INDEX

ABAB packing, 60
Abbreviations, xiii–xx
Ab initio-based MD simulations, 41. See also Molecular dynamics (MD)
Ab initio-based methods, 215
Ab initio MD radial distribution functions, 205
Ab initio MD simulations, 181, 182, 183, 200, 202, 204–205, 217–218. See also Molecular dynamics (MD)
limitations of, 218
Ab initio theory, 181, 182, 183, 189, 205–216
large-scale calculations and, 218–220 level of, 219
Abraham solvation parameter model, 90, 91, 103
Absorption, physical and chemical, 365–368
Absorption processes, 149
Absorption refrigeration, 373
Activity coefficients, 148, 163
prediction of, 160
Activity models, 358
Adherent interfacial layers, 23
Adsorbed surfactant interfacial structure studies, 70
Adsorption, at solid-ionic liquid interface, 64–65
AFM force profiles, differences in, 62–63. See also Atomic force microscopy (AFM)
AFM studies, 5–6
AFM tips, force vs. distance profile for, 7
Aggregates, formation of, 215
“Air and water stable ionic liquids,” 2
Air-[C₉mim][PF₆] systems, 71, 72
Air-ionic liquid interfaces, 65–71
microscopic structure and macroscopic properties of, 69
surfactant adsorption at, 69–71
Air-ionic liquid interface transition zone studies, 67–69
Al/Au surface alloy, 17. See also Aluminium entries; Gold entries
Aliphatic hydrocarbon mixtures, separation of, 127
Alkanoate anions, biodegradation of, 294
Alkene/alkane separation, 146
Alkyl chain carbon atoms, 33
Alkyl chain elongation, 243
Alkyl chain enrichment, 34
Alkyl chain length, 67, 68
increasing, 38
Alkyl chain orientation, 31
Alkyl chains, 45, 58, 69
Alkyl chain substituents, 270
Alkyl groups, cation, 58
Alkylsilanes, synthetic routes to, 323
All-atom force-field modelling, 61, 62
α-zirconium phosphate, layered, 322
Al Salman, Rihab, xi, 1
Alternative energy sources, 306
Aluminium, electrodeposition of, 2, 3, 272. See also Al/Au surface alloy;
Electrodeposited aluminium

© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

387
Aluminium(III) chloride, 1–2. See also Dry aluminium(III) chloride dry, 16
Aluminium(III) chloride (AlCl₃)-based ionic liquids, 2, 3
Aluminium deposition, 2, 17, 18 influence of cation on, 16–19
Al Zoubi, Mohammad, xi, 1
Amines
chromatograms of, 93
RP-HPLC separation of, 93–94
Amino acid ionic liquids, 232–233 applications of, 244, 245–246
benefits of, 246–247
containing derivatised amino acids, 240–245
decomposition temperatures of, 234–237, 238–239
glass transition temperatures of, 234–237, 238
melting points of, 234–237
physicochemical properties of, 233–239 in scientific and industrial areas, 247
synthesis of, 233
Amino-functionalised ionic liquids, 245
Ammoeng™ 110, 143
Ammonia (NH₃), 372–373
for absorption refrigeration, 373
Ammonium bistriamide salts, with carboxylic acid functionalities, 126. See also Bistriamide
Amphiphile adsorption, onto solid substrates, 65
Amphiphiles, 74, 75
Amphiphilic ionic liquids, 74
Analyte extraction, 102
Analyte peaks, detection of, 95
Analytes, best resolution for, 94
Analyte separations, 105
Anderson, Jared L., xi, 87
Angle resolved XPS studies, 33. See also Angle resolved X-ray photoelectron spectroscopy (ARXPS); X-ray photoelectron spectroscopy (XPS)
Angle resolved X-ray photoelectron spectroscopy (ARXPS), 66, 67. See also ARXPS analysis
Anion/cation exchange equilibria, 125
Anion component, in binary mixtures, 333
Anion effect, 290–291
Anions cohesive interaction between, 73 containing cyano groups, 315
electron-rich, 218
of hydrophobic ionic liquids, 72 in ionic liquids, 196
Anion sublayers, 58
Anion variations, 313–317 effects on interfacial layers, 66
Aprotic ionic liquids, 59, 67, 254, 255
arrangement of, 61
Aqueous electrolytes, ionic fluids vs., 41, 42
Aqueous solutions, interfaces with ionic liquids, 46
Aqueous systems, protic ionic liquid microemulsions vs., 73–74
Aqueous two-phase system (ATPS), 141
formation of, 143
Ar⁺ bombardment, 264
Aromatic/aliphatic hydrocarbon separation, 147
Aromatic/aliphatic selectivity, 132
Aromatic/aliphatic separation conventional process for, 127–128
modelling, 133
Aromatic cations, 288–289
Aromatic compounds, partition coefficients of, 102
Aromatic compound separation, economic evaluation of, 132–134
Aromatic hydrocarbons extraction of, 127–135
extraction results of, 129–131
Aromatic ring orientation, 63–64
Aromatics, extraction from mixed aromatic/aliphatic streams, 128
Aromatic sulfur compounds, hydrodesulfurisation and, 135
Artificial neural network approaches, 196, 197–198
ARXPS analysis, 264–265, 269, 270. See also Angle resolved X-ray photoelectron spectroscopy (ARXPS)
2-Arylpropanoic acids, CE separation of, 106
Association constants, 105
Associative neural network (ANN), 196, 198
Asymmetric ions, 211
Atkin, Rob, xi, 6, 51
Atomically smooth solid surfaces, 52
Atomic force microscopy (AFM), 58
Atomic force microscopy force curve measurements, 56, 57
Atomic force/scanning tunnelling microscopy (AFM/STM) experiments, 2, 3
Atomic resolution, 2
Atomic resolution probing, 16
Au(111) surface(s), 2, 63. See also Gold entries
atomic resolution of, 3
investigating, 5–6
ionic liquid adsorption on, 6
slow processes on, 10, 11
Au(111)/[C₄mim][FAP], 9–14
cyclic voltammogram of, 10
in situ STM images of, 11
tunnelling barrier of, 13
Au(111)/[C₄mpyr][FAP], 14–16
cyclic voltammogram of, 14
in situ STM images of, 15–16
Auger electron spectroscopy, 272
Azeotropic distillation, 144
B3LYP frequency calculations, 188
Back-extraction, 143
Background electrolytes, 104, 106
Back-propagation neural network (BPNN), 196, 198
Balance forces, 352
Band broadening, 89
Bartlett relationship, 183–184
BASF company, 147–148
Battery electrolyte, wetting behaviour of, 44
Benzothiophene (BT) removal, 136
β-blockers, HPLC separation of, 94
Bilayered structures, 60
Binary bulk phase diagram, 38
Binary interaction parameters, 360, 362
Binary ionic liquid system, 315–316
Binary mixtures, anion component in, 333
Binding energies (BEs), 263, 266–267, 268
Biocompatible ions, 285
Biodegradability
filamentous fungi in, 292–294
