–247
Deuterated polymers, neutron scattering, 510–514
dendrimer end group location, 519
Deuterium nuclear magnetic resonance spectroscopy:
contrast parameters, 164–166
lineshape analysis, 124
thermoplastic elastomers, 155–157
Deuterium tryglycine sulfate (DTGS) device, Fourier transform infrared spectrometer, 91–93
Developing techniques, atomic force microscopy, 431–434
Dewetting phenomena, scanning force microscopy, real-time structure development and processes, 496–497
Diaminodiphenylsulfone (DDS), dielectric analysis, thermoset curing, 872–877
Diamond anvil cell (DAC), infrared spectroscopy, microsampling techniques, 98
Diblock copolymers, self-assembly, laser light scattering analysis, 221–222
Dichroic ratio, double modulation spectroscopy, 592–594
Dielectrically variable materials, dielectric relaxation, 891–893
Dielectric analysis (DEA), 846–851
amorphous and crystalline polymers, 854
cross-linked polymers, 864–867
electrical properties of polymers, 54–55
glass transition temperature, 851–853
impact behavior, 860–864
plasticizer and moisture effects, 855–860
thermoplastics, 851–864
thermoplastic/thermoset polymers:
sub-glass transitions, 658–659
viscoelastic relaxation, 854
thermoset curing, 670, 867–877
glass transitions, 870
Dielectric analysis—cont.
viscoelastic relaxation, 853–854
Dielectric relaxation spectroscopy (DRS):
 basic principles, 881–883
 measurement techniques and applications, 893
 molecular dynamics of polymers, 22
 polymer behavior, 888–893
 polymer composition and structure, 36–38, 882–884
 theoretical background, 884–888
Dielectric thermal analysis (DETA):
 electrical properties of polymers, 54–55
 techniques, 44–45
Difference spectroscopy, spectrum manipulation, 101–102
Differential interference contrast (DIC) technique:
 near-field scanning optical microscope, 641–642
 optical microscopy, 618–621
Differential refractive index (DRI) detector:
 laser light scattering, 226–228
 matrix-assisted laser desorption/ionization (MALDI) spectrometry, signal axis quantification uncertainties, 199–200
 size exclusion chromatography, 231–232
 concentration detectors, 243–244
 eluent selection, 240–241
Differential scanning calorimetry (DSC), 808–824
 base line parameters, 813–814
 calibration and standards, 810–812
 crystalline polymers, 15–16
 volumetric determination, 763–764
 crystallinity determination, 757–760
 dynamic mechanical analysis, thermoplastic/thermoset polymers, glass transition temperature, 660–661
 glass transition temperature, 816–819
 heating rate effects, 814
 instrumentation, 808–810
 linear crystallinity, 756–757
 molecular organization and dynamic behavior of polymers, 12–16
 operating parameters, 812–814
 parallel, concurrent and simultaneous techniques, 823–824
 polymer characterization, 814–824
 sample size and history, 812–813
 scanning thermal microscopy and, 432–434
 semicrystalline polymers, 819–824
 techniques, 40–45
 thermal transport, 814
 vibrational spectroscopy, unit-size analysis, 553–556
Differential thermal analysis (DTA):
 basic principles, 807
 crystalline polymers, 15–16
 molecular organization and dynamic behavior of polymers, 12–16
 polymer characterization, 807–808
 techniques, 40–45
Differential weight distribution, laser light scattering, molar mass distribution of polymers, 218–219
Diffusion-limited oxidation regime, one- and two-dimensional spectral-spatial electron spin resonance imaging, spatially resolved degradation, 921–926
Digital holographic interferometry, optical testing of polymers, 361–362
Digital instruments multimode scanning probe microscope, 635–637
Digital speckle pattern interferometry (DSPI), optical testing of polymers, 361–362
Diglycidal ether of bisphenol A (DGEBA) resin:
 dielectric analysis:
 glass transitions, 870
 thermostet curing, 872–877
 dielectric relaxation, 893
 Dilatancy, rheological viscosity measurement, dispersed polymer systems, 693
Dilute polymer solutions, rheological viscosity measurement, 685–687
Dimethyl acetamide (DMA) compounds, neutron scattering, dendrimer end group location, 519
Dipolar correlation function (DCF), one-dimensional nuclear magnetic resonance studies, chain orientation and slow dynamics, 140–142
Dipolar decoupling (DD), carbon-13 (\(^{13}\)C NMR) nuclear magnetic resonance, crystallinity determination, 766–768
Dipolar-encoded longitudinal magnetization (DELM), NMR decay curves, 127–135
Dipole-dipole interactions:
 dielectric analysis, 860–851
 thermostet cure characterization, 868–877
 heteronuclear correlation studies, 153–155
 nuclear magnetic resonance technology, 114
 one-dimensional nuclear magnetic resonance studies:
 chain orientation and slow dynamics, 140–142
 proton multiple-quantum NMR, 127–135
 Van Vleck moments, 125–127
 proton multiple-quantum nuclear magnetic resonance, 127–135
 connectivities, 150–153
 cross-link densities, 153
Dipole-dipole interactions—cont.
two-dimensional proton magnetization exchange, 146–147
vibrational spectroscopy, unit-size analysis, 554–556
“ Dipstick effect,” ionomer compounds, electron spin resonance probe, 911–915
Direct-neighbor distances, ionically end-functionalized block copolymers, pulsed electron spin resonance probes, 918–919
Director order parameter, dielectric relaxation, 891–893
Disordered chain conformation, vibrational analysis, 546–550
Dispersed polymer systems, rheological viscosity measurement, 690–693
Dispersion mechanisms, size exclusion chromatography, 237–239
Dispersion staining technique, polarized light microscopy, 615–616
Distribution coefficient, size exclusion chromatography, separation techniques, 232–236
Doi-Edwards model, dynamic mechanical analysis, thermoplastic/thermoset polymers, 656–664
Dominant lamellae, melt-crystallized lamellae morphology, 276–278
Doppler effect, dynamic laser light scattering, 214–218
Double cantilever systems, rheological viscoelasticity assessment, dynamic mechanical analysis, 736
Double electron-electron resonance (DEER), 904–905
ionically end-functionalized block copolymers, 917–920
Double modulation spectroscopy, crystalline structures, 590–594
Double-quantum (DQ) properties: nuclear magnetic resonance spin coherences, 118
NMR-MOUSE quality control sensor, elastomer quality control, 180–181
two-dimensional Fourier spectroscopy, 122–123
proton multiple-quantum NMR, residual dipolar couplings, 127–135
chain orientation and slow dynamics, 140–142
connectivities, 150–153
Double resonance, electron spin resonance spectroscopy, 903–905
Dreyfus schematic, vibrational spectroscopy, unit-size analysis, 553–556
Drift regions, molecular mass distribution, signal axis quantification, 197–198
Ductile fracture:
amorphous polymers, micromechanical analysis, 783–785
fractographic analysis:
fatigue fracture, 345, 347
load fractures, 341–342
Ductility, polymer mechanics, stress-strain tests, 16–17
Dynamic differential scanning calorimetry (DDSC), semicrystalline polymer melting, 821–823
Dynamic laser light scattering:

basic principles, 214–218
defined, 212
optics and cell design, 224
Dynamic mechanical analysis/dynamic mechanical thermal analysis (DMA/DMTA), 846–851
amorphous and crystalline polymers, 854
atomic force microscopy, 428–431
basic principles, 649–650
cross-linked polymers, 864–867
curing kinetics, 671–672
forced frequency analyzers, 650–652
free resonance analyzers, 652–653
frequency dependencies, transition studies, 663–665
Gillham-Enns diagram, 672–673
glass transition, 659–661
glass transition temperature, 851–853
impact behavior, 860–864
instrumentation, 654–656
mechanical testing of polymers, 359
micromechanical analysis, 778
photocuring, 671
plasticizer and moisture effects, 855–860
polymer characterization, 17
polymer melts and solutions, 665–668
rheological techniques:
estility/viscoelasticity, 697–701
penetration and indentation analysis, 732–733
viscoelasticity assessment, 733–736
rubbery plateau, 661–662
sub glass-transition temperatures, 658–659
techniques, 42–45
thermal region, 662–663
thermoplastics, 851–864
thermoplastic solids/cured thermosets, 656–658
thermosets, 656–658, 668–671
curing characterization, 874–877
viscoelastic relaxation, 853–854
Dynamic order parameters:
high-performance liquid chromatography, 262–263
Dynamic order parameters—cont.
 one-dimensional nuclear magnetic resonance studies, 123–142
dipolar correlation chain orientation and slow dynamics, 140–142
residual dipolar couplings, proton multiple-quantum NMR, 127–135
residual van Vleck moments, 124–127
transverse magnetization relaxation network properties, 135–140
polymer characterization, 11–18
scanning force microscopy, real-time structure development and processes, 494–497
two-dimensional nuclear magnetic resonance, basic principles, 123
Dynamic viscometer, rheological viscosity measurement, 721–723
Ebulliometry, number-average molecular weight determination, 71
Echo decay, pulsed electron spin resonance probes, ionic block copolymers, 920
Eddy-current testing (ET), nondestructive polymer characterization, 364–365
Einstein’s equation:
rheological viscosity measurement, dispersed polymer systems, 692–693
size exclusion chromatography, separation techniques, 235–236
Elasticity:
dynamic mechanical analysis, forced frequency analyzers, 650–652
rheological measurement, 695–701
dynamic behavior, 697–701, 733–736
fluids, 733–737
measurement techniques, 729–733
mechanical behavior and models, 696–697
normal stress (Weissenberg effect), 700–701
time-temperature superposition and master curves, 737–739
scanning force microscopy:
 basic principles, 470
surface mechanical properties, 490–492
Elastic modulus, mechanical testing of polymers, 359
Elastomers—cont.
 NMR-MOUSE quality control sensor, 178–181
 parameter mapping, 172–178
 one- and two-dimensional spectral-spatial electron spin resonance imaging, spatially resolved degradation, 924–926
 thermogravimetric analysis:
 compositional characterization, 833–836
 identification, 836
 thermomechanical analysis:
 cure profile, 845–846
glass transition temperature studies, 840–841
two-dimensional nuclear Overhauser effect spectroscopy, segmental motions, 148–150
Electrical characteristics:
polymer characterization, 24
testing techniques for, 54–55
Electrical conductivity testing, nondestructive polymer characterization, 364–365
Electrical Field Flow Fractionation (EFFF), polymer characterization, 4
Electric dipole moment, infrared (IR) spectroscopy and, 90
Electric field, dielectric relaxation, basic principles, 882
Electric spin interactions, nuclear magnetic resonance technology and, 113–114
Electrode geometry, dielectric analysis, 849–851
Electrode polarization, dielectric analysis, thermoset cure characterization, 868–877
Electrolytes, dielectric relaxation of polymers, 891–893
Electromagnetic acoustic transducers (EMAT), nondestructive polymer characterization, 365–367
Electromagnetic interference (EMI), electrical properties of polymers, 55
Electromagnetic test methods, nondestructive polymer testing, 364–365
Electron backscatter diffraction (EBSD), scanning electron microscopy, 632–633
Electron energy loss spectroscopy (EELS), basic principles, 627
Electronic speckle pattern interferometry (ESPI), optical testing of polymers, 361–362
Electron microscopy, 625–634
 basic principles, 601
 history, 625–626
 morphological polymer characterization, 19–20
 scanning auger microscope, 633–634
 scanning electron microscopy, 627–633
 transmission electron microscopy, 626–627
Electron nuclear double resonance (ENDOR) spectroscopy, basic principles, 903–905

Elastomers:
deuterium nuclear magnetic resonance studies, 155–157
differential scanning calorimetry, characterization of, 815–816
load fracture characteristics, 335–343
near-edge x-ray absorption fine structure spectroscopy, composite structures, 412–413
nuclear magnetic resonance imaging, 170–181
heterogeneities, 170–172
mobile sensor-based quality control, 178–181
Electron probe microanalyzer (EPMA):
cathodoluminescence detectors, 622
history, 626
Electron scattering, morphological polymer characterization, 19–20
Electron spin resonance (ESR) spectroscopy:
basic principles, 895–900
anisotropic g and hyperfine interaction, 897–898
isotropic hyperfine analysis, 898
double resonance methods, 903–905
future research issues, 926–929
imaging studies, 905–909
field gradients, 906–907
intensity profiling, 907–908
line shape profiling, 908–909
ion-containing polymer spin probes, 909–915
ionically end-functionalized block copolymers, pulsed ESR studies, 915–920
lineshape analysis, nitroxide spin probes, 898–900
micromechanical analysis, 778
molecular dynamics of polymers, 22
multifrequency and high field methods, 900–901
polymer composition and structure, 35–38
spatially resolved degradation, 920–926
time-domain methods, 901–903
Electron spin resonance imaging (ESRI):
basic principles, 905–909
current trends in, 895
Electrophoresis, molecular weight distribution, 81
Electrorheological measurement, viscosity properties, 694–695
Electrosprayed salt dispersion, matrix-assisted laser desorption/ionization (MALDI) spectrometry, solid matrix preparation, 195–196
Electrospray ionization (ESI):
basic principles, 188
history, 188–189
large molecule analysis, 191
Electrospray mass spectroscopy (ESMS), molecular structure characterization, 8
Electrostatic forces, thermogravimetric analysis, 826–827
Elliptic lamellae, melt-crystallized lamellae morphology, 278–280
Eluent selection:
high-performance liquid chromatography, solvent delivery, 253–254
size exclusion chromatography, 240–241
EMA copolymers, surface analysis, 327–329
Embrittlement testing, amorphous polymer toughness enhancement, 789–792
Emission spectroscopy, infrared spectroscopy and, 99
Emulsions, rheological viscosity measurement, 691–693
End effects, polymer melts, rheological viscosity measurement:
capillary viscometers, 711, 714
rotational viscometers, 720–723
End-group analysis:
matrix-assisted laser desorption/ionization (MALDI) spectrometry, 203–204
neutron scattering, dendrimers, 518–519
number-average molecular weight, 69
secondary ion mass spectrometry, 322
Energy dispersive spectrometer (EDS):
basic principles, 622
history, 626
scanning electron microscopy, 627
scanning electron microscopy imaging, 630–633
Energy electron loss spectroscopy (EELS), basic principles, 386
Energy filtered transmission electron microscopy (EFTEM), basic principles, 627
Energy levels:
dielectric analysis, thermoset cure characterization, 871–877
nuclear magnetic resonance technology and, 111–113
Entanglement density, amorphous ductile polymer yielding, micromechanical analysis, 783–785
Enthalpic elasticity:
heterogeneous compounds, vibrational spectroscopy, 563–566
scanning force microscopy measurement, 470
Enthalpy. See also Total enthalpy method
differential scanning calorimetry:
calibration curve, 811–812
glass transition temperature, 817–818
semicrystalline polymer melting, 820–824
Entropic elasticity, scanning force microscopy, 470
Environmental effects:
stress cracking, fractographic analysis, 346–348, 350
testing techniques, 50–53
Environmental scanning electron microscopy (ESEM):
basic principles, 601
micromechanical properties analysis, 773–775
optical imaging, 633
penetrating radiation polymer testing, 364
Equilibrium theory, size exclusion chromatography, separation techniques, 234–236
Equivalent weight (EW) parameter, ionomers, electron spin resonance probes of, 909–915
Ethylene-acrylic acid (EAA) copolymer, microspectroscopic analysis, 574–575
Ethylene glycodeimethylacrylate (EDMA), near-edge x-ray absorption fine structure spectroscopy, multilayered thin films, 412
Evaporative light scattering detector (ELSD): high-performance liquid chromatography, 256–257
molecular weight distribution, 79–81
size exclusion chromatography, 244
Evolved gas analysis (EGA):
Fourier transform infrared spectroscopy, 99
molecular organization and dynamic behavior of polymers, 13–16
Extensional viscosity, rheological measurements, 694
techniques for, 726–729
Extrusion principle, capillary viscometers, rheological viscosity measurement, 711–713
Falling ball viscometers, rheological viscosity measurements, 723–725
Falling rod viscometers, rheological viscosity measurement, 725
Far-infrared spectroscopy, spectral analysis, 100–101
Fatigue testing:
fractographic analysis, fatigue fractures, 343–347
techniques, 49–50
Field desorption, basic principles, 188
Field emission, atomic probe microscopy, 642
Field emission electron gun scanning electron microscopy (FESEM):
imaging applications, 630–633
near-field scanning optical microscope, 641–642
scanning auger microscopy, 634
Field emission microscopy (FEM), optical imaging, 642
Field Flow Fractionation (FFF):
molecular weight distribution, 80–81
polymer characterization, 4
Field gradients, electron spin resonance imaging, 906–907
intensity profiling, 907–908
Field ion microscopy (FIM), optical imaging, 642
Filament stretching rheometer (FSR), extensional viscosity measurement, 726–729
Filled composites, atomic force microscopy imaging, 446
Film technique, transmission infrared spectroscopy, 46–47
testing techniques for, 55–56
Flatness analysis, scanning force microscopy, 486–489
Flexure testing, thermomechanical analysis, 844
“Flood gun” apparatus, X-ray photoelectron spectroscopy, surface analysis, 302
Flory-Rehner process, elastomer vulcanization/covulcanization, parameter mapping, 173–175
Flow-induced structural analysis, neutron scattering, 524–526
Flow properties:
polymer processing, 46–47
viscosity:
models for, 679–681
rheological measurement, 677–678
Fluid polymers, rheological viscoelasticity measurement, 736–737
Fluorescence microscopy, optical imaging, 621
Fluorescent ultraviolet lamps, environmental effects testing, 52–53
Fluorescent yield (FY), near-edge x-ray absorption fine structure spectroscopy, 389–391
Focal plane array (FPA) detectors, Fourier transform infrared spectroscopy, microsampling techniques, 98
Fold plane, lamellae sectorization, solution-based chainfolding, 270–271
Force-area measurements, vibrational spectroscopy, surface analysis, 585–590
Forced frequency techniques, dynamic mechanical analysis, 649–650
theory and operation, 650–652
Forced-vibration measurements, rheological viscoelasticity assessment, dynamic mechanical analysis, 734–736
Force measurements, scanning force microscopy (SFM), 466–474
- adhesive forces, 467–469
- entropic/enthalpic elasticity, 469
- indentation measurements, 469–470
- lateral forces, 471–474
- surface forces and energies, 484–489