of ionic liquids, 247
Biodegradability potential, 293
Biodegradable chemicals, design of, 293
Biodegradable ionic liquids, 232
Bio-refinery processes, fungal, 292
Bioremediation applications, 297
Bioseparation, 141
Biosynthetic pathways, stimulating, 297
Biotic degradation, filamentous fungi and, 283
Biphasic ionic liquid–scCO₂ systems, 102
Biphasic separations, 123
Bistriflamide, instability of, 14. See also Ammonium bistriflamide salts
Bithiophene units, 328
Boltzmann constant, 253
Bond cleavage, 217
Bond-type conserving reactions, 189
Borisenko, Natalia, xi, 1
Born–Fajans–Haber cycle, 185, 193
Born–Haber cycle, 187, 188, 190
Borodin–Smith MD simulations, 202–203
Bovine serum albumin (BSA), 141, 142
BP86/TZVP level of theory, 190
Branched chain anions, 293
Branched isomers, 292
Buffer ions, 103
Bulb-to-bulb distillation apparatus, 255
Bulk ionic liquid membranes (BILMs), 148–149
selectivity in, 149
Bulk ionic liquid structure, 52–53, 54
Bulk liquid structure, 58
Bulk liquid zone, of ionic liquid interfaces, 54
Bulk network, 76
Bulk order, 75
Bulk phase, 74
Bulk viscosity, 69
Buoyancy calculation, components contributing to, 352–353
Buoyancy correction, 352–355
Butanol-\([C_n\text{mim}][PF_6]\) systems, 71
1-Butylbenzimidazole (NBB), 308
Butyl chains, 32
Butyl oleate extraction, 102
4-t-Butylypyridine (TBP), 308
C103 dye, 326–327
\([C_2\text{mim}][Cl]\) ionic liquid study, 203–204
C2−H strong interactions, 208–209
C-2 imidazolium ring proton, hydrogen-bonding ability of, 94
\([C_2\text{mim}][BF_4]\) addition, 108
\([C_2\text{mim}][Cl]\), inability of filamentous fungi to degrade, 295
\([C_4\text{mim}][\text{AlCl}_4]\), in desulfurisation, 135
\([C_4\text{mim}][BF_4]\) concentrations, 106
\([C_4\text{mim}][Cl]\) (1-butyl-3-methylimidazolium chloride), as GC stationary phase, 99
\([C_4\text{mim}][\text{Cu}_2\text{Cl}_3]\), in desulfurisation, 136
\([C_4\text{mim}][\text{FAP}]\), \([C_4\text{mpyr}][\text{FAP}]\) vs., 16
\([C_4\text{mim}]^+\) ion, 17
\([C_4\text{mim}][\text{NTf}_2]\), 6, 7
\([C_4\text{mim}][PF_6]\) (1-butyl-3-methylimidazolium hexafluorophosphate), 2–3 as GC stationary phase, 99
\([C_4\text{mim}][CuCl_2]\), in desulfurisation, 136
\([C_4\text{mim}][\text{FAP}],[C_4\text{mpyr}][\text{FAP}]\) vs., 16
\([C_4\text{mpyr}]^+\) ion, 17
\([C_4\text{mpyr}][\text{NTf}_2]\), 5, 6, 7, 16–17
\([C_4\text{mpyr}][\text{NTf}_2]\) on HOPG, cyclic voltammogram of, 8
\([C_4\text{mpyr}][\text{HSO}_4]\), as phase transfer catalyst, 139–140
\([C_8\text{mim}][PF_6]\)−water mixtures, 39
\([C_8\text{mpyr}][\text{FAP}],[C_8\text{mim}][\text{FAP}]\) vs., 16
\([C_8\text{mpyr}]^+\) ion, 17
cation/anion exchange equilibria, 125
cation conformation, change in, 64
cationic diffusion, 204
cationic imidazolium ring, 94
cationic polarisation, 205
cation layers, 57–58, 61
cation monolayers, 71
cation orientation, 40
effect of water on, 70
cation ring, 31
Cations
dealkylation of, 239
influence on aluminium deposition, 16–19
interaction with hydrophilic solvents, 73
in the interfacial layer, 72–73
orienational ordering of, 31, 45
weakly bound, 63
cation structure, variations in, 17
cation sublayers, 58
cation variations, 317–318
effects on interfacial layers, 66
CCSD(T)/aug-cc-pVTZ theory level, 209
Cell optimisation, 326
Cell-performance additives, 308
Centrifugal extraction system, 153
CE separations, 109. See also Capillary electrophoresis (CE) of 2-arylpropanoic acids, 106 of polyphenolic compounds, 105
Chain segregation, 67
Chaotropic anions, 94
Charge correction, 267
Charge delocalisation, 209, 315
Charge densities, 186
Charge distributions, 61
Charged surfaces, 75
Charge lever momentum (CLM) approach, 211–212
Charge ordering, 30, 40, 41, 42, 46
Chelate extraction, 126
CHELPG (CHarges from Electrostatic Potentials using a Grid)-based algorithm, 211
Chemical absorption, 149, 365–368
Chemical associations, 368
Chemical CO₂ removal, 149. See also Carbon dioxide (CO₂)
Chemical potential, 371, 372
Chiral catalysts, 232
Chiral separation, amino acid ionic liquids in, 246
Chiral stability, 239
Chloroaluminate-containing ionic liquids, 135
Cholinium alkanoates biodegradability potential of, 293 toxicity of, 290–292
Cholinium cation, 293–294
Chromatograms, of amines, 93
Chromatographic columns, 98
Chromatographic column, band broadening in, 89
Chromatographic gas solubility methods, 358
Chromatographic separations, 87 ionic liquids in, 89–91
Chromatographic techniques, 89, 91
Classical force fields, polarisable force fields vs., 202
Cluster approach, 215
CMPO, extraction ability of, 124
[Cₙmim]Cl ionic liquids, X-ray diffraction spectra of, 53
[Cₙmim]⁺ ionic liquid additives, interactions with flavonoids, 105
CO₂ capture, using amino acid ionic liquids, 245. See also Carbon dioxide entries
CO₂ permeability, 152
CO₂ separation with functionalised ionic liquids, 150 with ionic liquid (supported) membranes, 150–152 with standard ionic liquids, 149–150
CO₂/ SO₂ selectivity, 374–375
CO₂ solubility, 149–150, 365
Coarse-grained models, 201
Cobalt-based redox couples, 326
Cobalt sulfide (CoS), 335. See also CoS/PEN film
Coefficient of performance calculations, 373
COIL conferences, vi. See also Congress on Ionic Liquids (COIL)
Collision-free environment, UHV as, 253
Complete isotherms, 372
Complete separation process, development of, 162
Complete wetting, 44
Component density profiles, 40
Composition profiles, 34
Compound partitioning, 102–103
Compounds, SFC separation of, 103
Computer architecture, peta-scale, 220
Concentration profiles, of toluene, 157, 158, 159
“Condensation” products, 260
Condensed phase, 261–274
Conductivity, 192 from first principles, 207 viscosity and, 199
Conductor-like polarisable continuum model (CPCM), 186
Congress on Ionic Liquids (COIL), vii. See also COIL conferences
“Connected” ion pairs, 217–218
Connectivity index, 207, 208
Contact angles, 44–45
Contact energies, 207
Contaminants, environmental levels of, 88  
Continuous extraction, 119  
Conventional desulphurisation, 135  
Conventional distillation, 143–145  