Force modulation microscopy (FMM), mechanical analysis, 428–431

Force modulation mode scanning force microscopy (FMM SFM):
- basic principles, 465
- nanotribology quantitative analysis, 472–474
- surface mechanical properties, 491–492

Forensic analysis, polarized light microscopy, 614–615

Fourier derivation, spectrum manipulation, 102

Fourier transform (FT) equations:
- dielectric relaxation of polymers, 884–888
- Fourier transform infrared spectrometry, 92–93
- neutron scattering, structural analysis applications, 514–516
- nuclear magnetic resonance imaging:
 - contrast parameters, 166–170
 - frequency encoding, spatial resolution, 160–161
- Fourier transform infrared (FTIR) spectroscopy:
 - crystallinity determination, 760–762
 - instrumentation, 90–93
 - micromechanical analysis, 777
 - microsampling techniques, 98
 - microspectroscopy, 624–625
 - molecular structure characterization, 5–6
 - polymer composition and structure, 32–38, 33–38
 - polymer testing using, 57
 - spectrum manipulation, 102
 - thermal analysis and, 99
- Fourier transform infrared-size exclusion chromatography (FTR-SEC), molecular weight determination, 38–39
- Fourier transform mass spectrometry (FTMS), separation techniques, 192–193
- Fourier transform nuclear magnetic resonance (FTNMR), crystallinity determination, 765–766
- Fourier transform Raman spectroscopy (FTRS), polymer composition and structure, 33–38

Fractional precipitation, molecular weight distribution, 76–77

Fractionation:
- molecular weight distribution, 76–77
- polymer characterization, 3–5

Fractography:
- basic principles, 330–331

Fractography—cont.
- brittle fractures:
 - fatigue fracture, 346
 - load fracture, 343
 - contaminants, 352
 - crack formation, 349–353
 - crazing, 338–340, 342
 - ductile fractures:
 - fatigue fracture, 345
 - load fracture, 341–342
 - environmental stress cracking, 346–349
 - fatigue fracture, 343–346
 - load fracture characteristics, 335–343
 - micromechanical properties analysis, 773–775
 - normal stress fracture, 338
 - optical microscopy, 331–333
 - quantitative evaluation of fracture surfaces, 353–356
 - sample preparation, 335
 - scanning electron microscopy, 333–335
 - shear fracture, 338, 341
 - tear fracture, 338
 - vibration fracture, 344–345
 - vibration-induced creep fracture, 343–344
 - voids and gas inclusions, 351–352
 - weld lines, 350–351

Fractoluminescence, nondestructive polymer testing, 365

Fracture mechanics:
- dynamic mechanical analysis, impact testing, 860–864

Fractography analysis:
- basic principles, 330–331
 - brittle fractures:
 - fatigue fracture, 346
 - load fracture, 343
 - contaminants, 352
 - crack formation, 349–353
 - crazing, 338–340, 342
 - ductile fractures:
 - fatigue fracture, 345
 - load fracture, 341–342
 - environmental stress cracking, 346–349
 - fatigue fracture, 343–346
 - load fracture characteristics, 335–343
 - normal stress fracture, 338
 - optical microscopy, 331–333
 - quantitative evaluation of fracture surfaces, 353–356
 - sample preparation, 335
 - scanning electron microscopy, 333–335
 - shear fracture, 338, 341
 - tear fracture, 338
 - vibration fracture, 344–345
 - vibration-induced creep fracture, 343–344
 - voids and gas inclusions, 351–352
 - weld lines, 350–351
Fracture mechanics—cont.
micromechanical properties, 773–775
test techniques, 49–50
Free energy parameters:
dynamic mechanical analysis, impact testing,
863–864
heterogeneous compounds, vibrational
spectroscopy, 563–566
size exclusion chromatography, separation
techniques, 233–236
Free induction decay (FID), nuclear magnetic
resonance imaging, heterogeneous
compounds, spin system response, 159–
161
Freely jointed chain (FJC) elasticity model,
scanning force microscopy, 470
Free radicals, one- and two-dimensional
spectral-spatial electron spin resonance
imaging, spatially resolved degradation,
921–926
Free resonance, dynamic mechanical analysis,
649–650
test theory and operation, 652–653
Free-vibration instruments, rheological
viscoelasticity assessment, dynamic
measurements, 734–736
Free volume, amorphous polymers, glass
transition temperature, 13–14
Frequency dependencies, transition studies,
dynamic mechanical analysis:
melt polymers, 666–668
thermoplastic/thermoset polymers, 663–664
Frequency domain analysis, dielectric relaxation
of polymers, 883–884
Frequency encoding, nuclear magnetic
resonance imaging, spatial resolution,
160–161
Frequency-response analyzers, dielectric
relaxation of polymers, 893
Fresnel’s relationships, attenuated total
reflectance spectroscopy, 96–97
Frictional characteristics of polymers, atomic
force microscopy, 454–455
Friction anisotropy, scanning force microscopy,
lamellar crystals, 477–479
Friction force microscopy:
nanotribology quantitative analysis, 472–
474
surface mechanical properties, 492
Friction loop, scanning force microscopy
measurement, 472–474
Functional group labeling, X-ray photoelectron
spectroscopy, surface analysis, 305–307
Furnace components, thermogravimetric
analysis, 825–826
“Fusible links,” thermogravimetric analysis,
temperature calibration curve, 830–832
Gamma (γ) transition:
dielectric relaxation of polymers, 890–893
dynamic mechanical analysis:
plasticizer and moisture effects, 857–860
thermoplastic/thermoset polymers,
657–664, 659
Gas inclusions, fractographic analysis, 351–356
Gas phase formation, mass spectrometry
analysis of polymers, 189–190
Gas-phase mirage-effect spectroscopy, polymer
composition and structure, 35–38
Gauche conformation, molecular organization
and dynamic behavior of polymers, 12–18
Gaussian distribution:
laser light scattering optics, 224
molecular weight averages and distributions,
67–69
one-dimensional nuclear magnetic resonance
studies, chain orientation and slow
dynamics
static laser light scattering, 213–214
Gaussian-Lorentzian (Voigt) function, X-ray
photoelectron spectroscopy, core level
binding energy, 304
Gel filtration (GF), size exclusion
chromatography, 231
Gel permeation chromatography/size exclusion
chromatography (GPC/SEC). See also Size
exclusion chromatography (SEC)
basic principles, 231
molar mass distribution of polymers, 8–9
molecular size, 4–5
molecular weight determination, 38–39
molecular weight distribution, 77–78
Gel point, dynamic mechanical analysis,
thermoset curing, 669–670
Gel polymers. See also Colloidal particles
atomic force microscopy imaging, 452
microspectroscopic analysis, 571–575
Geometric analysis, nondestructive polymer
testing, 369
Germanium devices:
attenuated total reflectance (ATR)
spectroscopy, 96–97
Fourier transform infrared spectrometer, 92
Giant magnetoresistance/magnetoimpedance
(GMR/GMI) sensors, nondestructive
polymer testing, 365
Gillham-Enns diagram, dynamic mechanical
analysis, thermoset curing, 672–673
Ginzburg criterion, mean-field-to-Ising
transition, neutron scattering, 523–524
Glass capillary viscometer, rheological viscosity
measurement, 704–711
Glass fiber-reinforced polymers (GFRP):
mechanical testing, 359
microspectroscopic analysis, 569–575
Glass transition temperature:
- amorphous polymers, thermal analysis, 13–14
- derivative thermomechanical analysis, 843–844
- dielectric analysis, thermoset cure characterization, 870
- dielectric relaxation of polymers, 891–893
- differential scanning calorimetry: heat flow vs., 816–818
- polymer characterization, 814–816
- thermoset cure profile, 818–819
- dynamic mechanical analysis:
 - cross-linked polymers, 853, 864–865
 - melt polymers, 664–668
 - sub-glass transitions, 658–659
 - thermoset cure characterization, 865–867
 - pulsed electron spin resonance probes, ionic block copolymers, 919–920
- scanning force microscopy, real-time structure development and processes, 495–497
- thermal analysis techniques, 41–45

Glassy polymers:
- deformation analysis, amorphous structures, 780–785
- thermomechanical analysis, cure profile, 845–846
- Gleissile Mirror Relationship, dynamic mechanical analysis, melt polymers, 666–668
- Globar source, Fourier transform infrared spectrometer, 91–93
- Gordon-Taylor-Wood (GTW) equation, thermal analysis techniques, 41–45
- Götzfert Rheostrain instrument, extensional viscosity measurement, 727–729
- Gradient echo, nuclear magnetic resonance spin-echoes, 120–121
- Gradient elution, high-performance liquid chromatography, 259–260
- thermodynamic theory, 262
- Grafted polymers:
 - atomic force microscopy analysis, 455–456
 - proton multiple-quantum nuclear magnetic resonance, segmental chain heterogeneity, 132–135
- Gram-Schmidt chromatogram:
 - chromatography-infrared spectroscopy, 99
 - thermal analysis-infrared spectroscopy, 99
- Gravimetric analysis, elastomer vulcanization/covulcanization, parameter mapping, 173–175
- Grazing angles of incidence, attenuated total reflectance (ATR) spectroscopy, 96–97
- Group frequencies, infrared spectroscopy, spectral analysis, 100–101
- Growth patterns, spherulite morphology, 283–284
- Gyration radius:
 - block copolymers, yield stress, 797–803
 - molar mass of polymers, 11
 - neutron scattering, ultrathin film polymers, 519–520
- Hagen-Poiseuille expression, capillary viscometers, rheological viscosity measurement, 703–711
- Hahn echo:
 - elastomer vulcanization/covulcanization, parameter mapping, 175
 - nuclear magnetic resonance principles:
 - contrast parameters, 168–170
 - NMR-MOUSE quality control sensor, elastomer quality control, 179–181
 - nuclear magnetic resonance relaxation times, 115–116
 - nuclear magnetic resonance spin-echoes, 119–121
 - one-dimensional nuclear magnetic resonance studies:
 - chain orientation and slow dynamics, 140–142
 - molecular motion and dynamic order, 124
 - Van Vleck moments, 125–127
- Half-vitrification temperature, differential scanning calorimetry, 816–818
- Halogen-containing polymers, secondary ion mass spectrometry, 318–319
- Hamiltonian energy operator, electron spin resonance spectroscopy, 896–897
- Hand-spotting salt dispersion, matrix-assisted laser desorption/ionization (MALDI) spectrometry, solid matrix preparation, 195–196
- Hardness measurements:
 - microindentation hardness, 777–778
 - testing techniques, 50
- Heat capacity, modulated differential scanning calorimetry, semicrystalline polymer melting, 822–823
- Heat distortion temperature, thermomechanical analysis, thermoset cure profile, 845–846
- Heat flux differential scanning calorimetry, 809–810
- Heating rate, differential scanning calorimetry, 814
- Heat of fusion, differential scanning calorimetry, semicrystalline polymer melting, 820–824
- Heat-set temperature, dynamic mechanical analysis, rubbery plateau, 662
- Heat transfer, differential scanning calorimetry, 814
Hedrite structures, scanning force microscopy: analysis, 479–480
real-time structure development and processes, 493–494
Helium-neon laser, laser light scattering source, 222–223
Herman orientation function, anisotropic assessment, vibrational spectroscopy, 577–579
Herschel-Bulkley flow model, viscosity measurement, 679–681
Hertzian mechanics:
atomic force microscopy analysis, 430–431
scanning force microscopy: friction force measurements, 473–474
indentation measurements, 470–471
Heterogeneous polymers:
nuclear magnetic resonance imaging: elastomers, 170–172
spin system response, 159–161
toughness enhancement, 785–792
vibrational spectroscopy, 561–566
microscopic analysis, 566–575
Heteronuclear correlation, residual dipolar couplings, 153–155
Heterophase ethylene-propylene copolymers (HPEC), one- and two-dimensional spectral-spatial electron spin resonance imaging, spatially resolved degradation, 922–926
High density polyethylene (HDPE):
atomic force microscopy imaging, 439
dynamic mechanical analysis, plasticizer and moisture effects, 859–860
High field electron spin resonance (HF ESR)spectroscopy, 900–901
High impact polystyrene (HIPS), toughness enhancement, 785–792
High performance liquid chromatography (HPLC):
basic principles, 252–253
biological polymer separation, 263–264
dynamic effects, 262–263
instrumentation, 253–257
data analysis, 257
detectors, 256–257
sample introduction, 254
solvent delivery, 253–254
stationary and mobile phases, 254–256
molecular weight distribution, 79–81
polymer composition and structure, 34–38, 261–263
retention and separation mechanisms, 257–261
gradient elution, 259–260
isocratic elution, 257–259
multidimensional separation, 260–261
Heterophase ethylene-propylene copolymers—cont.
synthetic polymer separation, 264–265
thermodynamic treatment, 261–262
High performance precipitation liquid chromatography (HPPLC), history of, 252–253
High pressure scanning electron microscopy (HPSEM), basic principles, 601
High-vacuum/high-pressure instruments, thermogravimetric analysis, 828
High voltage electron microscopy (HVEM):
amorphous polymer toughness enhancement, 791–792
micromechanical properties analysis, 773–775
Hilbert space, nuclear magnetic resonance spin coherences, 118
Hindered amine stabilizer (HAS):
electron spin resonance imaging, 906–909
one- and two-dimensional spectral-spatial electron spin resonance imaging, spatially resolved degradation, 921–926
Hi-Res TGA software, controlled rate thermogravimetry, 837
Homopolymers:
definition and classification, 1–2
deformation analysis, amorphous structures, 780–785
molecular mass distribution:
signal axis quantification, 197–200
time-of-flight-matrix-assisted laser desorption/ionization (TOF-MALDI) spectrometry, 200–201
near-edge x-ray absorption fine structure spectroscopy:
confined free-standing thin films, 394, 397
lightly cross-linked superabsorbent polymers, 395–396, 398–399
surface characteristics and ultrathin films, 392–393
secondary ion mass spectrometry, side-chain functionality, acrylate homopolymers, 317–318
Hookean limit:
dynamic mechanical analysis, 847–848
forced frequency analyzers, 651–652
rheological measurement, elasticity/viscoelasticity, 695–701
Huggins equation and constants, rheological viscosity measurements, dilute polymer solutions, 687
Hybrid organic-inorganic polymers, atomic force microscopy imaging, 451–452
Hydrocarbon polymers, secondary ion mass spectrometry, 312
in-chain functionality, 312–313
side-chain functionality, 313–318
Hydrodynamic chromatography (HDC), molecular weight distribution measurements, 81
Hydrodynamic volume:
 molecular size determination, 4–5
 polymer solution characteristics, 9, 11
Hydrogen bonding, heterogeneous compounds, vibrational spectroscopy, 563–566
Hydrophilicity:
 dynamic mechanical analysis, plasticizer and moisture effects, 858–860
 size exclusion chromatography, separation techniques, 236
Hyperbranched polymers, atomic force microscopy imaging, 444–446
Hyperfine tensor:
 electron nuclear double resonance, 903–905
 electron spin resonance spectroscopy, 897–898
Hysteresis loop:
 dynamic mechanical analysis, 847–848
 rheological viscosity measurement, thixotropy and time-dependent effects, 682–684
Ideal gas law, infrared spectroscopy, quantitative analysis, 103–104
Image analysis:
 atomic force microscopy, 421–426
 computer-assisted contrast imaging, 624–625
 electron spin resonance spectroscopy, 905–909
 field gradients, 906–907
 intensity profiling, 907–908
 line shape profiling, 908–909
 heterogeneous polymers, vibrational spectroscopy, 566–575
 near-edge x-ray absorption fine structure spectroscopy, 390–391
 scanning force microscopy (SFM), 462–466
 contact mode SFM, 462–464
 force modulation mode, 465
 intermittent contact mode SFM, 464–465
Impact testing:
 dynamic mechanical analysis, 860–864
 polymer characterization, 18
 techniques, 48–50
Impurities, heterogeneous polymers, microspectroscopic analysis, 571–575
In-chain functionality, secondary ion mass spectrometry, 312–313
Inclusion yielding, heterogeneous polymer toughening, 788
Incompatible blended polymers, atomic force microscopy imaging, 447–451
Indentation measurements:
 microindentation hardness, 777–778
 rheological viscoelasticity measurement, 731–733
 scanning force microscopy, 470–471
 surface mechanical properties, 490–492
Indium-antimony detectors, Fourier transform infrared spectrometer, 92
Inelastic scattering, morphological polymer characterization, 19
Infrared (IR) detectors, size exclusion chromatography, concentration detectors, 243–244
Infrared (IR) dichroism:
 basic principles, 100
 near-edge X-ray absorption fine structure spectroscopy, 384–386
 vibrational spectroscopy, heterogeneous polymers, microscopic analysis, 573–575
Infrared (IR) microspectroscopy, basic principles, 624
Infrared (IR) spectroscopy:
 applications, 104–105
 basic principles, 89–90
 crystallinity determination, 760–762
 double modulation spectroscopy, 590–594
 instrumentation, 90–93
 microspectroscopic analysis, heterogeneous polymers, 567–575
 molecular structure characterization, 5–6
 nondestructive polymer characterization, 367
 polymer composition and structure, 32–38
 sampling techniques, 93–100
 chromatograph-infrared spectroscopy combination, 98–99
 emission spectroscopy, 99
 microsampling, 97–98
 reflectance methods, 95–97
 thermal analysis, 99
 transmission methods, 93–95
 spectral analysis, 100–104
 group frequencies, 100–101
 quantitative analysis, 102–104
 spectrum manipulation, 101–102
 surface analysis, 581–590
 vibrational analysis, 531–532
 chain conformation, 542–543
Input signal, microscopy techniques, 604
In situ testing, micromechanical properties analysis, 773–775
Intensity profiling, one-dimensional electron spin resonance imaging, 907–908
Interaction polymer chromatography (IPC): defined, 254–256
synthetic polymer separation, 264–265
Interchain aggregation, laser light scattering analysis, 220
Intercluster distances, ionically end-functionalized block copolymers, pulsed electron spin resonance probes, 919–920
Interdigitated/combo electrode, dielectric analysis, thermoset cure characterization, 869–877
Interfacial performance, vibrational spectroscopy, surface analysis, 579–590
Interference optics:
 - micromechanical analysis, 777
 - optical microscopy, 608–609
 - differential interference contrast imaging, 620–621
Interferogram:
 - chromatography-infrared spectroscopy, 98–99
 - Fourier transform infrared spectrometry, 92–93
Interferometry:
 - infrared spectroscopy, vibrational analysis, 532
 - optical testing of polymers, 361–362
Intermittent contact mode scanning force microscopy (SFM), 464–465
Intermolecular interactions:
 - neutron scattering, structural analysis applications, 516
 - vibrational spectroscopy, 539–541
 - amorphous polymers, low-frequency analysis, 556–558
 - unit-size analysis, 552–556
Interpenetrating polymer networks (IPNs), atomic force microscopy imaging, 447
Interphase characteristics, microspectroscopic analysis, heterogeneous polymers, 569–575
Interstitial volume, size exclusion chromatography, separation techniques, 232–236
Intramolecular libration, pulsed electron spin resonance probes, ionic block copolymers, 920
Inverse least squares (ILS), infrared spectroscopy, quantitative analysis, 104
Inverted microscope design, optical microscopy, 609
Ion-exchange chromatography, stationary and mobile phases, 255–256
Ionomers, electron spin resonance probes of, 909–915
Isochronal experiments, dynamic mechanical analysis:
 - amorphous and crystalline polymers, 854–855
 - viscoelastic relaxation, 853–854
Isocratic elution, high-performance liquid chromatography, 257–259
Isopiestic method, vapor pressure, number-average molecular weight determination, 70
N-Isopropylacrylamide (NIPA) hydrogel, microspectroscopic analysis, 571–575
Isotactic polypropylene (iPP):
 - atomic force microscopy imaging, 441–442
 - vibrational analysis, unit-size analysis, 550–556
Isotopic mass, time-of-flight-secondary ion mass spectrometry, 311
Isotropic hyperfine analysis, electron spin resonance spectroscopy, 898
Jacquinot advantage, Fourier transform infrared spectrometry, 93
Johnson-Kendall-Roberts (JKR) theory:
 - atomic force microscopy imaging, 423–426
 - scanning force microscopy:
 - adhesive force measurement, 468–469
 - friction force measurements, 473–474
Kanthal elements, thermogravimetric analysis, 825–826
Kelvin temperatures, crystalline polymers, thermal analysis, 15–16
Kinematic viscosity, rheological measurement, 678
capillary viscometers, 710–711
Kinetic effects, dynamic mechanical analysis, thermostet curing, 671–672
Kink bands, microspectroscopic analysis, heterogeneous polymers, 569–575
Kirchhoff’s law, infrared spectroscopy and, 99
Kirkwood-Fröhlich factor, dielectric relaxation of polymers, 887–888
Kohlraush-Williams-Watts (KWW) function:
 - dielectric relaxation of polymers, 886–888
 - nuclear magnetic resonance relaxation times, 116
Kramers-Kronig transformation, attenuated total reflectance (ATR) spectroscopy, 96–97
Kramers systems, electron spin resonance spectroscopy, 896–897
Krieger-Dougherty equation, rheological viscosity measurement, dispersed polymer systems, 692–693
K-TEMPO probes, ionically end-functionalized block copolymers, 915–920
Kubelka-Munk equation, attenuated total reflectance (ATR) spectroscopy, 97
LALLS, molecular weight distribution, 78–81
Lambert-Beer Law, near-edge x-ray absorption fine structure spectroscopy, quantitative microanalysis, 390