Conventional gas separation processes, 149  
Conventional method, EOS method vs., 371, 372  
Conventional separation processes, 127–128  
Conventional solvents, replacing, 134–135  
Copper oxidation, 14  
Correlation-predicted melting points, 191  
Co-sensitisation, using different organic dyes, 330  
COSMO-RS (COnductor-like Screening MOdel for Real Solvents), 134, 206–207, 372, 376  
application of, 160–162  
COSMO-RS calculations, 191  
COSMO-SAC model, 372  
COSMO (COnductor-like Screening MOdel) solvation model, 185, 186, 190, 206, 207  
COSMOSPACE, 161  
CoS/PEN film, 335–337  
Coulomb forces, 216  
Coulombic interactions, 202, 267  
Coulomb network, disruption of, 209  
Counter-current chromatography (CCC), 96–98  
detection methods for, 98  
Counter electrodes, alternative, 333–337  
Counter-propagation neural network, 196  
Coupled cluster (CC) theory, 209, 220  
Cracker feeds, 133  
Critical micelle concentration (CMC), 69, 70  
Critical separation temperature behaviour, derivatised amino acids showing, 241–245  
Cross-linked ionic liquid stationary phases, 100  
Cross-solubility, of hydrocarbons, 138  
Custom-made liquids, 5  
Cyanex 923, 124–125  
Cyan groups, anions containing, 315  
Cyclic voltammograms of aluminium deposition, 17, 18  
of [C₄mim][FAP] on Au(111), 10  
of [C₄mpyr][FAP] on Au(111), 14  
of [C₄mpyr][NTf₂] on HOPG, 8  
D205 dye, 328  
Davy, Humphrey, 52  
Dealkylation, of cations, 239  
Decision trees, 196, 198–199, 200  
Decomposition products, 254  
Decomposition temperatures (T₆₀) of amino acid ionic liquids, 234–237, 238–239  
of ionic liquids, 254  
De Haan, André B., xi, 119  
Density (ρ), of amino acid ionic liquids, 233–237, 239  
Density functional theory (DFT), 181, 182, 183, 205–216. See also DFT-based calculations  
Density of states (DOS) calculations, 263  
Density profile oscillations, 68–69  
Density profiles, 32  
Depth resolution, 32  
Derivatised amino acids  
ionic liquids containing, 240–245  
showing critical separation temperature behaviour, 241–245  
Designer ionic liquids, 232, 246  
Desulphurisation of fuels, 135–140  
oxidative, 139–140  
Detection techniques, 107  
DFT-based calculations, 217–218. See also Density functional theory (DFT)  
1,3-Dialkylimidazolium dialkylphosphate ionic liquids, in fuel desulphurisation, 137  
1,3-Dialkylimidazolium ionic liquids, toxicity and biodegradability of, 293  
1,3-Dialkylimidazolium salts, formation and stability of, 187  
Dibenzothiophene (DBT), distribution coefficient of, 137, 138  
Dibenzothiophene removal, 136–137, 140  
Dicyanamide ionic liquid, 313–314, 315
Dielectric constant, 186
ininitely large, 206
Diels–Alder reaction, 136
Diesel fuel compounds, separation of, 101
Differential capacitances, 41
Diffuse functions, 208
Diffuse interfaces, 38, 51–52
Diffuse layer, 41
Diffusing interface, 39
Diffusion, with chromatographic techniques, 89
Diffusion coefficients, 203
Diffusion layer, 42
Dimer formation, 184
Dipole–dipole interactions, 202
Dipole/induced-dipole interactions, 95
Dipole moment densities, 45–46
Dipole moment fluctuations, 202
Direct recoil spectroscopy (DRS), 66
Direct recoil spectrometry measurements, 30, 31
Dispersed phase, 154, 155, 156
Dispersion corrected atom-centre potential, 217
Dispersion interactions, 204, 210, 213, 219
between same-charged species, 214
in IPBEs, 216
short-range, 213
Dispersion relation modification, 35
Distillation
azeotropic, 144
conventional, 143–145
extractive, 143–148
of ionic liquids, 260
Distillation apparatus, 255
Distribution coefficients
differences in values among, 132
in liquid–liquid extraction, 122
mass-based, 128
of sulfur compounds, 138
Dithienothiophene moieties, 328
4,6-DMDBT (4,6-dimethyl dibenzothiophene) removal, 140
DMF (dimethylformamide), 144
Double-layer model, 41, 46
Dry aluminium(III) chloride, 16
DSSC efficiency, 310, 313. See also
Dye-sensitised solar cells (DSSCs)
DSSC electrolytes, 324
DSSC performance, 326, 327, 331
“Dual-mode” CCC system, 96
Dyes
chemical structures of, 314, 329
development of novel, 338
in dye-sensitised solar cells, 306–307, 326–327, 328–332
Dye-sensitised solar cells (DSSCs), 76.
See also DSSC entries
complexity of, 309–310
components of, 308
ionic liquid use in, 305–347
photovoltaic characteristics of, 332
photovoltaic performance of, 336
with quasi-solid state electrolytes, 319
solvents used in, 308–309
structure of, 307
Dynamic light scattering, 36
Dynamic simulations, 218. See also MD simulations
Dynamic surface tension measurements, 70
Economic evaluation, of aromatic compound separation, 132–134
Economic separation processes, 121
Ecotoxicity, evaluating, 284–285
Ecotoxicological assessment, 289
Ecotoxicological data, 297
Ecotoxicological risk, of ionic liquids, 285
Eddy diffusion, 89
EDOT units, 330
Effective fragmentation method (EFM), 219
El Abedin, Sherif Zein, xi, 1
Electrified ionic fluid/metal electrode interface, 46
Electrified ionic liquid/solid interface, 40
Electrified metal electrode/electrolyte interface, 42
Electrified solid/ionic fluid interface, 39–42
Electrobalances, 353
Electrochemical detection, 107
Electrochemical devices, 182
Electrochemical generation, of new materials, 271–272
Electrochemical interface, 30, 41
Electrochemical processes, interfacial layer influence on, 19
Electrochemical reactions, in ionic liquids, 23
Electrochemical SEM (ECSEM), 271. See also Scanning electron microscopy (SEM)
Electrochemical XPS (EC-XPS) experiments, 267. See also X-ray photoelectron spectroscopy (XPS)
Electrochromatographic separations, 106
Electrode/electrolyte interface, direct probing of the processes at, 6
Electrodeposited aluminium, grain size of, 6
Electrodeposition of aluminium, 2, 3, 272
from ionic liquids, 1–27
of macroporous materials, 19
of nanowires, 19
of tantalum, 3
Electrodeposition process, interfacial layer influence on, 24
Electrode potential changing, 8, 10
interfacial layer variation with, 13
variation of, 8
Electrode potential shift, 14–16