Lamellae. See also Spherulites
dielectric relaxation, 890–893
polymer morphology, 268–281
basic principles, 267–268
chainfolding inference, 268–269
melt crystallization, 274–281
solution-based chainfolding, 269–274
scanning force microscopy:
real-time structure development and processes, 492–494, 494–497
semicrystalline polymer morphology, 477–479
tensile deformation, 291–293
vibrational spectroscopy, surface analysis, 587–590
yield stress, 795–797
block copolymers, 798–803

Laminated polymer films:
dynamic mechanical analysis, 667–668
microspectroscopic analysis, 573–575

Langmuir-Blodgett (LB) films:
atomic force microscopy, 434, 436
surface analysis, vibrational spectroscopy, 582–590

Laplace transform, dynamic laser light scattering, 216–218

Larmor frequency, one-dimensional nuclear magnetic resonance studies, molecular motion and dynamic order, 123–124

Laser desorption (LD), basic principles, 188

Laser interferometry, thermomechanical analysis instrumentation, 839–840

Laser light scattering (LLS): basic principles, 211–213
combined static/dynamic techniques, 218–222
colloidal particle analysis, 220–221
copolymer composition distribution, 219–220
diblock copolymer self-assembly, 221–222
interchain aggregation, 220
molar mass distribution, 218–219
detectors and detection, 224–226
differential refractometer, 226–228
dynamic techniques, 214–218
light sources, 222–223
optics and cell design, 224
sample preparation, 226
static techniques, 213–214

Lasers:
in optical microscopy, 607–609
spot deflection, atomic force microscopy imaging, 423–426

Laser scanning confocal microscope (LSCM):
components, 609–610
confocal microscopy principles, 621–622
fluorescence microscopy, 621–622
resolution and contrast, 609–612

Lateral forces:
atomic force microscopy, 638–640
melt-crystallized lamellae morphology, 278–280
scanning force microscopy, 471–474

Latex polymers:
atomic force microscopy imaging, 447–451
scanning force microscopy, particle analysis, 480–484

Lattice structures:
nuclear magnetic resonance spin coherences, 117–118
scanning force microscopy, semicrystalline polymer morphology, 475–479
Legendre polynomials, anisotropic assessment, vibrational spectroscopy, 577–579
Lifshitz theory, scanning force microscopy, adhesion force measurement, 469

Light scattering. See also Laser light scattering (LLS)
flow-induced structural analysis, 524–526
weight-average molecular weight, 74–75

Light sources:
laser light scattering, 222–223
near-edge x-ray absorption fine structure spectroscopy, 387–391

Linear crystallinity, small-angle X-ray scattering, 756–757

Linear discriminant analysis (LDA), infrared spectroscopy, quantitative analysis, 104

Linear viscoelastic range, dynamic mechanical analysis, 847–848

Linear voltage differential transformer (LVDT), thermomechanical analysis instrumentation, 838–840

Line shape analysis:
electron spin resonance spectroscopy, 898–900
one-dimensional nuclear magnetic resonance studies, molecular motion and dynamic order, 124
two-dimensional spectral-spatial electron spin resonance imaging, 908–909

Line width distribution, dynamic laser light scattering, 216–218

Liouville space, nuclear magnetic resonance spin coherences, 118–119

Liouville-von-Neumann equation, nuclear magnetic resonance spin coherences, 117–118

Liquid adsorption chromatography (LAV), molecular weight distribution, 80
Liquid chromatography (LC):
 - history, 252–253
 - infrared spectroscopy and, 99
 - polymer composition and structure, 34–38
Liquid crystalline polymers (LCPs):
 - atomic force microscopy imaging, 443–445
 - dielectric relaxation, 888–893
 - microspectroscopic analysis, 572–575
 - near-edge x-ray absorption fine structure spectroscopy:
 - mechanically alloyed blends, 406–408
 - polyimide thin film surfaces, 393–394
 - vibrational spectroscopy, surface analysis, 582–590
Liquid-crystal polarizers, polarized light microscopy, 612–615
Liquid-liquid transition, dynamic mechanical analysis, rubbery plateau, 661–662
Liquid matrices, matrix-assisted laser desorption/ionization (MALDI) spectrometry, 193–194
Liquid-state imaging, nuclear magnetic resonance principles, 158–170
Living radical polymerization, electron spin resonance and, 928–929
Load fracture characteristics, fractographic analysis, 335–343
 - brittle fracture, 343
 - crazing, 338–340, 342
 - ductile fracture, 341–342
 - normal stress fracture, 338
 - shear fracture, 338, 341
 - tear fracture, 338–340
Location techniques, polymer-matrix composite testing, 367–368
Lock-in thermography, nondestructive polymer characterization, 367
Logarithmic normal distribution:
 - molar mass and, 9
 - molecular weight averages and distributions, 68–69
 - rheological viscosity measurements, dilute polymer solutions, 685–687
Longitudinal acoustic mode (LAM):
 - molecular structure characterization, 5–6
 - polymer composition and structure, 33–38
 - vibrational spectroscopy, unit-size analysis, 550–556
Longitudinal relaxation time:
 - nuclear magnetic resonance principles, 114–116
 - one-dimensional nuclear magnetic resonance studies, molecular motion and dynamic order, 123–124
 - Lorentzian function, flow-induced structural analysis, neutron scattering, 526
Loss modulus:
 - dielectric analysis, thermoset curing, 872–877
 - dynamic mechanical analysis:
 - impact testing, 861–864
 - thermoplastic polymers, 852–853
 - rheological measurements, elasticity/viscoelasticity, 699–701
Low-angle laser light scattering, molecular weight determination, 38–39
Lowest unoccupied molecular orbital (LUMO), near-edge x-ray absorption fine structure spectroscopy, basic principles, 379–386
Low frequency analysis, amorphous polymers, vibrational spectroscopy, 556–558
Low-molecular-weight (LMW) polymers, composition and structure, 35–38
Lozenge structure, lamellae, solution-based chainfolding, 270–274
Luminescence, molecular dynamics of polymers, 22–223
Macrocrazing, amorphous polymer toughness enhancement, 792
Macromolecules:
 - high-performance liquid chromatography:
 - gradient elution, 260
 - stationary and mobile phases, 254–256
 - polymer characterization, two-dimensional thermal Field Flow Fractionation (2D-ThFFF), 4
 - scanning force microscopy morphological analysis, 474–475
Macroscopic analysis, fractography and, 331–333
Magic angle spinning (MAS), carbon-13 (13CNMR) nuclear magnetic resonance, crystallinity determination, 766–768
Magnetic-field gradient, nuclear magnetic resonance imaging:
 - NMR-MOUSE quality control sensor, elastomer quality control, 180–181
 - spatial resolution, phase encoding, 162
Magnetic interactions:
 - nuclear magnetic resonance technology and, 113–114
 - thermogravimetric analysis, 826–827
 - standards and calibration, 830–832
Magnetic reference materials, thermogravimetric analysis, temperature calibration curve, 831–832
Magnetic resonance imaging (MRI):
 - nuclear magnetic resonance technology and, 110–113
 - size determination of polymers, 369
 - two-dimensional nuclear magnetic resonance, 123
Magnetic suspension systems, thermogravimetric analysis, 828
Magnetization-exchange mechanisms, viscoelastic polymers, protein nuclear magnetic resonance, 142–147
Magnetization filters, nuclear magnetic resonance imaging, contrast parameters, 166–170
Magnetization relaxation, nuclear magnetic resonance technology, 114–116
Magnetogyric ratio, nuclear magnetic resonance imaging, 158–170
Magnetorheological effect, electrorheological behavior, 695
Margules equation, rheological viscosity measurement, rotational viscometers, 718–723
Mark-Houwink relationships: dynamic mechanical analysis, melt polymers, 665–668
molecular weight averages and distributions, 66
polymer solution characteristics, 9, 11
rheological viscosity measurements, dilute polymer solutions, 687
size exclusion chromatography: calibration methods, 249–250
molecular weight sensitive detectors, 246–247
MARS-III Multifunction Axial Rheometer System, extensional viscosity measurement, 728–729
Mason number, electrorheological behavior, 694–695
Mass axis quantification, matrix-assisted laser desorption/ionization (MALDI) spectrometry, molecular mass distribution, 196–197
Mass determination, thermogravimetric analysis, 826–827
calibration techniques, 828–830
Mass spectrometry (MS). See also Electrospray ionization spectroscopy; Matrix-assisted laser desorption/ionization (MALDI) spectrometry
analysis techniques, 189–196
detectors, 193
matrix properties, 193–196
separation process, 191–193
applications, 200–209
basic principles, 187–188
high-performance liquid chromatography, detectors, 257
molecular structure characterization, 7–8
molecular weight distribution, 80
quantification techniques, 196–200
Master curve construction, rheological viscoelasticity measurement, 737–739
Material properties, nuclear magnetic resonance imaging, contrast parameters and, 163–166
Matrix-assisted laser desorption/ionization (MALDI) spectrometry. See also Time-of-flight-matrix-assisted laser desorption/ionization (TOF-MALDI) spectrometry
analysis process, 190–191
basic principles, 188
detectors, 193
history, 188–189
liquid matrices, 193–194
molecular mass distribution quantification, 196–200
mass axis quantification, 196–197
signal axis quantification, 197–200
molecular structure characterization, 7–8
molecular weight determination, 38–39
separation techniques, 191–193
solid matrices, 194–196
Matrix electron nuclear double resonance, 904, 928–929
Matrix properties, matrix-assisted laser desorption/ionization (MALDI) spectrometry, 193–196
Maxwell-Wagner polarization, dielectric relaxation of polymers, 893
Mean-field behavior, polymer blends, neutron scattering, 523–524
Mechanical analysis. See also Micromechanical properties
atomic force microscopy, 426–431
dielectric analysis, 849–851
elastomer loading, nuclear magnetic resonance imaging, 171–172
environmental effects testing, 50–53
morphological analysis, 289–293
advanced materials, 289–291
tensile deformation, 291–293
polymer characterization, 16–18
proton multiple-quantum nuclear magnetic resonance, segmental anisotropy, 135
rheological measurement, elasticity/viscoelasticity, 696–697
scanning force microscopy, surface mechanical properties, 489–492
test methods, 47–50, 359
vibrational spectroscopy, 590–594
Mechanically alloyed polymer blends, near-edge x-ray absorption fine structure spectroscopy, 406–408
Medical diagnostics, nuclear magnetic resonance applications, 110
Melted polymers:
 chain conformation, neutron scattering, 516–517
 dynamic mechanical analysis, 649–650, 664–668
 lamellae, 274–281
 lateral habits, 278–280
 surface morphology, 280–281
 rheological viscosity measurement, 688–690
 spherulite growth and, 284
Melt flow behavior, molecular dynamics of polymers, 23
Melting point:
 crystalline polymers, thermal analysis, 14–16
 differential scanning calorimetry, polymer characterization, 815–816
 semicrystalline polymers, differential scanning calorimetry, 819–824
 thermogravimetric analysis, temperature calibration curve, 831–832
Membrane osomometry, molecular weight determination, 74
Mercury cadmium telluride (MCT) device:
 Fourier transform infrared spectrometer, 92–93
 infrared spectroscopy, microsampling techniques, 97–98
Mercury lamps, Fourier transform infrared spectrometer, 91–93
Mesogenic liquid crystalline polymers, dielectric relaxation, 891–893
Metallic substrates, vibrational analysis, polymer surface analysis, 582–590
Methyl acrylate (MA), EMA copolymers, surface analysis, 327–329
4,4’-Methylene di-p-phenylene isocyanate (MDI), near-edge x-ray absorption fine structure spectroscopy, basic principles, 379–386
Michelson interferometer, Fourier transform infrared spectrometer, 90–03
Microanalysis, near-edge x-ray absorption fine structure spectroscopy, 390
Microchannel plate (MCP) detector, matrix-assisted laser desorption/ionization (MALDI) spectrometry, 189–190, 193
Microfocal X-ray sources, penetrating radiation polymer testing, 363–364
Microindentation hardness:
 crazing in amorphous glassy polymers, 782–785
 micromechanical analysis, 777–778
Micromechanical properties—cont.
 basic principles, 771–773
 classification, 779–780
 heterogeneous polymers, toughness enhancement, 785–803
 inference optics, 776
 microindentation hardness, 777–778
 microscopic techniques, 773–775
 scattering (diffraction) techniques, 775–776
 spectroscopic (rheooptical) methods, 776
 toughness enhancement:
 amorphous matrix polymers, 788–792
 blended polymers, 794–795
 semicrystalline matrix, 792–794
 yielding:
 block copolymers, 797–803
 in semicrystalline polymers, 795–797
Microporous membranes, atomic force microscopy imaging, 446–447
Microsampling techniques, infrared spectroscopy, 97–98
Microscale capillary chromatography, solvent delivery, 253–254
Microscopy:
 acoustic microscopy, 644
 atomic probe microscopy, 642
 basic principles, 600–605
 comparison of techniques, 602–603
 current technological improvements in, 605
 electron microscopy, 625–634
 history, 625–626
 scanning auger microscope, 633–634
 scanning electron microscopy, 627–633
 transmission electron microscopy, 626–627
 micromechanical properties, 773–775
 optical microscopy, 606–625
 cathodoluminescence microscopy, 622–623
 components and instrumentation, 607–609
 confocal microscopy, 621–622
 dark field illumination, 615–617
 differential interference contrast, 618–621
 fluorescence microscopy, 621
 history, 606–607
 infrared microspectroscopy, 624–625
 phase contrast, 617–618
 polarized light microscopy, 612–615
 Raman microprobe, 623–624
 resolution and contrast, 609–625
 scanning probe microscopy:
 atomic force microscopy, 637–640
 history, 634
 near-field scanning optical microscope, 640–642
 photon scanning tunneling microscopy, 642
 scanning tunneling microscopy, 634–637
 X-ray microscopy, 643–644
Microspectroscopy:
- heterogeneous polymers, vibrational spectroscopic techniques, 566–575
- infrared techniques, 624
- instrumentation and image collection, 622–623