Electrolyte composition, differences in, 327
Electrolyte drying, 316
Electrolytes
in dye-sensitised solar cells, 305
liquid crystals as solar-cell, 324
for photovoltaics, 310
running, 105
Electrolyte-solution models, 359
Electron density, 60
Electron density models, 59–60
Electron density profile, 32
Electron diffusion length, 327
Electron emission angle, 32
Electronic descriptors, 194, 195
Electronic information, obtaining on the tunnelling process, 11
Electronic solute environment, probing, 267
Electron impact (EI) ionisation, 256
Electron microscopy, 270. See also
Electrochemical SEM (ECSEM); Scanning electron microscopy (SEM); Transmission electron microscopy (TEM); Tunnelling electron microscopy (TEM)
Electron-rich anions, 218
Electro-osmotic flow (EOF), 103. See also Reverse EOF
Electrophoretic mobility, 106
Electrophoretic separations, 87
ionic liquids in, 89–91
Electrophoretic techniques, addition of ionic liquids to, 106
Electrospray ionisation mass spectrometry (MS), 256
Electrostatic attraction strength, 58
Electrostatic interactions, 203, 204, 210, 211
between surface and cation, 64
long-range, 212–213, 214
Electrowetting, 46
characteristics of, 42–45
Electrowetting agents, in microfluidic devices, 42–44
Electrowetting angle, 44
Electrowetting curve, 44, 45
Electrowetting phenomena, 30
“Elution-extrusion” CCC system, 96
Emission concerns, 88
Empirical potential structure refinement (EPSR) modelling, 53
Endres, Frank, xi, 1
Energetic salts, heats of formation of, 189
Energy crisis, 305–306
Energy generation/storage, 182
Energy landscape paradigm, 208–209
Enhanced density regions, 31
Enthalpies, 187–188
Enthalpy of formation, 189
Enthalpy of fusion, 212
Enthalpy of vapourisation ($\Delta_{vap}H_{298}$), 191, 204, 206–207, 215, 258, 259, 260
Entrainers, 144, 145
Entropic driving force, 69
Entropic hydrophobic force, 65
Entropies, estimating, 193
Entropy increase, melting and, 213
Entropy of fusion, 190, 212
Environmental protection, 284–285
Environmental toxins, monitoring, 88
EOS constants, 362. See also Equation of state (EOS)
EOS correlation, 369, 371
EOS method, 350
conventional method vs., 371, 372
EOS model, 377
EOS modelling, 359–364
EOS model predictions, 362, 364
Ephedrine separation, 92
Equation of state (EOS), 357. See also EOS entries
Equilibrium. See also Liquid–liquid equilibria entries; Vapour–liquid equilibria (VLE); Vapour–liquid–liquid equilibria (VLLE)
in cation/anion exchange, 125
in liquid–liquid extraction, 122
Equilibrium state, 357
Equilibrium surface tension, 70
Equipment, for extraction operations, 153–154
Ethenenitrile-based DSSCs, 314. See also Dye-sensitised solar cells (DSSCs)
Ethenenitrile concentration, 106, 108
Ethylammonium nitrate, as GC stationary phase, 98
Ethylene cracker feeds, 133
Ethylene glycol groups, 67
Ethylene oxide headgroups, 70
Excess functions, 367–369
Experimental data, 13
Experiment monitoring, using UHV-based techniques, 272
Experiment reconfiguration, 275–276
Extinction coefficient, 327, 328
Extractants, ionic liquids as, 159–160
Extraction contactors, 153
Extraction efficiencies, of proteins, 141, 142
Extraction operations, engineering aspects of, 153–156
Extractive distillation, 143–148
benefits of, 148
ionic liquids in, 145–148
Extract phase, 159
Filamentous fungi
biotic degradation and, 283
growth behaviour of, 288
inability to degrade [C2mim][Cl], 295
ionic liquid metabolic impact on, 294–297
potential of, 283–303
resistance of, 286–287
tolerance of ionic liquids by, 285–292
ubiquity of, 285
“Fillers,” 320–321
First-principles approaches
based on ab initio and density functional theories, 181, 182, 183, 205–216
with large-scale calculations, 218–220
Flat surfaces, polystyrene layers on, 19
Flavonoids
[C6mim]+ ionic liquid additive interactions with, 105
separating and purifying, 97
Flow profiles, 103
Fluorinated anions, ionic liquids with, 232
Fluorine atoms, 240
Fluorine-doped tin oxide (FTO) glass, 334–337
Force field matching approaches, 201–202
Force field parameters, 203
Force field refinement, 204–205
Force fields, 201
Force fields with reduced charges, polarisable force fields vs., 202–204
Force matching approach, 204–205
Force profiles, 56, 57, 59, 63, 64
Force vs. distance profile, for an AFM tip, 7
Fourier transform ion cyclotron resonance (FTICR) mass spectra, 257
Fragment MO (FMO) method, 219–220
Free energies of reactions, 187–188
Free energies of solvation, 185, 186
Free energy, changes in, 187
Free-energy-based MD simulation method, 200
Free energy of fusion, 185
Free energy of interaction, 38
Free Gibbs energies. See Gibbs free energy entries
Free lattice energy, 185
Free space, 252
Fresnel normalised reflectivity curves, 41
Freyland, Werner, xi, 29
Fuels, desulfurisation of, 135–140
Fugacity coefficient ($\phi$), 361
Fumed silica nanoparticles, 321
Functionalised (task-specific) ionic liquids, liquid–liquid extraction with, 125–126
Functionalised ionic liquid cations, 126
Functionalised ionic liquids, 127, 140, 153
$\text{CO}_2$ separation with, 150
Functionalised silica materials, synthetic routes to, 323
Fungal bio-refinery processes, 284, 292
Fungal metabolites, 283
Fungal metabolomic footprints, 295
Fungal tolerance ranking, 292
Fungi. See also Filamentous fungi potential of filamentous, 283–303
secondary metabolites of, 294–295
Fused silica supports, 104
G2 (Gaussian-2) method, 189
Gas chromatography (GC), ionic liquids in, 98–101
Gas densities, 352
Gases. See also Vapour entries
global phase behaviour of, 349, 350
molecular interactions between liquids and, 376
Gas interfaces, ion adsorption at, 65
Gas–ionic liquid interactions
molecular-level understanding of, 377
new directions in, 376
Gas–liquid chromatography (GLC), 98.
See also Gas chromatography (GC)
Gas–liquid interface, 31–37
investigating, 54
Gas phase behaviour, in ionic liquids, 349–386
Gas phase moles, 356
Gas-phase quantum-chemical calculations, 214
Gas separation, 149–153
using ionic liquids, 349, 350
Gas–solid chromatography (GSC), 98.
See also Gas chromatography (GC)
Gas solubility, steps in determining, 351
Gas solubility measurements, 357
Gas solubility modelling, 359–373
Gas solubility techniques, 351–359
alternative, 358–359
safety of, 359
Gas/vapour impingement rate, 253
GC3 (three-dimensional gas chromatograph) instrumentation, 101
GC × GC separations, 101
Gel electrolytes, 318–319, 324
Generalised distributed data interface (GDDI), 220
Generalised force fields, 205
Generalised gradient approximation (GGA), 190
Generalised polarisable force field, 203
Geometrical descriptors, 194, 195
Germanium photonic crystals, 19
Gibbs adsorption equation, 29
Gibbs free energy, 188, 189–190, 193
Gibbs free energy of fusion, 185
Gibbs–Helmholtz equation, 190
Glass transition temperatures ($T_g$), of amino acid ionic liquids, 234–237, 238
Global phase behaviour, 349, 364
characterising, 350
Gold–ionic liquid interfaces, 63–64. See also Au entries
Gold single crystals, 19
Gold thin film, SEM pictures of, 21
“Good vacuum,” 29–30
Gouy–Chapman–Stern theory, 41
Graham, Christa M., xi, 87
Graphite–ionic liquid interfaces, 62–63
Gravimetric methods, 351–355
Gravimetric microbalances, 351–352, 354, 355, 376–377
“Green characteristics,” 65
“Green” ionic liquids, 120
“Green” potential, of supercritical fluids, 102
Green processes, 87–88
Green ionic liquids, 284
Grotthuss exchange mechanism, 160
Growth media, supplementing with ionic liquids, 283–284
Guanidinium thiocyanate (GNCS), 308
Halide system, mixed, 325–326
Halogen-free ionic liquids, 232
Hartree–Fock (HF) method, 195, 215
Hayes, Robert, xi, 51
Heat capacity ($C_p$), 191–192. See also Therm- entries
Heating, products of, 258
Heating ionic liquids, 254
Heat of mixing, 368
Heat of mixing calculations, 376
Heats of formation, 189–191, 206
Heats of vapourisation, 204
Heavy alkenes, 39
Helmholtz layer, 42
Henry’s Law constant ($k_H$), modelling, 370–372, 377
Herringbone superstructure, 5, 6, 14, 16, 24
Heteropolyanion-based functionalised ionic liquid, 140
Heuristic methods (HMs), 194, 197
Hexafluorophosphate anion ([PF$_6$]$^-$), 163
Hexagonal superstructuring, ionic liquid subject to, 8
Hexene/hexane separation, 146
HFC binary systems, 365
Hiden gravimetric microbalance, 351–352, 354, 355
Hierarchical cluster analysis, 296
of ionic liquid ecotoxicity data, 287
High-energy X-ray reflectivity experiments, 59
Highest occupied molecular orbital (HOMO), 307
High friction applications, 42–44
High-intensity energy sources, 275
Highly oriented pyrolytic graphite (HOPG), 2, 3
High performance liquid chromatography (HPLC), 91–95
High-pressure phase behaviour, 350
High-purity ionic liquids, maintaining, 270
High resolution electron energy loss spectroscopy (HREELS), 269
High-resolution XPS spectra, 266, 269
Hold-up, 155–156
HOPG/[C$_4$mpyr][NTf$_2$], 7–9 cyclic voltammogram of, 8
in situ STM images of, 9
HOPG/[C$_4$mpyr][NTf$_2$] interface, 7–8
HPLC “normal phase” mode, 91. See also High performance liquid chromatography (HPLC)
HPLC “reverse phase” mode, 91
HPLC stationary phase, 91
HV (high vacuum) compatibility, of ionic liquids, 254
Hybrid quantum mechanics/molecular mechanics (QM/MM) methods, 219
Hydrocarbon gas separation, 152–153
Hydrocarbon layers, 67
Hydrocarbons, cross-solubility of, 138
Hydrodesulphurisation (HDS), 135, 136
Hydrodynamic flow profiles, 103
Hydrodynamics, in extraction, 154–157
Hydrogen-bond basic compounds, separating, 100
Hydrogen bonding, 105, 209, 238
of C-2 imidazolium ring proton, 94
Hydrogen bonding analytes, tuning separation selectivity for, 101
Hydrogen chloride removal, 254
Hydrophilic ionic liquids, 65–66
water in, 70
Hydrophilic solvents, interaction with cations, 73
Hydrophobic amino acid ionic liquids, containing derivatised amino acids, 240–241
Hydrophobic analytes, migration times for, 105
Hydrophobic derivatised amino acid salts, 240
Hydrophobic force, entropic, 65
Hydrophobic interactions, 95
Hydrophobic ionic liquids, 65–66
   anions of, 72
   water and, 70
Hydrophobicity
   adding to amino acid ionic liquids, 240
   reducing, 242
Hydrophobic solid interfaces, 75
Hydrophobic solvent, interface with, 71

[I- AA] anion, reducing the hydrophobicity of, 242
Ideal association modelling, 368–370
Ideal solution, 368
Imaging, 270–274. See also In situ STM images; Scanning electron microscopy pictures; STM images; Three-dimensional (3D) surface images; TOF-SIMS imaging
Imidazolium-based ionic liquids, 31, 45, 188
Imidazolium cation orientation, 66
Imidazolium cations, 94
   strong alignment and ordering of, 35
Imidazolium ionic liquids, 212
   toxicity and biodegradability of, 293
Imidazolium ring, 31–32
   allyl-functionalised, 317
   C–H stretching modes of, 70
   hydrogen bonding by, 94
   tilting of, 63
Imidazolium tetrafluoroborates, 94
Immiscible ionic liquids, interfacial arrangements of, 73
Impedance spectroscopy, 313
Impingement rate (Zwall), gas/vapour, 253
Impurities
   control of, 29
   from the “purification” process, 4–5
   surface-concentrated, 264
   typical, 4
Impurity level, 4
Incident photon to current conversion efficiency (IPCE), 308
Incident probes, 262
Indium-tin oxide (ITO), 19. See also
   ITO/PEN film; PEDOT-on-ITO-PEN electrodes
deposition on, 21, 22
Indoline dyes, 328
Industrial gases, phase behaviour of, 350
   Infinitely large dielectric constant, 206
Information, using results to provide, 350–351. See also Electronic information
Infrared reflection absorption spectroscopy (IRAS), 270
Infrared visi-frequency generation (IR-VIS SFG), 39. See also Sum-frequency generation (SFG) spectroscopy
Inorganic nanoparticles, 320–321
In situ electrochemical techniques, 267
In situ STM experiments, 16. See also Scanning tunnelling microscopy (STM)
In situ STM images
   of Au(111) under [C₄mpyr][FAP], 15–16
   of Au(111) under [C₄mim][FAP], 11
   of HOPG in [C₄mpyr][FTf₂], 9
In situ STM studies, 6
In situ XPS technique, 267–269. See also X-ray photoelectron spectroscopy (XPS)
Integrated ionic liquid system, advantages of, 141–142
Interaction energies, 210–211
Interaction kinetics, 95
Interaction potential, 41
Interface formation, 51
Interface restructuring, 13
Interfaces. See also Diffuse interfaces;
   Diffusing interface; Electrode/electrolyte interface;
   Electrochemical interface;
   Electrified ionic fluid/metal electrode interface; Electrified ionic liquid/solid interface;
   Electrochemical interface;
   Electrified metal electrode/electrolyte interface; Electrified solid/ionic fluid interface; Gas interfaces; Gas–liquid interface;
   HOPG/[C₄mpyr][NTf₂] interface;
   Ionic liquid interfaces; Ionic liquid/vacuum interface; Ionic liquid/water interface; Liquid/gas interface;
   Liquid–ionic liquid interfaces;
Liquid–liquid interface; Liquid/vacuum interface; Molecular liquid interfaces; Molten salt interfaces; Solid–ionic liquid interface; Solid/liquid interface
air–ionic liquid, 65–71
gold–ionic liquid, 63–64
graphite–ionic liquid, 62–63
investigating, 54
liquid molecules at, 52
macroscopic, 66
mica–ionic liquid, 55–59
pure, 55, 65–66, 71–73
rôle in research/applications of ionic liquids, 29–50
sapphire–ionic liquid, 59–60
silica–ionic liquid, 60–62
Interfacial electrochemical processes, 2
Interfacial free energies, 29, 36, 37, 46.