Microthermal analysis, techniques, 44
Mid-infrared spectroscopy, spectral analysis, 100–101
Mims electron nuclear double resonance, 904
Mixed echo decay, one-dimensional nuclear magnetic resonance studies, chain orientation and slow dynamics, 141–142

Mixing processes:
- elastomers, nuclear magnetic resonance imaging, 171
- heterogeneous compounds, vibrational spectroscopy, 563–566

Mobility magnetization filters, nuclear magnetic resonance spin-echoes, contrast parameters, 167–170

Modulated differential scanning calorimetry (MDSC):
- molecular organization and dynamic behavior of polymers, 13–16
- semicrystalline polymer melting, 821–823

Modulated temperature differential scanning calorimetry (MTDSC), semicrystalline polymer melting, 821–823

Modulus:
- elasticity testing, 48–50
- polymer stress and strain, 16–17

Moisture effects, dynamic mechanical analysis, 855–860

Molar absorptivity, infrared spectroscopy, quantitative analysis, 102–104

Molar mass, polymer characterization, 8–11

Molar mass distribution (MMD) of polymers:
- basic principles, 8–11
- history of MALDI and ESI techniques, 189
- laser light scattering characterization, 218–219
- mass spectrometry, 188
- matrix-assisted laser desorption/ionization (MALDI) spectrometry:
 - quantification, 196–200
 - mass axis quantification, 196–197
 - signal axis quantification, 197–200
 - solid matrix preparation, 195–196
 - soft ionization analysis, large molecules, 191
 - time-of-flight-matrix-assisted laser desorption/ionization (TOF-MALDI) spectrometry, 9
 - architectural elucidation, 206–208
 - broad homopolymers, 201
 - chemistry elucidation, 205–206
 - chromatography elucidation, 201–203

Molar mass distribution (MMD) of polymers—cont.
- copolymers, 204–205
- end groups, 203–204
- narrow homopolymers, 200–201

Molecular composition distribution (MCD), copolymers:
- laser light scattering, 219–220
- matrix-assisted laser desorption/ionization (MALDI) spectrometry, 203–205

Molecular dynamics, polymer characterization, 21–23

Molecular motion:
- nuclear magnetic resonance imaging, contrast parameters, 169–170
- one-dimensional nuclear magnetic resonance studies, 123–142
- dipolar correlation chain orientation and slow dynamics, 140–142
- residual dipolar couplings, proton multiple-quantum NMR, 127–135
- residual van Vleck moments, 124–127
- transverse magnetization relaxation network properties, 135–140

Molecular organization, polymer characterization, 11–18

Molecular size, polymer characterization, 4

Molecular structure, polymer characterization, 5–8
- infrared/Raman spectroscopy, 5–6
- mass spectrometry, 7–8
- nuclear magnetic resonance, 6–7
- pyrolysis, 7
- ultraviolet spectroscopy, 7

Molecular theories, dielectric relaxation of polymers, 886–888

Molecular weight calibration curves:
- dynamic mechanical analysis, melt polymers, 665–668
- high-performance liquid chromatography, isocratic elution, 258–259
- rheological viscosity measurement, melt polymers, 689–690

Molecular weight distribution (MWD):
- averages and distributions, 65–67
- distribution functions, 67–68, 76–81
- chromatographic analysis, 77–81
- fractionation techniques, 76–77
- higher molecular weight averages, 76
- liquid chromatography techniques, 252–253
- number-average technique, 69–74
- colligative property analysis, 69–70
- cryoscopy, 71–72
- ebulliometry, 71
- end-group analysis, 69
- osmometry, 72–74
- vapor pressure, 70
Molecular weight calibration curves—cont.
size exclusion chromatography, 230–232
calibration methods, 249–250
data analysis, 247–250
detectors, 244–247
dispersion mechanisms, 238–239
eluent selection, 240–241
pumping/injection systems, 242–243
separation techniques, 232–236
test methods, 38–39
viscosity averaging, 74
weight-average technique, 74–76
Monodisperse polymers, spherulite morphology,
\(n\)-alkanes, 285–286
Monoionic polymers, pulsed electron spin
resonance probes, 919–920
Monomers, polymer formation from, 1–3
Mooney viscometer, rheological viscosity
measurements, 722–723
Morphological polymer characterization. See
also Surface analysis
atomic force microscopy, 453
basic principles, 267–268
lamellae, 268–281
chainfolding inference, 268–269
melt crystallization, 274–281
solution-based chainfolding, 269–274
Langmuir-Blodgett films, atomic force
microscopy, 436
mechanical properties, 289–293
advanced materials, 289–291
tensile deformation, 291–293
polymer-matrix composites, 367–368
spherulites, 281–289
banded structures, 286–288
crystallization, 288–289
growth patterns, 283–284
monodisperse long \(n\)-alkanes, 285–286
visualization techniques, 18–21
Moving body viscometers, rheological viscosity
measurements, 723–725
Mull sampling technique:
infrared spectroscopy, quantitative analysis,
104
transmission infrared spectroscopy, 94–95
Multiblock PBT/PTMO copolymers, proton
multiple-quantum NMR analysis, residual
dipolar couplings, 151–153
Multicomponent polymers, near-edge x-ray
absorption fine structure spectroscopy,
405–406
Multidimensional nuclear magnetic resonance,
basic principles, 109–110
Multidimensional separation, high-performance
liquid chromatography, 260–261
Multifrequency electron spin resonance (MF
ESR) spectroscopy, basic principles, 900–901
Multilamellar crystals, scanning force
microscopy analysis, 479–480
Multilayered polymers:
microspectroscopic analysis, 573–575
near-edge x-ray absorption fine structure
spectroscopy, 411–412
Multiphasic polymers, near-edge x-ray
absorption fine structure spectroscopy,
405–406
Multiple-quantum nuclear magnetic resonance
(MQ-NMR), residual dipolar couplings,
127–135
proton multiple-quantum techniques, 150–153
Nafion compounds, electron spin resonance
probe of, 910–915
Nametre viscometer, rheological viscosity
measurement, 726
Nano Indentor, rheological viscoelasticity
measurement, penetration and indentation,
731–733
Nanoscratching, atomic force microscopy
analysis, 429–431
Nanotribology:
atomic force microscopy analysis, 429–431
friction force microscopy, 472–474
National Synchrotron Light Source (NSLS),
near-edge x-ray absorption fine structure
spectroscopy, instrumentation, 387–391
Natural polymers, definition and classification,
1–3
Nd-YAG laser, laser light scattering source, 223
Near-edge X-ray absorption fine structure
spectroscopy (NEXAFS):
basic principles, 378–386
block copolymer thin films, 403–405
carbon-based materials, 391–392
confined free-standing homopolymer thin
films, 394
elastomeric composites, 412–413
electronic schematic, 378–380
examples of, 384–386
fibers, 413–414
future research issues, 414–415
homopolymers, polymer blends and ultrathin
films, 392–393
instrumentation and analysis tools, 386–391
mechanically alloyed blends, 406–408
multicomponent, multiphasic polymers,
405–406
multilayers and structured spheres, 411–412
penetrating radiation polymer testing, 364
polyimide films and surfaces, 393–394
polystyrene/PBrS thin-film blends and
bilayers, 397–400
polystyrene/poly(n-butyl methacrylate)
thin-film blends, 403
polyurethane/polyurea polymers, 408–410
Near-edge X-ray absorption fine structure spectroscopy—cont.
PS/PMMA thin-film blends, 400–402
PS/PMMA with PS-b-PMMA copolymer thin-film blends and bilayers, 402–403
superabsorbent polymers, 395–396
thin-film blends and bilayers, 396–397
Near-field scanning optical microscope (NSOM), optical imaging, 640–642
Near-infrared spectroscopy, spectral analysis, 100–101
Nematic liquid crystal phases:
 crystalline polymers, thermal analysis, 14–16
 vibrational spectroscopy, surface analysis, 582–590
Nernst-Einstein equation, dielectric relaxation of polymers, 887–888
Nernst source, Fourier transform infrared spectrometer, 91–93
Network properties of polymers, transverse relaxation time, one-dimensional nuclear magnetic resonance studies, 135–140
Neutron scattering:
 basic principles, 507–508
 contrast variation in protein structure, 526–527
dendrimer end-group location, 518–519
 experimental protocols, 508–514
 flow-induced polymer structure, 524–526
 morphological polymer characterization, 19
 penetrating radiation polymer testing, 364
 polymer blends, 520–524
 mean-field to ising behavior crossover, 523–524
 spinodal decomposition, 520–523
 polymer chain conformation in melt, 516–517
 structural analysis, scattering curve, 514–516
 ultrathin polymer film gyration radius, 519–520
Newtonian fluids:
 dynamic mechanical analysis, melt polymers, 665–668
 rheological viscosity measurement:
 capillary viscometers, 703–711
 dispersed polymer systems, 690–693
 flow models, 679–681
 melt polymers, 688–690
 moving body viscometers, 723–725
 rheological measurement, 677–678
 rotational viscometers, 718–723
Nichrome elements, thermogravimetric analysis, 825–826
m-Nitrobenzyl alcohol (m-NBA) matrix, matrix-assisted laser desorption/ionization (MALDI) spectrometry, 194
Nitrogen-containing polymers:
 secondary ion mass spectrometry, 318
 vibrational spectroscopic characterization, heterogeneous compounds, 561–566
2-Nitrophenyl octyl ether (o-NPOE) matrix, matrix-assisted laser desorption/ionization (MALDI) spectrometry, 194
Nitroxide spin probes:
 electron spin resonance spectroscopy, line shape analysis, 898–900
 ionically end-functionalized block copolymers, 915–920
 ionomer analysis, 909–915
 one- and two-dimensional spectral-spatial electron spin resonance imaging, spatially resolved degradation, 921–926
NMR-MOUSE sensor, elastomer quality control, 178–181
Nomarski prism, differential interference contrast technique, 618–621
Nondestructive testing (NDT):
 adhesive joint evaluation, 369–370
 basic principles, 357–359
 chemical and analytical test methods, 367
 classification, 359–360
 detection, sizing, and evaluation applications, 367–369
 electromagnetic test methods, 364–365
 future research issues, 370–371
 geometric/size determination, reverse engineering, 369
 literature sources on, 358
 mechanical test methods, 359–360
 optical test methods, 360–362
 penetrating radiation test methods, 362–364
 polymer characterization, 56–57
 polymer-matrix composite monitoring, 368–369
 sonic/ultrasonic test methods, 365–367
 structural integrity evaluation, 368
 thermal/infrared test methods, 367
Nonplanar geometries, lamellae, solution-based chainfolding, 271–272
Normal coordinate analysis (NCA), vibrational spectroscopy, 540–541
Normalized decay function, dielectric relaxation of polymers, 884–888
Nuclear magnetic resonance (NMR):
 basic principles, 109–123
 electromagnetic spin interactions, 113–114
 magnetic resonance phenomenon, 110–113
 relaxation, 114–116
 spin coherences, 116–118
 spin-echoes, 118–120
 two-dimensional Fourier spectroscopy, 120–123
 crystallinity determination, 764–768
Nuclear magnetic resonance—cont.
carbon-13 NMR, 766–768
Fourier transform NMR, 765–766
proton NMR, 764–765
elastomer imaging, 170–181
heterogeneities, 170–172
mobile sensor-based quality control, 178–181
parameter mapping, 172–178
electron spin resonance spectroscopy imaging, 905–909
imaging principles, 157–170
contrast properties, 162–170
heterogeneous samples, spin system response, 159–161
phase encoded spatial resolution, 161–162
micromechanical analysis, 778
molecular dynamics of polymers, 21–22
molecular structure characterization, 6–7
one-dimensional molecular motion and dynamic order analysis, 123–142
dipolar correlation chain orientation and slow dynamics, 140–142
residual dipolar couplings, proton multiple-quantum NMR, 127–135
residual van Vleck moments, 124–127
transverse magnetization relaxation network properties, 135–140
polymer composition and structure, 33–38
size determination of polymers, 369
two-dimensional NMR spectroscopy, viscoelastic polymers, 142–157
dereuteron NMR, thermoplastic elastomers, 155–157
heteronuclear correlation, residual local dipolar fields, 153–155
proton magnetization exchange spectroscopy, chain orientation, 142–147
proton multiple-quantum NMR, residual dipolar couplings, 150–153
segmental motions, 2D NOESY-MAS technique, 147–150
Nuclear Overhauser effect (NOE), two-dimensional nuclear Overhauser effect spectroscopy, segmental motions, 147–150
Nucleation techniques, scanning force microscopy, real-time structure development and processes, 493–494
Number-average molecular weight—cont.
vapor pressure, 70
Numerical apertures (NA), optical microscopy, 609–612
Nylons, dynamic mechanical analysis: impact testing, 862–864
plasticizer and moisture effects, 856–860
Oligomer detection and imaging: secondary ion mass spectrometry, 322–327
self-assembled monolayers, atomic force microscopy, 436
Oliver-Pharr method, scanning force microscopy, indentation measurements, 471
One-dimensional electron spin resonance imaging:
intensity profiling, 907–908
spatially resolved degradation, 920–926
One-dimensional nuclear magnetic resonance, molecular motions and dynamic order, 123–142
dipolar correlation chain orientation and slow dynamics, 140–142
residual dipolar couplings, proton multiple-quantum NMR, 127–135
residual van Vleck moments, 124–127
transverse magnetization relaxation network properties, 135–140
“Onset” glass transition temperature, differential scanning calorimetry, 816–818
Optical density (OD), near-edge x-ray absorption fine structure spectroscopy, quantitative image analysis, 391
Optical fibers: infrared spectroscopy, 99
laser light scattering detectors, 225–226
Optical microscopy, 606–625
cathodoluminescence microscopy, 622–623
components and instrumentation, 607–609
confocal microscopy, 621–622
dark field illumination, 615–617
differential interference contrast, 618–621
fluorescence microscopy, 621
fractography and, 331–333
history, 606–607
infrared microspectroscopy, 624–625
morphological polymer characterization, 21, 361–362
phase contrast, 617–618
polarized light microscopy, 612–615
Raman microprobe, 623–624
resolution and contrast, 609–625
Optical properties of polymers: polarized light microscopy, 613–615
testing techniques for, 53–54, 360–362
Optics principles:
laser light scattering, 224
Optics principles—cont.
near-edge x-ray absorption fine structure spectroscopy, 386–391
Ordered chain conformation, vibrational spectroscopy, 543–546
Organic compounds:
infrared spectroscopy identification, 104–105
surface analysis, 319–321
Orientation analysis:
atomic force microscopy, 453
differential interference contrast imaging, 620–621
scanning force microscopy, polymer processing, 483–484
silk crystallization behavior, vibrational spectroscopy, 589–590
Orifice viscometers, rheological viscosity measurement, 707–711
Ornstein-Zernike function, flow-induced structural analysis, neutron scattering, 526
Osmometry, molecular weight determination: membrane techniques, 74
vapor-pressure, 72–73
Ostwald viscometer, rheological viscosity measurement, 704–711
Out-of-phase heat capacity, modulated differential scanning calorimetry, 822–823
Out-of-phase stress, dynamic mechanical analysis, 847–848
Output signal, microscopy techniques, 604
Oxidative induction time (OIT), thermal analysis techniques, 44–45
Oxygen index, polymer flammability, 24–25
Oxygen permeability, dynamic mechanical analysis, plasticizer and moisture effects, 858–860
Packed column supercritical fluid chromatography (pSFC), polymer composition and structure, 35–38
Packing materials, size exclusion chromatography, column technology, 239–240
Parallel plate electrodes, dielectric analysis, 867–868
Parallel plate viscometers, rheological viscosity measurement, 721–723
Parallel thermal analysis techniques, differential scanning calorimetry, 823–824
Paramagnetism principles, nuclear magnetic resonance technology and, 111–113
Parameter mapping, elastomers, nuclear magnetic resonance imaging, 172–178
Partial electron yield (PEY), near-edge x-ray absorption fine structure spectroscopy, 389–391
Partial least squares (PLS), infrared spectroscopy, quantitative analysis, 104
Particle Form Factor, neutron scattering, structural analysis applications, 515–516
Particle identification, polarized light microscopy, 613–615
Passive thermography, nondestructive polymer characterization, 367
Pattern thermography, nondestructive polymer characterization, 362–364
Penetration tests:
rheological viscoelasticity measurement, 731–733
thermomechanical analysis, 844
Perkin-Elmer differential scanning calorimeter, 808–810
thermogravimetric analysis, temperature calibration curve, 831–832
thermomechanical analysis instrumentation, 838–840
Permanganic etching, melt-crystallized lamellae morphology, 275–278
Permeability, polymer characterization, 24
Permittivity testing:
dielectric analysis, 849–851
thermoset cure characterization, 871–877
dielectric relaxation:
basic principles, 881–882
measurement techniques and applications, 893
molecular dynamics of polymers, 22
polymer behavior, 888–893
polymer composition and structure, 36–38, 882–884
theoretical background, 884–888
electrical properties of polymers, 55
Perturbation theory, nuclear magnetic resonance technology and, 112–113
Pharmaceutical analysis, infrared spectroscopy characterization, 105
Phase angle, dynamic mechanical analysis, 847–848
Phase contrast technique, optical microscopy, 617–618
Phased-array technology, sonic/ultrasonic polymer testing, 366–367
Phase-distribution chromatography, molecular weight distribution, 80
Phase encoding, nuclear magnetic resonance imaging, spatial resolution, 161–162
Phase imaging, atomic force microscopy, 429
Phase morphology, fractographic analysis, 355–356
Phase separation:
heterogeneous polymers:
 microspectroscopic analysis, 571–575
 vibrational spectroscopy, 561–566
Phase separation—cont.
scanning force microscopy, real-time structure development and processes, 496–497
Phase transformation, vibrational spectroscopy, 558–561
Phenylene polymers, dynamic mechanical analysis, plasticizer and moisture effects, 857–860
Photoacoustic spectroscopy (PAS), sampling methods, 97
Photocuring, thermosets, dynamic mechanical analysis, 670
Photodiode array detectors, high-performance liquid chromatography, 256–257
Photoelastic modulator (PEM), double modulation spectroscopy, 590–594
Photoemission electron microscopes (PEEMs), near-edge x-ray absorption fine structure spectroscopy: instrumentation, 386–391 polystyrene/poly(bromo styrene) thin-film blends and bilayers, 399–401
Photomultiplier tubes (PMT), laser light scattering detectors, 224–226
Photon correlation spectroscopy (PCS), dynamic laser light scattering, 215–218
Photon excitation:
near-edge x-ray absorption fine structure spectroscopy, 389–391
X-ray photoelectron spectroscopy, basic principles, 297–300
Photon scanning tunneling microscopy (STM), imaging techniques, 642
Photopatterning, dielectric analysis, thermoset cure characterization, 869–877
Physical aging, amorphous polymers, glass transition temperature, 14
Plane-polarized light (PPL):
optical microscopy, 607–609
polarized light microscopy, 612–615
XPL and DIC techniques compared with, 619–621
Plasticizer efficiency:
crystalline polymers, thermal analysis, 15–16
dynamic mechanical analysis, 855–860
Poiseuille equation, rheological viscosity measurement, capillary viscometers, 704–711
Poisson distribution:
atomic force microscopy, mechanical analysis, 427–431
molar mass of polymers, 9
molecular weight determination, 69
rheological measurement, elasticity/viscoelasticity, 696–701
scanning force microscopy, adhesive force measurement, 468–469
Polarity index, ionomer compounds, electron spin resonance probe, 913–915
Polarized light microscopy (PLM):
components, 607–609
contrast and resolution, 612–615
energy dispersive spectrometer and, 622
history, 606
Poly(acrylic acid) (PAA):
atomic force microscopy imaging, 444–446
vibrational analysis, disordered chain conformation, 549–550
Polyamides:
dynamic mechanical analysis, plasticizer and moisture effects, 856–860
secondary ion mass spectrometry, 318
Poly(bromostyrene) (PBrS), near-edge x-ray absorption fine structure spectroscopy:
basic principles, 379–386
thin-film blends and bilayers, 397–400
Polybutadiene (PB), near-edge x-ray absorption fine structure spectroscopy, elastomeric composites, 412–413
Trans-1,4-polybutadiene (TPBD), vibrational analysis:
chain conformation, 545–546
phase transformation, 558–561
Poly(n-butyl methacrylate) PnBMA, near-edge x-ray absorption fine structure spectroscopy, polystyrene/PnBMA thin-film blends, 403
Polycarbonates (PC):
microspectroscopic analysis, 572–575
modulated differential scanning calorimetry, polyethylene terephthalate (PET)/polycarbonate (PC), 821–823
near-edge x-ray absorption fine structure spectroscopy, multilayered and structured sphere composites, 411–412
Poly(dimethylsiloxane) (PDMS):
films, vibrational spectroscopy, surface analysis, 587–590
proton multiple-quantum nuclear magnetic resonance, segmental chain heterogeneity, 132–135
Polydispersity:
dynamic laser light scattering, 215–218
molecular weight determination, 68
size exclusion chromatography, 230–232
size exclusion chromatography:
calibration methods, 249–250
data analysis, 248–250
Polydivinylbenzene-55 (DVB55), near-edge x-ray absorption fine structure spectroscopy, 412
Polyelectrolytes, vibrational analysis, disordered chain conformation, 546–550
Polyesters, atomic force microscopy imaging, thermoplastics, 442
Polyethylene (PE):
 anisotropic assessment, vibrational spectroscopy, 576–579
 atomic force microscopy imaging, 439–443
dielectric relaxation, 890–893
scanning force microscopy, fiber and latex particle analysis, 481–484
spherulite morphology:
 banded growth patterns, 286–288
 crystalline structure, 288–289
Poly(ethylene-co-methacrylic acid) (EMAA),
electron spin resonance probe of, 911–915
Poly(ethylene oxide) (PEO):
crystallinity determination, X-ray diffraction, 754–757
vibrational spectroscopy:
 disordered chain conformation, 547–550
 poly(methyl methacrylate) blended with, 565–566
Poly(ethylene-alt-propylene) (PEP), near-edge x-ray absorption fine structure spectroscopy, PMMA blends, 407–408
Polyethylene terephthalate (PET):
 atomic force microscopy imaging, 442
 near-edge x-ray absorption fine structure spectroscopy, PET/Vectra blends, 406–408
 secondary ion mass spectrometry, oligomer detection and imaging, 322–327
Polyethylene terephthalate (PET)/polycarbonate (PC), modulated differential scanning calorimetry, 821–823
Poly(hexyl isocyanate) (PHIC), near-edge x-ray absorption fine structure spectroscopy, block copolymer thin films, 403–405
Polymides:
 atomic force microscopy, thermosets, 437–439
 near-edge x-ray absorption fine structure spectroscopy, thin film surfaces, 393–394
Polyisoprene (PI), near-edge x-ray absorption fine structure spectroscopy, elastomeric composites, 412–413
Polymer melts. See Melted polymers
Polymer-matrix composites (PMC):
 basic properties, 357–359
electromagnetic test methods, 364–365
 literature sources on, 358
 mechanical testing, 359
 morphological analysis, 367–368
 optical testing of, 361–362
 penetrating radiation testing, 362–364
 process monitoring and control testing, 370
 smart monitoring, 368–369
 sonic/ultrasonic testing of, 365–367
 structural integrity testing, 368
thermal testing, 367
vibrational spectroscopy, 569–575
Polymer blends. See Blended polymers
Polymer-matrix composites (PMC):
 basic properties, 357–359
electromagnetic test methods, 364–365
 literature sources on, 358
 mechanical testing, 359
 morphological analysis, 367–368
 optical testing of, 361–362
 penetrating radiation testing, 362–364
 process monitoring and control testing, 370
 smart monitoring, 368–369
 sonic/ultrasonic testing of, 365–367
 structural integrity testing, 368
thermal testing, 367
vibrational spectroscopy, 569–575
Polymer melts. See Melted polymers
Polymers. See also Thermosets; specific polymers, e.g. Elastomers
definition and classification, 1–3
Poly(methyl methacrylate) (PMMA):
electron spin resonance studies, 895
near-edge x-ray absorption fine structure spectroscopy:
 poly(ethylene-alt-propylene) blend, 407–408
 polystyrene/PMMA with PS-b-PMMA copolymer blends and bilayers, 402–403
 PS/PMMA thin-film blends, 400, 402
vibrational spectroscopy, poly(ethylene oxide) blended with, 565–566
Polymethylene chains, vibrational spectroscopy, phase transformation, 560–561
Polymorph identification, polarized light microscopy, 615
Poly(N-isopropylacrylamide) (PIPA) gels, atomic force microscopy imaging, 452
Polyolefins, scanning force microscopy, fiber and latex particle analysis, 481–484
Polyoxymethylene (POM):
 atomic force microscopy imaging, 442
 crystallinity index, X-ray diffraction, 753–757
Poly(p-phenylene terephthalamide) (PPTA),
atomic force microscopy imaging, 444
i-Polypropylene, spherulite morphology, 281–289
Polypropylene (PP):
 atomic force microscopy imaging, 439–442
 crystallinity index, X-ray diffraction, 753–757
toughness assessment, 792–794
Polypropylene/dioctyl phthalate (PP/DOP) solutions, flow-induced structural analysis, neutron scattering, 525–526
Polypropylene-polyisoprene (PS-PI-S), pulsed electron spin resonance probes of, 916–920
Polystyrenes (PSs):
 atomic force microscopy imaging, 439–442
crazing in, 780–785
electron spin resonance studies, 895
near-edge x-ray absorption fine structure spectroscopy:
 basic principles, 379–386
 block copolymer thin films, 403–405
 polystyrene/PMMA with PS-b-PMMA copolymer blends and bilayers, 402–403
 PS/PBrS thin-film blends and bilayers, 397–400
 PS/PMMA thin-film blends, 400, 402
 PS/poly(n-butyl methacrylate) thin-film blends, 403
 neutron scattering, gyration radius, 520
INDEX 963

Polystyrenes—cont.
scanning force microscopy morphological analysis, polystyrene-b-PMMA on mica, 474–475
thermogravimetric analysis, 832–833
vibrational spectroscopy, poly(vinyl methyl ether) blended with, 565–566
Polytetrafluoroethylene (PTFE), atomic force microscopy imaging, 442
Polyurea polymers, near-edge x-ray absorption fine structure spectroscopy, 408–410
Polyurethanes:
 near-edge x-ray absorption fine structure spectroscopy, 408–410
 secondary ion mass spectrometry, 318
 vibrational spectroscopic characterization, 561–566
Poly(vinyl alcohol) (PVOH), dynamic mechanical analysis, plasticizer and moisture effects, 855–860
Poly(vinyl chloride) (PVC):
 dynamic mechanical analysis, impact testing, 861–864
 thermogravimetric analysis, 832–833
Poly(vinyl methyl ether) (PVME), vibrational spectroscopy, polystyrene blended with, 565–566
Pore size, high-performance liquid chromatography, 254–256
Positron annihilation lifetime spectroscopy (PALS):
morphological polymer characterization, 21
 techniques, 44–45
Positron annihilation spectroscopy (PAS), penetrating radiation polymer testing, 364
Post-cure process, thermoset curing, dynamic mechanical analysis, 670
Power compensation differential scanning calorimetry, 808–810
Power law region:
 dynamic mechanical analysis, melt polymers, 666–668
 viscosity measurement, 679–681
Preparative temperature rising elution fractionation (P-TREF), polymer characterization, 4
Prepolymers, matrix-assisted laser desorption/ionization (MALDI) spectrometry:
 end-group analysis, 203–204
 structural analysis, 206–208
Pressure-driven piston cylinder capillary viscometer, rheological viscosity measurement, 710–711
Pressure parameters—cont.
rheological viscosity measurement, capillary viscometers, 704–711, 714
Pressure-volume-temperature (PVT), processing test techniques, 46–47
Principal component analysis (PCA), infrared spectroscopy, quantitative analysis, 104
Probe configuration, thermomechanical analysis, 841–843
Processing properties, polymer characterization, 46–47
Process monitoring and control:
 nondestructive testing for, 370
 scanning force microscopy, 480–484
Protein structure, contrast variation, neutron scattering, 526–527
Proteomics, high-performance liquid chromatography, biological polymer separation, 263–264
Protonated polymers, neutron scattering, dendrimer end group location, 519
Proton exchange membranes (PEMs), electron spin resonance probes, 909–915
Proton (1HNMR) nuclear magnetic resonance:
 contrast parameters, material properties, 164–166
 crystallinity determination, 764–765
 molecular dynamics of polymers, 22
 molecular structure characterization, 6–7
 multiple-quantum analysis, dipolar couplings, 127–135
 one-dimensional nuclear magnetic resonance studies, Van Vleck moments, 127
 thermoplastic elastomers, deuterium nuclear magnetic resonance spectroscopy, 157
 viscoelastic polymers, two-dimensional magnetization exchange, chain orientation, 142–147
Proton intergroup residual dipolar couplings, two-dimensional proton magnetization exchange, 146–147
Pull-off/pull-out force, scanning force microscopy measurement, 468–469
 surface analysis, 487–489
 Pulsed electron nuclear double resonance, 904
 Pulsed electron spin resonance, block copolymers, 915–920
Pulsed force mode scanning force microscopy (SFM):
 basic principles, 466
 surface analysis, 487–489
 Pulse-induced critical scattering, weight-average molecular weight, 75
Pulse sequences:
 nuclear magnetic resonance spin-echoes, 119–122
 contrast parameters, 167–170
INDEX