See also Liquid/vapour interfacial free energies
Interfacial ionic arrangements, atomic resolution of, 54
Interfacial ionic liquid properties, 69
Interfacial ionic liquid structure, 52
Interfacial layer(s), 5–7, 66–67, 74, 75, 75
adherent, 23
cations in, 72–73s
effects of anion and cation variation on, 66
of ionic liquid interfaces, 54
rupturing, 64
thickness of, 24
variation with electrode potential, 13
width of, 63
Interfacial layer composition, predictions of, 72
Interfacial layering, 41
Interfacial molecule orientation, 73
Interfacial order–disorder transition, 46
Interfacial organisation, 54
Interfacial properties, control of, 52
Interfacial structure, 54
Interfacial tensions, 38–39
measurements of, 38
Interhalogen ionic liquids, 326
Interionic forces, 54
Interionic interactions, ionic strength of, 207
International Union of Pure and Applied Chemistry (IUPAC), 351
Inverse GC (IGC), 99. See also Gas chromatography (GC)
Iodide/triiodide concentration, effect of, 312
Iodide/triiodide couple, 321, 325
Iodine, volatility of, 317
Ion adsorption, at gas interfaces, 65
Ion dynamics, 205
Ion exchange, unsuitability for metal ion removal, 126–127
Ion-exchange interactions, 95
Ion exchange processes, 124
Ionic conductivity (σ), of amino acid ionic liquids, 233–237
Ionic fluids, aqueous electrolytes vs., 41.
See also Ionic liquid entries
“Ionicity.” 211
Ionic liquid (supported) membranes, CO₂ separation with, 150–152
Ionic liquid additives, 92
integrity of, 106–107
Ionic liquid-based electrolytes, 309
Ionic liquid benefits, challenges to, 109
Ionic liquid biodegradation, by filamentous fungi, 292–294
Ionic liquid cations, choosing, 100–101
Ionic liquid/chloroalkane mixtures, 243
Ionic liquid crystals, 324–325
Ionic liquid decomposition, 44
Ionic liquid deposition, 270
Ionic liquid design, 297
Ionic liquid ecotoxicity data, hierarchical cluster analysis of, 287
Ionic liquid/electrode interfacial layer, 6
Ionic liquid electrolyte gelling, 320
Ionic liquid electrolytes, 318
low viscosity, high-conductivity, 312
optimisation of, 337–338
room-temperature, 310–313, 337
Ionic liquid electrolyte solution, 326
Ionic liquid evaporation, 251
Ionic liquid gelling, with silica particles, 322
Ionic liquid interfaces, 29–50
complexity of, 74, 76
future directions of, 74–76
improved understanding of, 76
regions of, 54
techniques associated with, 76
Ionic liquid interfacial layering,
preventing, 58
Ionic liquid interfacial phenomena,
measuring, 52
Ionic liquid interfacial structure,
investigating, 55–56
Ionic liquid ions, influence on surface
processes, 13
Ionic liquid melting points, 186, 187, 190
Ionic liquid phase, water content of,
243–245
Ionic liquid process, economics of, 134
Ionic liquid research, surge in, 65
Ionic liquids (ILs), 42–44. See also Protonic
ionic liquid entries
amino acid, 232–233, 233–239
anions in, 196
aqueous dissolution of, 127
aromatic extraction with, 128–132
biodegradability of, 232, 247
cations of, 17, 92–93
as CCC stationary phases, 96–97
in chromatographic and
electrophoretic separations, 89–91
in CO₂ separation, 149–150
commercial quality of, 4
complexity of, 52
in the condensed phase, 261–274
as cross-linked GC stationary phases,
100
decomposition temperatures of,
238–239
designer character of, 120
desulphurisation with, 135–139
dicyanamide, 313–314, 315
distillation of, 260
eco-toxicological risk of, 285
efficiencies of, 313
electrochemical reactions in, 23
electrodeposition from, 1–27
electrolytes for DSSCs, 311
electrolytes for photovoltaics, 310
evolution of, 284
as extractants, 159–160
in extraction operation engineering,
153–160
in extractive distillation, 145–148
filamentous fungi tolerance of,
285–292
with fluorinated anions, 232
functionalised, 140, 153
future directions of, 109–110
in gas chromatography, 98–101
as GC stationary phases, 98–99
as green solvents, 143
halogen-free, 232
history of, 87, 88
HV compatibility of, 254
hydrophilic compatibility of, 254
hydrophobic, 65–66
imidazolium, 212, 293
impact on filamentous fungal
metabolism, 294–297
in situ STM experiments in, 16
interfaces with organic solvents and
aqueous solutions, 46
lab-synthesised, 182
large-scale first-principle calculations
of, 218–220
liquid–liquid extraction with, 141–143
liquid–liquid metal extraction with,
123–125
low viscosity, 270–271
as matrices for GC stationary phases,
109
melting points of, 185–187
as mobile phase additives, 92–93
as mobile phases, 92
molecular enthalpy of vapourisation
of, 206
molten salts vs., 52
mutual solubility of water and, 125
from natural sources, 231–250
nitrile- and vinyl-substituted
imidazolium, 317–318
novel, 182
olefin/paraffin separation with,
152–153
phase behaviour of gases in, 349–386
phosphonium, 289, 317
phosphonium-based, 211
physical properties of, 338
pioneering biological processes in the presence of, 283–303
polymerization of, 319–320
prospects and challenges of, 1
quality of, 6
for quasi-solid state DSSCs, 318–332
as replacements for organic solvents, 88, 181
as replacements for solvents, 119
as replacements for trichloromethane, 97
safety of, 247
screening, 161
separation from samples, 98
separation processes with, 119–179
in separations, 104
in separation science, 87–117
showing promise in fuel desulfurisation, 138
slow dynamics of, 200, 201
standard, 153
studied at ultra-high vacuum, 251–282
in supercritical fluid chromatography, 102–103
surface adsorption of, 6
synthesising, 91
tailoring physical properties of, 218
task-specific, 120, 123, 125–126, 163
tetraalkylphosphonium iodide, 317
theoretical approaches to, 181–230
thermal stability of, 109
thermodynamic properties of, 183–192, 206–207
transformation of ions into, 231
transport properties of, 192–194
at UHV, 263
unique properties of, 87
use in dye-sensitised solar cells, 305–347
utility of, 297
vapour phase of, 254–261
vapour pressures of, 30, 253
viscosities of, 92, 97–98
viscosity changes in, 313
Ionic liquid separation processes
advantages and disadvantages of, 121
challenges for applying, 119–120, 121
novel, 119, 120–121
Ionic liquid solvent qualities, 297
Ionic-liquid specific surfactant molecules, 69
Ionic liquid-stabilised microemulsion, 73
Ionic liquid stationary phases, 95
for planar chromatography, 108
Ionic liquid structures
interfacial and bulk, 52–53, 54
as tested on fungal isolates, 285–286
Ionic liquid–surface electrostatic interactions, 64
Ionic liquid surfaces, preparing by evaporation, 270
Ionic liquid surface science, development of, 275
Ionic liquid surface structure models, 68
Ionic liquid surface studies, methods used for, 30
Ionic liquid systems, binary, 315–316
Ionic liquid/vacuum interface, structure and composition at, 31–34
Ionic liquid vapour detection, 258
Ionic liquid/water interface, electrochemical properties of, 39
Ionic liquid/water mixtures, 243
phase behaviour of, 241–242
Ionic liquid–water partition coefficients ($K_{il/w}$), 97
Ionic polarisation, 205
Ionic solids, standard absolute entropy of, 184
Ionic species, solvation of, 123
Ionic surfactants, 65
Ionic systems, free energy of, 200–201.