Pulse sequences—cont.
 one-dimensional nuclear magnetic resonance
 studies, Van Vleck moments, 125–127
Pumping/injection systems:
 high-performance liquid chromatography,
 solvent delivery, 253–254
 size exclusion chromatography, 242–243
Pyrolysis:
 molecular structure characterization, 7
 polymer composition and structure, 34–38
Pyrolysis-gas chromatography, polymer
 composition and structure, 34–38
Pyrolysis-infrared (IR) spectroscopy, polymer
 composition and structure, 33–38
Quadrupolar interactions, nuclear magnetic
 resonance technology, 114
Quadrupole mass spectrometry (QMS),
 secondary ion mass spectrometry, 308–310
Qualitative analysis, high-performance liquid
 chromatography, 257
Quality control:
 elastomers, NMR-MOUSE sensor, 178–181
 stress cracking, fractographic analysis,
 349–356
Quantitative analysis:
 fracture evaluation, 353–356
 high-performance liquid chromatography, 257
 infrared spectroscopy, 102–104
 near-edge x-ray absorption fine structure
 spectroscopy:
 image analysis, 390
 microanalysis, 390
 one-dimensional nuclear magnetic resonance
 studies, transverse relaxation, network
 properties, 139–140
 secondary ion mass spectrometry, 322
Quantitative spin system evolution, nuclear
 magnetic resonance technology and,
 112–113
Quantum mechanics:
 nuclear magnetic resonance technology and,
 112–113
 spin-echoes, 119–120
 vibrational spectroscopy, 535–541
Quasi-elastic light scattering (QELS), basic
 principles, 215–218
Rabinowitsch correction, rheological viscosity
 measurement, capillary viscometers,
 710–711
Radiation damage, micromechanical properties
 analysis, 775
Radiofrequency pulse:
 Fourier transform nuclear magnetic
 resonance, crystallinity determination,
 765–766
 nuclear magnetic resonance technology and,
 111–113
 Radius of gyration, molar mass of polymers,
 11
 Raman shift, Raman microprobe techniques,
 623–624
Raman spectroscopy:
 crystallinity determination, 760–762
 microspectroscopic techniques, heterogeneous
 polymers, 567–575
 molecular structure characterization, 5–6
 ordered chain conformation, 543–546
 polymer composition and structure, 33–38
 Raman microprobe, 623–624
 vibrational analysis, 532–535
 amorphous polymers, low-frequency
 analysis, 556–558
 anisotropic assessment, 577–579
 chain conformation, 542–543
 disordered chain conformation, 547–550
 phase transformation, 558–561
 surface analysis, 581–590
 unit-size analysis, 550–556
 Raoult’s law, vapor pressure, number-average
 molecular weight determination, 70
Raster scanning, atomic force microscopy
 imaging, 422–426
Ray diagram, laser scanning confocal
 microscope, 609–610
Rayleigh constant:
 near-edge x-ray absorption fine structure
 spectroscopy, 387–391
 size exclusion chromatography, molecular
 weight sensitive detectors, 245–247
Rayleigh ratio, static laser light scattering,
 213–214
Rayleigh scattering, vibrational analysis,
 533–535
Real-time structure development and processes:
 dielectric relaxation of polymers, 893
 scanning force microscopy, 492–497
 Recovery curves, viscoelastic rheological
 measurement, 729–733
Reflectance infrared spectroscopy:
 polymer surface analysis, 586–590
 sampling methods, 95–97
 vibrational analysis, 581–590
Refractive index:
 attenuated total reflectance (ATR)
 spectroscopy, 95–97
 laser light scattering, 226–228
 neutron scattering experiments, 509–514
 optical microscopy, darkfield illumination,
 616–617
Reinforced polymers, weld-line failure,
 fractographic analysis, 351–352
Relative permittivity, dielectric analysis,
 849–851
 thermoset curing, 872–877
Relative viscosity, dilute polymer solutions, 685–687

Relaxation effects. See also Dielectric relaxation spectroscopy (DRS)
dielectric analysis, thermoset curing, 872–877
dielectric relaxation times, 883–884
dynamic mechanical analysis:
impact testing, 860–864
plasticizer and moisture effects, 855–860
viscoelastic relaxation, 853–854
molecular dynamics of polymers, 21–22
nuclear magnetic resonance technology, 114–116
contrast parameters, 163–166
NMR-MOUSE quality control sensor, elastomer quality control, 179–181
time-domain electron spin resonance spectroscopy, 902–903
Reorientational motions, dielectric relaxation of polymers, 888
Reptation, rheological viscosity measurement, melt polymers, 689–690
Resins:
curing process, dynamic mechanical analysis, 668–670
dielectric analysis, thermoset curing, 872–877
Resolution parameters. See also Spatial resolution
Fourier transform infrared spectrometry, 93
optical microscopy, 609–612
Retention mechanisms, high-performance liquid chromatography, 257–261
polymer thermodynamics, 261–262
Reversed-phase separation, high-performance liquid chromatography, 255–256
gradient elution, 259–260
Reverse engineering, polymer-matrix composite testing, 369
Rheology:
applications, 739–741
basic principles, 676–677
concentrated polymer solutions, 687–688
dielectric analysis, thermoset cure characterization, 872–877
dilute polymer solutions, 685–687
dispersed systems, 690–693
elasticity and viscoelasticity, 695–701
dynamic behavior, 697–701, 733–736
fluids, 733–737
measurement techniques, 729–733
mechanical behavior and models, 696–697
normal stress (Weissenberg effect), 700–701
time-temperature superposition and master curves, 737–739
electrorheological behavior, 694–695
extensional viscosity, 694
Rheology—cont.
flow models, 679–681
melt viscosity, 688–690
molecular dynamics of polymers, 22–223
molecular weight distribution measurements, 81
temperature effects, 684–685
test methods, 46–47
thixotropy and time effects, 681–684
viscometers, 701–726
capillary viscometers, 703–711
moving body viscometers, 723–725
rotational viscometers, 711–723
viscosity, 677–678
extensional measurement techniques, 726–739
Rheometric Melt Elongational Rheometer (RME), extensional viscosity measurement, 727–729
Rheoptical techniques, micromechanical analysis, 777
Rheopexy, viscosity measurement, 681–684
Rheo-Tex rheometer, rheological viscoelasticity measurement, 731–733
Rolling-ball viscometers, rheological viscosity measurement, 725
Rotational isomeric conformation, vibrational spectroscopy:
disordered chain conformation, 547–550
normal coordinate analysis, 541
Rotational relaxation, dynamic laser light scattering, 217–218
Rotational viscometers, rheological viscosity measurement, 711–723
Roughness characteristics of polymer surfaces:
atomic force microscopy, 453, 455
scanning force microscopy, 484
Rubber network toughening, heterogeneous polymers, 787–792
Rubbery materials:
dynamic mechanical analysis, thermoplastic/thermoset polymers, rubbery plateau, 661–662
one-dimensional nuclear magnetic resonance studies, transverse relaxation, network properties, 137–140
thermogravimetric compositional analysis, 833–836
thermomechanical analysis, cure profile, 845–846
toughness enhancement, heterogeneous polymers, 785–792
Ruland method, X-ray diffraction, absolute degree of crystallinity, 755–756
Rydberg transitions, near-edge X-ray absorption fine structure spectroscopy, saturated polymers, 383–386
Salt dispersion, matrix-assisted laser desorption/ionization (MALDI) spectrometry, solid matrix preparation, 195–196

Sample preparation:
differential scanning calorimetry, 813
fractographic analysis, 335
heterogeneous polymers, vibrational spectroscopic techniques, 567–575
high-performance liquid chromatography, 254
laser light scattering, 226
matrix-assisted laser desorption/ionization (MALDI) spectrometry, solid matrices, 195–196
polymer characterization, 3–5
thermogravimetric analysis, 826–827
thermomechanical analysis, 840–841
X-ray photoelectron spectroscopy, polymer surface analysis, sampling depths, 300
Sample size parameters, differential scanning calorimetry, 812–813
Saturated polymers, near-edge X-ray absorption fine structure spectroscopy, basic principles, 383–386
Scanning atomic force microscopy (SAFM), morphological polymer characterization, 21
Scanning auger microscopy (SAM), optical imaging, 633–634
Scanning electron microscopy (SEM):
basic principles, 601
components of, 627–629
fractographic analysis, 332–335
history, 625–626
imaging modes, 628–630
micromechanical properties analysis, 773–775
morphological polymer characterization, 20
optical imaging applications, 627–633
structure and instrumentation, 333–335
Scanning force microscopy (SFM):
evolution of, 460–461
force measurements, 466–474
adhesive forces, 467–469
entropic/enthalpic elasticity, 469
indentation measurements, 469–470
lateral forces, 471–474
future research issues, 497
imaging modes, 462–466
contact mode SFM, 462–464
force modulation mode, 465
intermittent contact mode SFM, 464–465
micromechanical properties analysis, 773–775
real-time structure development and processes, 492–497
dynamic processes, 494–497
polymer crystallization, 492–494
semicrystalline morphology, 474–484
chain packing, 475–479
Scanning electron microscopy—cont.
fibers, latex particles, and polymer processing, 480–484
lamellar crystals, 477–479
macromolecules, 474–475
multilamellar crystals, hedrites, and spherulites, 479–480
surface properties and composition, 484–492
forces and energies, 484–489
mechanical properties, 489–492
Scanning near field optical microscopy (SNOM), polymer testing, 361–362
Scanning probe microscopy (SPM):
atomic force microscopy, 637–640
basic principles, 601
comparison with other techniques, 602–603
history, 634
mechanical testing of polymers, 359
near-field scanning optical microscope, 640–642
photon scanning tunneling microscopy, 642
scanning tunneling microscopy, 634–637
Scanning thermal microscopy (STHM), development of, 431–434
Scanning transmission electron microscopy (STEM), optical imaging applications, 627
Scanning transmission x-ray microscopes (STXM), near-edge x-ray absorption fine structure spectroscopy, instrumentation, 387–391
Scanning tunneling microscopy (STM):
avoid force microscopy and, 420–421
basic principles, 601
comparison with other techniques, 602–603
optical imaging, 634–637
scanning force microscopy and, 460–461
Scanning X-ray microscopy (SXM), optical imaging, 643–644
Scattering techniques, micromechanical properties analysis, 775–776
Schrödinger equation, nuclear magnetic resonance technology and, 111–113
Schulz-Flory distribution:
molar mass of polymers, 9
molecular weight determination, 68
Secondary ion mass spectrometry (SIMS):
organic molecules, 319–321
quantitative analysis, 322
surface analysis, 307–319
EMA copolymers, 327–329
halogen-containing polymers, 318–319
hydrocarbon polymers, 312
in-chain functionality, 312–313
instrumentation, 308–310
nitrogen-containing polymers, 318
oligomer detection and imaging, 322–327
physical properties, 307–308
Secondary ion mass spectrometry—cont.
polymer spectra, 311–312
quantitative analysis, 322
side-chain functionality, 313–318
silicones, 319
spectral features and information, 311
Sectorization, lamellae, solution-based chainfolding, 269–271
Segmental orientation:
anisotropic assessment, vibrational spectroscopy, 575–579
double modulation spectroscopy, 591–594
dynamic mechanical analysis, rubbery plateau, 661–662
proton multiple-quantum nuclear magnetic resonance:
deformation-induced anisotropy, 135
grafted polymers, 132–135
thermoplastic elastomers, deuterium nuclear magnetic resonance spectroscopy, 157
two-dimensional nuclear Overhauser effect spectroscopy, 147–150
Selected area electron diffraction (SAED), scanning electron microscopy, 627
Self-assembled polymers:
diblock copolymers, laser light scattering analysis, 221–222
oligomeric monolayers, atomic force microscopy, 436
Semiconductors, microspectroscopic analysis, heterogeneous polymers, 571–575
Semicrystalline polymers:
crystallinity index, X-ray diffraction, 753–757
differential scanning calorimetry, melting analysis, 819–824
modulated DSC techniques, 821–823
parallel, concurrent, and simultaneous techniques, 823–824
traditional methods, 819–821
dynamic mechanical analysis:
amorphous and crystalline polymer relaxation, 855
viscoelastic relaxation, 853–854
scanning force microscopy morphological analysis, 474–484
chain packing, 475–479
fibers, latex particles, and polymer processing, 480–484
lamellar crystals, 477–479
macromolecules, 474–475
multilamellar crystals, hedrites, and spherulites, 479–480
thermal analysis, 14–16
toughness assessment, 792–794
vibrational spectroscopy, unit-size analysis, 553–556
yielding behavior in, 795–797
Sensor devices:
dielectric analysis, thermoset cure characterization, 869–877
nuclear magnetic resonance imaging, elastomer quality control, 178–181
Separation techniques:
high-performance liquid chromatography, 257–261
biological polymers, 263–264
gradient elution, 259–260
isocratic elution, 257–259
multidimensional separation, 260–261
synthetic polymers, 264–265
mass spectrometry, 191–193
polymer characterization, solubility separation, 3–4
size exclusion chromatography, 232–236
Shadow projection X-ray microscopy, optical imaging, 643–644
Shake-up satellites, X-ray photoelectron spectroscopy, surface analysis, 304
Shearing speckle pattern interferometry (SSPI), optical testing of polymers, 361–362
Shear rates:
dynamic mechanical analysis, 847–848
melt polymers, 667–668
thermoplastic polymers, 852–853
fractographic analysis, 338, 341
rheological measurement:
concentrated polymer solutions, 687–688
practical application, 739–741
rotational viscometers, 718–723
thixotropy and time effects, 681–684
viscometric detectors, 701–703
viscosity, 677–678
test methods for, 46–47
Shear thickening, rheological viscosity measurement, dispersed polymer systems, 693
Side-chain functionality, secondary-ion mass spectrometry, 313–318
Siegert relation, dynamic laser light scattering, 215–218
Signal axis quantification, matrix-assisted laser desorption/ionization (MALDI) spectrometry, molecular mass distribution, 197–200
Signal-to-noise ratio (SNR), Fourier transform infrared spectrometry, 93
Silicon avalanche photodiode (SAP), laser light scattering, 225–226
Silicones, secondary ion mass spectrometry, 319
Silk crystallization behavior, orientated substrates, vibrational spectroscopy, 589–590
Silly Putty, dynamic mechanical analysis, 666–668
Single molecule force spectroscopy (SMFS), entropic/enthalpic elasticity, 470
Single-quadrupole mass spectrometry detectors, high-performance liquid chromatography, 257
Single-quantum (SQ) properties, nuclear magnetic resonance spin coherences, 118
two-dimensional Fourier spectroscopy, 122–123
Single relaxation time (SRT), dielectric relaxation of polymers, 884–888
Singular value decomposition (SVD), near-edge x-ray absorption fine structure spectroscopy:
polystyrene/poly(bromo styrene) thin-film blends and bilayers, 398–400
quantitative image analysis, 390–392
Sinusoidal stress analysis:
dynamic mechanical analysis techniques, 847–848
rheological techniques, elasticity/viscoelasticity, 698–701
SI units, rheological measurement, 678
Size exclusion chromatography (SEC):
basic principles, 230–239
dispersion mechanisms, 237–239
separation mechanism, 232–236
calibration, 249–250
column technology, 239–240
concentration detectors, 243–244
data analysis, 247–249
eluent selection, 240–241
instrumentation, 241–242
matrix-assisted laser desorption/ionization (MALDI) spectrometry, molecular mass distribution, 201–203
molecular size determination, 4–5
molecular weight determination, 38–39
detectors, 244–247
polymer composition and structure, 32–38
pumping/injection systems, 242–243
Sizing criteria, polymer-matrix composite testing, 368–369
Sliding plate rheometer:
extensional viscosity measurement, 727–729
rheological viscosity measurement, 725
Small-angle electron scattering (SAES), micromechanical analysis, 776
Small-angle light scattering (SALS):
flow-induced structural analysis, 525–526
micromechanical analysis, 776
polymer composition and structure, 35–38
Small-angle neutron scattering (SANS):
flow-induced structural analysis, 525–526
gyration radius, polymer blends, 519–520
ionomers, electron spin resonance probes of, 909–915
Small-angle neutron scattering—cont.
micromechanical neutron analysis, 776
polymer composition and structure, 35–38
Small-angle X-ray scattering (SAXS):
crystallinity determination, basic principles, 754–757
dendrimer end group location, 518–519
ionically end-functionalized block copolymers, 916–920
ionomers, electron spin resonance probes of, 909–915
micromechanical analysis, 776
morphological polymer characterization, 19
penetrating radiation polymer testing, 364
polymer composition and structure, 35–38
polymer morphology, 268
vibrational analysis, unit-size analysis, 550–556
Small area electron diffraction (SAED) pattern, near-edge x-ray absorption fine structure spectroscopy, block copolymer thin films, 404–405
Smart monitoring techniques, nondestructive polymer testing, 368–369
Smectic liquid crystal phases, crystalline polymers, thermal analysis, 14–16
Sodium, secondary ion mass spectrometry, oligomer detection and imaging, 326–327
Soft ionization techniques, mass spectrometry analysis, 191
Solid materials:
infrared spectroscopy, quantitative analysis, 104
matrix-assisted laser desorption/ionization (MALDI) spectrometry, 194–196
Solid-state imaging:
nuclear magnetic resonance principles, 158–170
time-domain electron spin resonance spectroscopy, 902–903
Solomon equation, nuclear magnetic resonance relaxation times, 115–116
Solubility parameters:
polymer characterization, 25
polymer fractionation, 3–4
size exclusion chromatography, separation techniques, 236
Solution parameters:
lamellae:
chainfolding and, 269–274
melt crystallization, 275–278
polymer characterization, 9, 11
Solvent delivery, high-performance liquid chromatography, 253–254
Sonic test methods, nondestructive polymer testing, 365–367
INDEX 969

Spallation, neutron scattering experiments, 513–514

Spatial resolution:
contact mode scanning force microscopy (SFM), 463–464
near-edge x-ray absorption fine structure spectroscopy, 386–391
nuclear magnetic resonance imaging, 157–170
contrast properties, 162–170
frequency encoding, 160–161
heterogeneous compounds, spin-system response, 159–161
phase encoded spatial resolution, 161–162
vibrational spectroscopy, heterogeneous polymers, 567–575
X-ray photoelectron spectroscopy, surface analysis, 300–302

Spectral analysis:
infrared spectroscopy, 100–104
group frequencies, 100–101
quantitative analysis, 102–104
spectrum manipulation, 101–102
one- and two-dimensional spectral-spatial electron spin resonance imaging, spatially resolved degradation, 924–926
secondary ion mass spectrometry, polymer spectra, 311–312
Spectral densities, nuclear magnetic resonance relaxation times, 116
Spectroscopic low energy electron microscope (SPLEEM), near-edge x-ray absorption fine structure spectroscopy, 389–391
Spectrum manipulation, infrared spectroscopy, 101–102
Spherical particles, rheological viscosity measurement, dispersed polymer systems, 692–693
Spherulites:
dielectric relaxation, 890–893
morphological characterization, 281–289
banded structures, 286–288
crystallization, 288–289
growth patterns, 283–284
monodisperse long n-alkanes, 285–286
scanning force microscopy analysis, 479–480
tensile deformation, 291–293
Spin coherences, nuclear magnetic resonance: basic principles, 116–118
heterogeneous compounds, 159–161
spatial resolution, 157–170
Spin density distribution:
elastomer vulcanization/co-vulcanization, parameter mapping, 175
heterogeneous compounds, nuclear magnetic resonance imaging, 159–161
Spin-echoes, nuclear magnetic resonance principles, 118–120
contrast parameters, 168–170
Spin interactions:
nuclear magnetic resonance technology, 113–114
two-dimensional Fourier spectroscopy, 121–132
one-dimensional nuclear magnetic resonance studies:
dipolar-encoded longitudinal magnetization, 130–135
Van Vleck moments, 126–127
Spinodal decomposition, polymer blends, neutron scattering, 520–523
Stability, polymer characterization, 24
“Stagnant” mobile phase mass transfer, high-performance liquid chromatography, 263
Standards:
differential scanning calorimetry, 810–812
thermogravimetric analysis, 828–832
Star-block copolymers, yielding in, 801–803
Static laser light scattering:
basic principles, 213–214
defined, 212
Static permittivity, dielectric relaxation of polymers, 886–888
Static scattering experiments, neutron scattering, 508–514
Step-growth polymerization, mechanisms, 2–3
Step scan differential scanning calorimetry (SCDSC), semicrystalline polymer melting, 821–823
Step-shear test, rheological viscosity measurement, thixotropy and time-dependent effects, 683–684
Stereology, quantitative fracture analysis, 354–356
Steric forces:
amorphous polymers, low-frequency analysis, 556–558
scanning force microscopy (SFM), 484–489
Steric hindrance, molecular organization and dynamic behavior of polymers, 12–18
Stokes-Einstein relation, laser light scattering, 218
Stokes’ law, rheological viscosity measurement, moving body viscometers, 723–725
Stokes-Raman scattering, vibrational analysis, 534–535. See also Anti-Stokes Raman scattering
Storage modulus:
dynamic mechanical analysis, impact testing, 861–864
rheological measurements, elasticity/viscoelasticity, 698–701
Storage modulus—cont.
thermoplastic polymers, dynamic mechanical analysis, 851–853
Strain:
dielectric analysis, 849–851
dynamic mechanical analysis techniques, 649–650, 847–848
forced frequency analyzers, 650–652
instrumentation, 654–656
polymer characterization, 16–17
rheological elasticity/viscoelasticity measurement, 696–697
Stress analysis:
dynamic mechanical analysis, 649–650, 847–848
forced frequency analyzers, 650–652
instrumentation, 654–656
environmental effects testing, 51–53
near-edge x-ray absorption fine structure spectroscopy, polyimide thin film surfaces, 394–396
polymer characterization, 16–17
rheological measurements:
elasticity/viscoelasticity, 696–701
rotational viscometers, 721–723
thixotropy and time-dependent effects, 682–684
Weissenberg effect, 700–701
Stress cracking. See Crazing
Stress fracture, fractographic analysis, 338
Stress relaxation tests:
polymer characterization, 18
rheological viscoelasticity measurement, 730–733
techniques, 49–50
Stress-strain tests:
dynamic mechanical thermal analysis, 42–45
polymer mechanics, 16–17
rheological viscoelasticity measurement, penetration and indentation analysis, 732–733
Stretching vibrations:
heterogeneous compounds, vibrational spectroscopy, 561–566
polymer surface analysis, 582–590
Structural analysis of polymers. See also
Micromechanical properties
matrix-assisted laser desorption/ionization (MALDI) spectrometry, 206–208
neutron scattering techniques, 514–516
nondestructive testing, 368
scanning force microscopy, 492–497
dynamic processes, 494–497
polymer crystallization, 492–494
size exclusion chromatography, molecular weight sensitive detectors, 246–247
testing methods for, 32–38
Structural analysis of polymers—cont.
vibrational spectroscopy, 542–566
amorphous polymers, low-frequency observations, 556–558
chain configuration, 542–543
disordered conformation, 546–550
ordered conformation, 543–546
heterogeneous polymer spectroscopic characterization, 561–566
phase transformation, 558–561
unit-size analysis, 550–556
Structured light testing, optical testing of polymers, 362
Structured polymer spheres, near-edge x-ray absorption fine structure spectroscopy, 411–412
Styrene-acrylonitrile (SAN) copolymer:
crazing in, 781–785
Styrene acrylonitrile (SAN) copolymer, near-edge x-ray absorption fine structure spectroscopy:
basic principles, 378–386
polyurethanes and polyureas, 408–410
Styrene-butadiene rubber (SBR):
cross-linked polymers:
proton multiple-quantum NMR analysis, residual dipolar couplings, 153
two-dimensional proton magnetization exchange, chain orientation, 143–147
near-edge x-ray absorption fine structure spectroscopy, elastomeric composites, 412–413
proton multiple-quantum NMR analysis, residual dipolar couplings, 153
thermogravimetric analysis, 832–833
Subsidiary lamellae, melt-crystallized lamellae morphology, 276–278
Superabsorbent polymers (SAPs), near-edge x-ray absorption fine structure spectroscopy, lightly cross-linked homopolymers, 395–396, 398–399
Superconducting quantum interference devices (SQUID), nondestructive polymer characterization, 365
Supercritical fluid chromatography (SFC):
Fourier transform infrared spectrometry, 99
molecular weight distribution, 79–81
Supermolecular organization, morphological polymer characterization, 20–21
Superposition principle, rheological viscoelasticity measurement, 737–739
Supramolecular hydrogen bond assemblies, thermoplastic elastomers, deuterium nuclear magnetic resonance spectroscopy, 157
Surface analysis. See also Morphological polymer characterization
atomic force microscopy, 453–456
Surface analysis—cont.
 adhesion, 453–454
 friction, 454–455
 modifications, 455–456
 morphology and orientation, 453
 roughness characteristics, 453
basic principles, 297
melt-crystallized lamellae morphology, 280–281
organic molecules, 319–321
scanning force microscopy, 484–492
forces and energies, 484–489
mechanical properties, 489–492
secondary ion mass spectrometry, 307–319
 EMA copolymers, 327–329
 halogen-containing polymers, 318–319
 hydrocarbon polymers, 312
 in-chain functionality, 312–313
 instrumentation, 308–310
 nitrogen-containing polymers, 318
 oligomer detection and imaging, 322–327
 physical properties, 307–308
 polymer spectra, 311–312
 quantitative analysis, 322
 side-chain functionality, 313–318
silicones, 319
 spectral features and information, 311
vibrational spectroscopy, 579–590
X-ray photoelectron spectroscopy, 297–307
 core level binding energies, 302–304
 functional group labeling, 305–307
 instrumentation, 300–302
 physical properties, 297–300
 shake-up satellites, 304
valence bands, 304–305
Surface-enhanced Raman scattering (SERS), basic principles, 624
Surfactant additives, scanning force microscopy, polymer processing, 483–484
Synchrotron radiation:
 near-edge X-ray absorption fine structure spectroscopy, 384–386
 X-ray diffraction, crystallinity index, 753–757
Syndiotactic polypropylenes (sPPs), vibrational analysis:
 chain conformation, 542–543
 disordered chain conformation, 546–550
 ordered chain conformation, 543–546
Synthetic polymers:
 definition and classification, 1–3
 high-performance liquid chromatography:
 separation, 264–265
 thermodynamic theory, 262
Tandem scanning microscopy (TSM), optical imaging, 622
Tapping mode atomic force microscopy (TMAFM):
 development of, 425–427, 435
 optical imaging, 638–640
Tear fracture, fractographic analysis, 338–340
Telechelic ionomers, pulsed electron spin resonance, 915–920
Temperature calibration curve:
 differential scanning calorimetry, 811–812
 thermogravimetric analysis, 830–832
 thermomechanical analysis, 840
Temperature cells, infrared spectroscopy, 99
Temperature effects:
 rheological viscosity measurement, 684–685
 melt polymers, 689–690
 viscometric detectors, 701–703
 thermogravimetric analysis, 827–828
Temperature rising elution fractionation (TREF):
 molecular weight determination, 38–39
 molecular weight distribution, 77
 polymer characterization, 4
Temperature vs. time plots, thermogravimetric analysis, 826
Tensile properties:
 block copolymers, yield stress, 798–803
 dynamic mechanical analysis, 847–848
 fractographic analysis, genuine vibration fracture, 344–346
 mechanical testing of polymers, 359
 micromechanical properties analysis, 774–775
 morphological polymer characterization, 291–293
 rheological viscoelasticity measurement:
 dynamic mechanical analysis, 736
 penetration and indentation analysis, 732–733
testing techniques, 47–50
Terminal region, dynamic mechanical analysis, thermoplastic/thermoset polymers, 662–663
Test methods, polymer characterization, 31–57.
 See also specific methods, e.g.
 Thermogravimetric analysis
 composition and structure, 32–38
 electrical properties, 54–55
 environmental effects, 50–53
 flammability properties, 55–56
 mechanical properties, 47–50
 molecular weight, 38–39
 nondestructive techniques, 56–57
 optical properties, 53–54
 processing properties, 46–47
 thermal properties, 39–45
Tetraethylorthosilicate (TEOS), atomic force microscopy imaging, 451–452
Tetrahydrofuran (THF), high-performance liquid chromatography, isocratic elution, 258–259
Thallium/iodide, attenuated total reflectance (ATR) spectroscopy, 96–97
Thermal analysis (TA):
 atomic force microscopy, 431–434
 basic principles, 805–807
 crystallinity determination, 757–760
 dielectric analysis, 846–851
 amorphous and crystalline polymers, 854
 cross-linked polymers, 864–867
 glass transition temperature, 851–853
 impact behavior, 860–864
 plasticizer and moisture effects, 855–860
 thermoplastics, 851–864
 thermoset cures, 867–877
 glass transitions, 870
 viscoelastic relaxation, 853–854
 differential scanning calorimetry, 808–824
 calibration and standards, 810–812
 glass transition temperature, 816–819
 instrumentation, 808–810
 operating parameters, 812–814
 polymer characterization, 814–824
 semicrystalline polymers, 819–824
 differential thermal analysis, 807–808
 operating parameters, 812–814
 dynamic mechanical analysis, 846–851
 amorphous and crystalline polymers, 854
 cross-linked polymers, 864–867
 glass transition temperature, 851–853
 impact behavior, 860–864
 plasticizer and moisture effects, 855–860
 thermoplastics, 851–864
 viscoelastic relaxation, 853–854
 environmental effects testing, 51–53
 infrared spectroscopy, 99
 molecular organization and dynamic behavior of polymers, 12–16
 nondestructive polymer testing, 367
 test methods, 39–45
 thermogravimetry, 824–838
 calibrations and standards, 828–832
 instrumentation, 824–826
 mass, 826–827
 polymer characterization, 832–838
 temperature, 827–828
 thermomechanical analysis, 838–846
 degree of cure, 843, 845–846
 derivative techniques, 843
 expansion mode, 843–844
 flexure mode, 844–845
 instrumentation, 838–840
 penetration mode, 844
 probe configuration, 841–842
 sample preparation, 840–841
Thermal conductivity, differential scanning calorimetry measurement, 824
Thermal equilibrium:
 differential scanning calorimetry, glass transition temperature, 817–818
 nuclear magnetic resonance technology and, 112–113
Thermal expansion curves, thermomechanical analysis instrumentation, 838–840
Thermal Field Flow Fractionation (ThFFF), polymer characterization, 4
Thermal imaging, nondestructive polymer testing, 57
Thermally stimulated conductivity, electrical properties of polymers, 54–55
Thermally stimulated creep (TSCr) method, rheological viscoelasticity measurement, 730–733
Thermally stimulated current spectrometry rheological viscoelasticity measurement, 730–733
Thermal stability of polymers:
 crystalline polymers, 15–16
 thermogravimetric analysis, 832–833
Thermal transport, differential scanning calorimetry, 814
Thermocoupling devices, thermogravimetric analysis, 827–828
Thermodynamics:
 polymer chromatographic theory, 261–262
 vibrational spectroscopy, heterogeneous polymers, 561–566
Thermogravimetric analysis (TGA), 824–838
 calibrations and standards, 828–832
 Fourier transform infrared spectroscopy, 99
 instrumentation, 824–826
 mass, 826–827
 polymer composition and structure, 33–38
 simultaneous or combined techniques, 836–838
 techniques, 39–45
 temperature, 827–828
Thermomagnetometry, differential scanning calorimetry, 811–812
Thermomechanical analysis (TMA), 838–846
 atomic force microscopy, 433–434
 degree of cure, 843, 845–846
 derivative techniques, 843
 expansion mode, 843–844
 flexure mode, 844–845
 instrumentation, 838–840
 penetration mode, 844
 probe configuration, 841–842
Thermomechanical analysis—cont.
rheological viscoelasticity measurement, penetration and indentation, 731–733
sample preparation, 840–841
techniques of, 42–45
thermoplastic/thermoset polymers, 663–664
thermoset curing, 670
Thermoplastics:
atomic force microscopy, 439–443
definition and classification, 2–3
deuterium nuclear magnetic resonance studies, 155–157
dielectric analysis, 850–851
differential scanning calorimetry, melt analysis, 819–824
dynamic mechanical analysis, 656–664, 851–864
amorphous and crystalline polymer relaxation, 854–855
ASTM test, 663–664
frequency dependencies in transition studies, 663–664
glass transitions, 659–661, 851–853
impact behavior, 860–864
plasticizer and moisture effects, 855–860
rubbery plateau, 661–662
sub-glass transitions, 658–659
terminal region, 662
viscoelastic relaxation, 853–854
load fracture characteristics, 335–343
Thermosets—cont.
exansion mode, 844
sample preparation, 840–841
toughness enhancement, 786–792
Thickness parameters:
lamellae, solution-based chainfolding, 272–274
micromechanical properties analysis, 773–775
scanning force microscopy, lamellar crystals, 477–479
Thin film surfaces:
contact radiography, 643–644
crystallinity determination, Fourier transform infrared spectroscopy, 762
microspectroscopic analysis, 573–575
near-edge x-ray absorption fine structure spectroscopy:
blends and bilayers, 396–397
block copolymer thin films, 403–405
confined free-standing homopolymers, 394, 397
homopolymers and polymer blends, 392–393
multilayered thin films, 411–412
polyimide films and surfaces, 393–394
polystyrene/PMMA thin-film blends, 400, 402
polystyrene/PMMA with PS-b-PMMA copolymer blends and bilayers, 402–403
polystyrene/poly(bromo styrene) blends and bilayers, 397–400
PS/PnBMA thin-film blends, 403
Thin layer chromatography (TLC), molecular weight distribution, 80
Thin layer mechanisms, yielding in block copolymers and, 802–803
Thixotropy, rheological measurement, viscosity properties, 681–684
Three-dimensional imaging:
laser scanning confocal microscopy, 622
optical microscopy, darkfield illumination, 616–617
Tian-Calvet heat flux differential scanning calorimeter, 810
Tie molecules, lamellae, chainfolding and, 268–269
Time-dependent effects, rheological viscosity measurement, 681–684
Time-domain electron spin resonance spectroscopy, 901–903
Time-of-flight-matrix-assisted laser desorption/ionization (TOF-MALDI) spectrometry:
analysis process, 190–191
chemical properties of polymers, 206
molar mass distribution of polymers, 9
architectural elucidation, 206–208
broad homopolymers, 201
Time-of-flight-matrix-assisted laser desorption/ionization (TOF-MALDI) spectrometry—cont.
chemistry elucidation, 205–206
chromatography detection, 201–203
copolymers, 204–205
dend groups, 203–204
narrow homopolymers, 200–201
molecular structure characterization, 8
separation techniques, 192–193
Time-of-flight-secondary ion mass spectrometry (ToF-SIMS):
EMA copolymer surface analysis, 327–329
halogen-containing polymers, 318–319
instrumentation, 309–310
organic molecules, 319–321
polymer spectra, 311–312
side-chain functionality, 313–318
spectral features, 311
Time-resolved small-angle neutron scattering, spinodal decomposition, polymer blends, 522–523
Time-temperature superposition, rheological viscosity measurements, 737–739
Time-temperature-transformation (TTT) diagram, dynamic mechanical analysis, thermosets, 672–673
Toluene diisocyanate (TDI) polyurea/polyurethane spectra, near-edge x-ray absorption fine structure spectroscopy, basic principles, 379–386
Topographical analysis, atomic force microscopy imaging, 422–426
Torsional braid analyzer (TBA), dynamic mechanical analysis, 649–650
instrumentation, 654–656
rheological viscoelasticity assessment, 734–736
theory and operation, 652
Total-electron yield (TEY), near-edge x-ray absorption fine structure spectroscopy, 389–391
Total enthalpy method, crystallinity determination, thermal analysis, 758–760
Toughness enhancement: amorphous matrix polymers, 788–792
blended polymers, 794–795
semicrystalline matrix, 792–794
Transition parameters: nuclear magnetic resonance technology, contrast parameters, 164–166
thermoplastic/thermoset polymers, dynamic mechanical analysis, 663–664
Translational diffusion coefficient, dynamic laser light scattering, 216–218
Transmission electron microscopy (TEM): basic principles, 601
history, 625–626
micromechanical properties analysis, 773–775
morphological polymer characterization, 19–20
optical imaging applications, 626–627
polymer morphology, 267–268
Transmission infrared spectroscopy, sampling methods, 93–95
Transmission x-ray microscopes (TXM), near-edge x-ray absorption fine structure spectroscopy, instrumentation, 387–391
Transmittance, infrared spectroscopy, quantitative analysis, 102–104
Transverse relaxation time: nuclear magnetic resonance principles, 115–116
elastomer deformation, 177–178
one-dimensional nuclear magnetic resonance studies: molecular motion and dynamic order, 124
network properties, 135–140
Trigonometric equations, dynamic mechanical analysis, forced frequency analyzers, 651–652
Triple-bond stretching, infrared spectroscopy, spectral analysis, 100–101
Triple-quadrupole (MS-MS) detectors, high-performance liquid chromatography, 257
Triple-quantum (TQ) nuclear magnetic resonance, residual dipolar couplings, 127–135
Tungsten-halogen lamp, Fourier transform infrared spectrometer, 91–93
Two-dimensional correlation techniques, nuclear magnetic resonance and, 123
Two-dimensional Fourier spectroscopy, nuclear magnetic resonance principles, 120–123
Two-dimensional high-performance liquid chromatography, history of, 253
Two-dimensional infrared analysis, double modulation spectroscopy, 592–594
Two-dimensional nuclear magnetic resonance (2D-NMR): basic principles, 109–110
Fourier spectroscopic principles, 120–123
phase encoding, spatial resolution, 162
relaxation times, 115–116
viscoelastic polymers, 142–157
deuterium NMR, thermoplastic elastomers, 155–157
heteronuclear correlation, residual local dipolar fields, 153–155
Two-dimensional nuclear magnetic resonance—cont.
proton magnetization exchange spectroscopy, chain orientation, 142–147
proton multiple-quantum NMR, residual dipolar couplings, 150–153
segmental motions, 2D NOESY-MAS technique, 147–150
Two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY-MAS), segmental motions, 147–150
Two-dimensional spectral-spatial electron spin resonance imaging:
line shape analysis, 908–909
spatially resolved degradation, 920–926
Two-dimensional thermal Field Flow Fractionation (2D-ThFFF), polymer characterization, 4
Ubbelohde viscometer, rheological viscosity measurement, 706–711
Ultracentrifuge, weight-average molecular weight, 75–76
Ultrahigh molecular weight polyethylene (UHMWPE), atomic force microscopy imaging, 443
Ultrahigh vacuum (UHV) environment, transmission electron microscopy, 627
Ultramicrotomes, transmission electron microscopy, 627
Ultrasonic test methods:
micromechanical analysis, 778
nondestructive polymer testing, 365–367
rheological viscoelasticity measurement, 733
Ultrathin films:
crystallinity determination, Fourier transform infrared spectroscopy, 762
near-edge x-ray absorption fine structure spectroscopy, 392–393
neutron scattering, gyration radius, 519–520
vibrational spectroscopy, surface analysis, 582–590
Ultraviolet (UV) detectors:
high-performance liquid chromatography, 256–257
matrix-assisted laser desorption/ionization (MALDI) spectrometry, signal axis quantification uncertainties, 199–200
size exclusion chromatography, concentration detectors, 243–244
Ultraviolet (UV) spectroscopy, molecular structure characterization, 7
Underwriters’ Laboratories (UL) tests, electrical properties of polymers, 54–55
Uniaxial extensional viscosity measurement, techniques for, 726–729
Unit-size analysis, vibrational spectroscopy, 550–556
Universal (bulk property) detectors,
high-performance liquid chromatography, 256–257
Unpaired electron spin-nuclear spin interaction, electron spin resonance spectroscopy, 896–897
Unsaturated polymers, near-edge X-ray absorption fine structure spectroscopy, 378–381
Upright microscope design, optical microscopy, 609
Vacuum permittivity, dielectric relaxation of polymers, 883–884
Valence bands, X-ray photoelectron spectroscopy, surface analysis, 304–305
Van der Waals forces, melt-crystallized lamellae, 281
Van Vleck moments:
nuclear magnetic resonance technology, contrast parameters, 163–166
one-dimensional nuclear magnetic resonance studies, molecular motion and dynamic order, 124–127
Vapor pressure, number-average molecular weight determination, 70
osomometry, 72–73
Variable pressure scanning electron microscopy (VPSEM):
basic principles, 601
optical imaging, 633
Vectra polymer blends, near-edge x-ray absorption fine structure spectroscopy, 406–408
Velocity correlation function (VCF), dielectric relaxation of polymers, 887–888
Vibrational spectroscopy:
basic principles, 530–531
crystallinity determination, 539–541, 760–762
heterogeneous compounds, 565–566
double modulation spectroscopy, 590–594
heterogeneous materials imaging, 566–575
infrared spectroscopy, 531–532
normal vibration characteristics, 535–541
Raman scattering, 532–535
segmental orientation, polymer anisotropy, 575–579
structural analysis, 542–566
amorphous polymers, low-frequency observations, 556–558
chain configuration, 542–543
disordered conformation, 546–550
ordered conformation, 543–546
heterogeneous polymer spectroscopic characterization, 561–566
phase transformation, 558–561
Vibrational spectroscopy—cont.
 unit-size analysis, 550–556
 surface characterization, 579–590
Vibrations:
 fractographic analysis:
 creep fracture, 343–345
 genuine fracture, 344–346
 infrared (IR) spectroscopy, 90, 100–101
 mechanical testing of polymers, 359
 rheological viscosity measurement, 726
Vicat softening temperature, thermal analysis
techniques, 44–45
Vilastic VE system:
 extensional viscosity measurement, 727–729
 rheological viscosity measurement, 726
Vinyl polymers, secondary ion mass
 spectrometry, side-chain functionality,
 313–318
Viscoelasticity:
 dynamic mechanical analysis:
 forced frequency analyzers, 650–652
 melt polymers, 664–668
 relaxation, 853–854
 thermoset curing, 668–670
 rheological measurement, 695–701
 dynamic behavior, 697–701, 726–739
 fluids, 733–737
 measurement techniques, 729–733
 mechanical behavior and models, 696–697
 normal stress (Weissenberg effect), 700–701
 time-temperature superposition and master
curves, 737–739
 scanning force microscopy, indentation
 measurements, 471
 testing techniques, 48–50
 two-dimensional nuclear magnetic resonance,
 142–157
 deuterium NMR, thermoplastic elastomers,
 155–157
 heteronuclear correlation, residual local
dipolar fields, 153–155
 proton magnetization exchange
 spectroscopy, chain orientation, 142–147
 proton multiple-quantum NMR, residual
dipolar couplings, 150–153
 segmental motions, 2D NOESY-MAS
 technique, 147–150
Viscometric detectors:
 molecular weight distribution, 78–79
 rheological measurements, 701–726
 capillary viscometers, 703–711
 moving body viscometers, 723–725
 rotational viscometers, 711–723
 size exclusion chromatography, molecular
 weight sensitive detectors, 244–247
Viscosity:
 dielectric analysis, thermoset curing
 characterization, 875–877
 dynamic mechanical analysis:
 forced frequency analyzers, 650–652
 melt polymers, 664–668
 thermoset curing, 668–670
 molar mass of polymers, 11
 ratio, dilute polymer solutions, 685–687
 rheological measurement, 677–678
 concentrated polymer solutions, 687–688
 dilute polymer solutions, 685–687
 dispersed systems, 690–693
 electrorheological behavior, 694–695
 extensional measurement techniques, 694,
 726–739
 flow models, 679–681
 melt viscosity, 688–690
 thixotropy and time effects, 681–684
Viscosity-average molecular weight, polymer
 characterization, 66
 techniques, 74
Visual inspection of polymers, 361–362
Vitrification point:
 dynamic mechanical analysis:
 dielectric analysis, thermoset curing
 characterization, 875–877
 dynamic mechanical analysis:
 thermoset cure characterization, 866–867
 thermoset curing, 670
 Vogel-Fulcher-Tammann (VFT) equation,
 dielectric relaxation of polymers, 888–893
 Voids, fractographic analysis, 351–356
 Voltage characteristics, dielectric analysis,
 849–851
Volumetric flow rate:
 crystallinity determination, 763–764
 rheological viscosity measurement, capillary
 viscometers, 703–711
Vulcanizates:
 elastomers:
 nuclear magnetic resonance imaging, 171
 parameter mapping, 172–175
 thermogravimetric compositional analysis,
 833–836
 Water-based polymers, size exclusion
 chromatography, separation techniques, 236
 Wavefunction analysis, vibrational spectroscopy,
 535–541
 Wavelength dispersive spectrometer (WDS),
 history, 626
 Wavelength parameters, optical microscopy
 resolution, 609–612
 Wear analysis, atomic force microscopy, 454–
 455
 Weathering, environmental effects, 52–53
Weight-average molecular weight:
 polymer characterization, 66
 techniques, 74–76
 rheological viscosity measurement, melt
 polymers, 689–690
INDEX 977