See also Ionic liquid systems
Ion layering, 40
Ion mobility, transport properties and, 214
Ion-pair binding energies (IPBEs), 210, 211, 212, 213. See also Strong IPBEs
Ion-pairing interactions, 109
Ion-pair layer formation, cation alignment and, 63
Ion-pair layers, 58
in transition zone, 73
Ion pairs, 256
  “connected,” 217–218
  interaction energies of, 209–210
  multiple, 214
Ion population density, 66
Ions
  biocompatible, 285
  solvation energies of, 185–186
  transformation into ionic liquids, 231
Ion structure modification, 75
Isodesmic (bond-type conserving) reactions, 189
ITO/PEN film, 335, 336, 337
Izgorodina, Ekaterina I., xi, 181
Jacobsen (J) catalyst, 126
Jenkins–Glasser approach, 183, 184–185, 187. See also Volume-based Jenkins approach
Jenkins volume-based approach, 192
Kagimoto, Junko, xi, 231
Kovats retention index (ΔI), 90
Krossing thermodynamic-based approach, 186
  shortcomings of, 193–194
“Lamellar-like” structure, 55
Large-scale calculations, from first principles, 218–220
Lattice energy (U_L), 183–184, 185, 186
  estimating, 193
Lattice energy calculation, 193
  average error in, 189
  using the Jenkins approach, 187
Lattice parameter (Γ), 41
“Layered” structure, 55
Layering pattern, 40
Layering structure, 39
Lennard–Jones fluid, 38–39
Lennard–Jones parameters, 204
Licence, Peter, xii, 251
Light catalytically cracked spirit (LCCS), 159
Light scattering spectroscopy, 30, 34
Limited potential régime, 16
Linear correlations, 213
Linear scalability, with molecular size, 219
Liquid chromatography, chemically bound stationary phases for, 94–95
Liquid film studies, 40
Liquid/gas interface, 31–37
Liquid-in-oil liquid systems, 73
Liquid interfaces
  in important processes, 51
  systematic approach to studying, 76
Liquid interfacial structure, investigating, 55–56
Liquid–ionic liquid interfaces, 71–74
  adsorption at, 73–74
Liquid–liquid equilibria (LLE), 350, 357–358, 359, 373
Liquid–liquid equilibrium experiments, 132
Liquid–liquid extraction, 122
  in desulphurisation, 135
  with functionalised (task-specific) ionic liquids, 125–126
  with ionic liquids, 141–143
Liquid–liquid interface, investigating, 76
Liquid–liquid interfacial properties, MD simulation studies of, 38
Liquid–liquid interfacial tensions, 38
Liquid–liquid metal extraction, with ionic liquids, 123–125
Liquid–liquid separation, 373
Liquid molecules, at interfaces, 52
Liquid phase, mass density of, 34
Liquid phase with membranes, combination of separations in, 148–149
Liquids, molecular interactions between gases and, 376
Liquid separations, 122–143
Liquid structure level, 53
Liquid/vacuum interface, 31–37, 254
  structural model of, 32
Liquid/vapour interfacial free energies, 38
Liquid vapour pressures, 30
  See also Liquid–liquid equilibria (LLE)
Longitudinal diffusion, 89
Long-range electrostatic interactions, 212–213, 214
Lorentzian components, 34
Lovelock, Kevin R. J., xii, 251
Lower critical separation temperature (LCST), 242–243
Lower critical solution temperature (LCST), 364, 365
Lower liquid quality, 14
Lowest unoccupied molecular orbital (LUMO), 307
Lowest unoccupied molecular orbital energy, 195
Low melting point ionic liquids, 182
Low-molecular-weight fungal metabolites, potential of, 295–297
Low-molecular-weight organogelators, 319
Low-quality liquids, 5
Low vapour pressure, 65
Low-viscosity ionic liquids, 270–271
Low-viscosity ionic liquid systems, 315
Lysozyme transfer, 143
Machine-learning methods, 196–199, 200
Macroporous aluminium, 19
Macroporous materials challenges in making, 19–23
electrochemical synthesis of, 20
electrodeposition of, 19
Macroscopic interface, 66
Madelung constant, 184, 193, 212
Maginn, Ed, 372, 376
Maginn free-energy-based MD simulation method, 200
Magnesium deposition, 3
Magnetic suspension balance, 355
Mangiferin, CCC separation of, 97
Many-body polarisable force field, 202
Mass-based aromatic distribution coefficient, 128
Mass-based distribution coefficients, 128, 137
Mass density, of liquid phase, 34
Mass spectrometric (MS) detection, 95
Mass spectrometry (MS), in vapour phase investigation, 255–256
Mass spectrometry data, examining, 273
Mass transfer in extraction, 157–159
resistance to, 89
Mass–volume method/technique, 351, 364
Matrix-assisted laser desorption (MALDI) analysis, 108, 256
Maximum bubble pressure method, 36
MD simulations, 31, 45, 70, 71, 181, 182, 183, 200–205, 372. See also
Molecular dynamics (MD) ab initio-based, 41
current trends in, 201–205
of molten KCl, 39–40
MD simulation studies, of liquid/liquid interfacial properties, 38
Mean-field lattice gas model, 41
Meindersma, Wytze (G. W.), xii, 119
Melting, entropy increase and, 213
Melting points \(T_m\), 185–187, 208, 209, 212
of amino acid ionic liquids, 234–237
correlation-predicted, 191
correlations for, 199–200
from first principles, 207–216
linear correlations involving, 187
prediction of, 186, 190, 194–196, 196–199
prediction with MD simulations, 200
Membranes, liquid phase with, 148–149
Metal cation partitioning, 124
Metal–crown ether–anion complexes, 125
Metal extraction, 122–127
Metal ion partitioning, 125
Metal oxides, conventional recovery of, 122–123
Metastable atom electron spectroscopy (MAES), 66–67
Metastable impact electron spectroscopy (MIES), 263
1-(2-Methoxyethyl)-3-methylimidazolium chloride, 17, 18
Methylation effect, 193
1-Methylbenzimidazole (MBI), 308
Mica–ionic liquid interfaces, 55–59
Mica–mica separations, 55–56
Mica systems, AFM force curve measurements from, 56, 57
Micellar aggregates, 65
Micellar electrokinetic chromatography, modifiers in, 105
Microbalances, 351–352, 354, 355, 376–377
Microcrystalline aluminium deposits, 17
Microemulsions, 73–74
Microfluidic devices, electrowetting agents in, 42–44
Microscopy, 270–274. See also Atomic force microscopy (AFM); Electron microscopy
Miscibility gap, 38, 39
Mixed halide system, 325–326
Mobile layer, 103
Mobile phase(s)
ionic liquids as, 92
mass transfer in, 89
Mobile phase additives, 92–93, 94
for TLC separations, 108
Modified chromatographic interactions, 109
Modified dispersion relation, 35
Molar conductivity, 211
Molar extinction coefficient, 327, 328
Molar volumes, 354, 364, 377. See also Molecular volume ($V_m$)
Molecular beam surface scattering (MBSS), 66–67
Molecular density profile, 52
Molecular descriptors, 194, 197–198, 199
Molecular dynamics (MD), 30. See also MD entries
Molecular enthalpy of vapourisation, 206
Molecular flexibility, 59