Weight fraction degree of crystallinity,
 volumetric determination of, 763–764
Weight loss calibration:
 controlled rate thermogravimetry, 836–837
 thermogravimetric analysis, 829–830
Weissenberg effect, rheological measurements,
 normal stress analysis, 700–701
Weld-line failure, fractographic analysis,
 350–352
White light, polarized light microscopy, 612–615
Wide-angle X-ray diffraction (WAXD),
 crystallinity determination, 752–757
 volumetric determination, 763–764
Wide-angle X-ray scattering (WAXS):
 micromechanical analysis, 776
 morphological polymer characterization, 19
 polymer composition and structure, 32–38
 polymer morphology, 267–268
Wide-line separation (WISE) experiment,
 heteronuclear correlation studies, dipolar
 couplings, 153–155
Wide-pore bonded-phase packings,
 high-performance liquid chromatography,
 biological polymer separation, 263–264
Williams-Landel-Ferry (WLF) equation:
 dynamic mechanical analysis, thermoset
 curing kinetics, 671–672
 dynamic mechanical thermal analysis, 42–45
 polymer mechanics, 17
 rheological viscosity measurement:
 melt polymers, 690
 temperature effects, 685
 time-temperature superposition, 737–739
Williamson flow equation, viscosity
 measurement, 680–681
Wollaston prism, differential interference
 contrast technique, 618–621
Worm-like chain (WLC) elasticity model,
 scanning force microscopy, 470
X-band electron spin resonance, one- and
 two-dimensional spectral-spatial electron
 spin resonance imaging, spatially resolved
 degradation, 923–926
X-ray beam hardening, penetrating radiation
 polymer testing, 363–364
X-ray contrast agents, penetrating radiation
 polymer testing, 362–364
X-ray diffraction (XRD):
 contrast matching, 510–514
 crystallinity determination, 752–757
 absolute degrees of crystallinity, 755–756
 small-angle x-ray scattering, 756–757
 micromechanical properties analysis, 776
 morphological polymer characterization, 18–19
 neutron scattering, 507–508
 nondestructive polymer testing, 56–57
 X-ray diffraction—cont.
 polymer composition and structure, 36–38
 Raman spectroscopy with, heterogeneous
 polymers, microscopic analysis, 573–575
X-ray microscopy:
 evolution of, 378
 optical imaging, 643–644
X-ray photoelectron spectroscopy (XPS), surface
 analysis, 297–307, 579–590
 core level binding energies, 302–304
 functional group labeling, 305–307
 instrumentation, 300–302
 physical properties, 297–300
 shake-up satellites, 304
 valence bands, 304–305
X-ray radiography, penetrating radiation
 polymer testing, 363–364
Yield stress:
 amorphous ductile polymers, micromechanical
 analysis, 783–785
 blended polymers, 795–797
 block copolymers, 797–803
 rheological viscosity measurements, controlled
 stress viscometers, 722–723
Young's modulus:
 advanced materials, mechanical properties
 and morphology, 290–291
 mechanical analysis, atomic force microscopy,
 426–431
 one-dimensional nuclear magnetic resonance
 studies, transverse relaxation, network
 properties, 137–140
 rheological measurement,
 elasticity/viscoelasticity, 695–701
 scanning force microscopy:
 adhesive force measurement, 468–469
 surface mechanical properties, 490–492
 z-average molecular weight, polymer
 characterization, 66
Zeeman interaction:
 electron spin resonance spectroscopy, 896–897
 nuclear magnetic resonance technology and,
 111–113
 relaxation times, 116
Zero-order rays, optical microscopy, phase
 contrast technique, 617–618
Zero-quantum (ZQ) properties, nuclear magnetic
 resonance spin coherences, 118
 two-dimensional Fourier spectroscopy,
 122–123
Zimm plot:
 neutron scattering, 508
 static laser light scattering, 213–214
Zinc selenide, attenuated total reflectance (ATR)
 spectroscopy, 96–97
Zone plate-based microscopes, near-edge x-ray
 absorption fine structure spectroscopy,
 386–391