Molecular groups, clustering of, 53
Molecular interactions, between gases and ionic liquids, 376
Molecular liquid interfaces, 51–52
Molecular liquids, 253
Molecular mass cluster ions, 273
Molecular modelling, 372–373, 376
Molecular plastic crystals, disadvantages of, 325
Molecular size, linear scalability with, 219
Molecular solvents, 52–53, 64
Molecular volume ($V_m$) relationship with viscosity, 192
standard absolute entropy relationship with, 184
vapourisation enthalpies and heat capacity and, 191–192
Molecules, thermal excitations of, 34
Mole fraction range, 369–370
Mole fractions, 354, 356
Møller–Plesset perturbation theory, 195
Molten KCl, MD simulation of, 39–40
Molten salt interfaces, 52
Molten salts, 36, 37
ionic liquids vs., 52
Momentum transfer range, 40
Monolayer (ML), 253
Monolithic cells, 332–333
Monomers, 219–220
Monte Carlo simulation, 372
MP2 method, 215
Multilayer perceptron neural network, 196, 197–198
“Multilayers,” in the electrified interphase, 40
Multilevel parallelism, 220
Multi-linear QSPR approach, 194–196
improving flexibility of, 196
Multi-linear regression (MLR) methods, 194, 196, 197, 198, 199
Multiple ion pairs, 214
Multiple linear regression analysis, 95
Multipole–multipole Coulomb interactions, 202
Multi-step organic syntheses, 125
Mutual solubility, of ionic liquids and water, 125
MX salts, 183–184
Myoglobin extraction, 141
Nanocomposite gel electrolytes, 321
Nanocomposites, 320–324
Nanocrystalline aluminium, 6, 17, 18
Nanodroplets, surfactant-stabilised, 73
Nanofiltration, 148
Nanomaterials, template-assisted electrodeposition of, 19, 20, 21
Nanoparticle synthesis, 272
Nanowires, electrodeposition of, 19
Naphtha feed, 133
Natural sources, ionic liquids from, 231–250
$N$-carboxyamino acid anhydrides (NCAs), synthesis using amino acid ionic liquids, 245–246
Negative charge, at the surface, 61
Negative electrostatic potential, 38
Nernst potential, 312, 316, 325
Neural network approaches, 196, 197–198, 199
Neural networks, 197
Neutral ion pairs (NIPs), 255–256
Neutral ion triplets (NITs), 256
Neutron reflectivity (NR), 66
“Niche applications,” 89
Nile Red, 242
Nitrate ionic liquids, 195
Nitrato complex extraction, 124
Nitrile- and vinyl-substituted imidazolium ionic liquids, 317–318
Nitrogen compound removal, 136
NMP (1-methylpyrrolidone), 144, 146
Noble organometallic Wilkinson (W) and Jacobsen (J) catalysts, separation of, 126
Nomangiferin, CCC separation of, 97
Non-electrolyte-solution models, 359
Non-ideal phase behaviours, 368
Nonionic surfactants, 65
Non-linear BPNN method, 198. See also Back-propagation neural network (BPNN)
Non-linear machine-learning methods, 196–199
Non-linear regression analysis, 196
Non-polarisable force fields, 203
Non-random two-liquid (NRTL) model, 359
Non-volatile compounds, critical parameters of, 360
Novel dyes, development of, 338
Novel ionic liquids, 182
predictive MD simulations of, 201
Novel ionic liquid separation processes, 119, 120–121
[NTf$_2$]$^-$ anions, 100
Nuclear magnetic resonance (NMR) experiments, 267
Nuclear Overhauser Effect (NOE), 295
Nucleophilicity, 239
ocp (open circuit potential) conditions, surfaces under, 10, 13
Ohno, Hiroyuki, xii, 231
Olefins/paraffin separation, 146
with ionic liquids, 152–153
Onsager–Kirkwood solvation energy, 196
Open-circuit voltage, 307–308
Oppositely charged ions, in interfacial layer, 61
Optimal binary interaction parameters, 362
Optimal extraction efficiency, controlling factors for, 123
Order–disorder transition, 35
Ordering transition, 41–42, 43
Organic compounds/water separation, 147
Organic dyes, 328
spectral responses of, 330
structures of, 329
Organic halide testing, 17
Organic solvents interfaces with ionic liquids, 46
ionic liquids as replacements for, 88, 181
Organogelators, low-molecular-weight, 319
Oriented cations, 31
Oscillatory density profiles, 55
[OTf]$^-$ anions, 100
Oxidative desulphurisation, 139–140
P159 dye, 331–332
Paper chromatography, 107
Parallel computers, 219
Parallelism efficient use of, 219
multilevel, 220
Parameterisation approaches, 202
Partially desulphurised gasoline, extraction of, 135–136
Partial wetting, 44
Particle density, in vacuum systems, 253
Partition coefficients, 97
of aromatic compounds, 102
Pascal (Pa), 252
PEDOT conducting polymer, 334–337
chemically polarised, 334–335
electrodeposition of, 335
PEDOT-on-ITO-PEN electrodes, 335, 336, 337
Pendant-drop method, 38
Penicillin G extraction, 141, 142
Penicillium adametzii growth curves, 285–286, 287
Penicillium sp., ionic liquid testing on, 286, 287, 288, 293, 294, 296
Peptides, TLC separation of, 108
Perceptron neural network, 196, 197–198
Perfect vacuum (free space), 252
Performance coefficient calculations, 373
Perturbation theory, 220
petaFLOPS (PFLOPS), 220
Petkovic, Marija, xii
[PF₆]⁻ ions, STM images of, 43
Phase behaviour
of gases in ionic liquids, 349–386
of ionic liquid/water mixtures, 241–242
of a ternary system, 373–375
types of, 364–365
Phase separation, 39
temperature-sensitive, 231
Phase separation temperature (T_c), 243
Phase transfer catalyst (PTC), 139
Phase transitions, temperature-sensitive, 242
Phosphonium(-based) ionic liquids, 211, 289, 317
Phosphorus–oxygen containing analytes, analysis of, 101
Photocurrent density/efficiency, 316
Photodiode array (PDA) detection, 95
Photoelectron spectroscopy (PES), 255–256, 263–270
Photoionisation, 256
Photopolymerisation, 320
Photovoltaic applications, 337
Photovoltaic cells, 315
Photovoltaic efficiencies, 316, 322
Photovoltaics, 318
ionic liquids as electrolytes for, 310
Photovoltaic systems, 310–312
Phylogeny clusters, 287
Physical absorption, 149, 365–368
Physical properties, tailoring, 218
Physicochemical properties, tuning of, 101
Pioneering processes, 297
π–π stacking interactions, 214, 215
Planar chromatography, 107–108
Plastic crystals, 324–325
Platinum (quasi-)reference electrode, in STM experiments, 14–15
Plechkova, Natalia V., viii
Pluronic surfactants, 65
Polar components, 127–128
Polarisable force fields
classical force fields vs., 202
force fields with reduced charges vs., 202–204
Polarisable ion model, 31
Polyaromatic quinolinium-based ionic liquids, in fuel desulfurisation, 137
Polydimethoxysilane (PDMS) stationary phases, 90
Polyelectrolytes, 318–320
Polymer electrolytes, 318
Polymeric ionic liquids, in separation science, 87–89
Polymerisation, UV light and, 320
Polynomial expansion method, 199
Polyphenolic compounds, CE separation of, 105
Poly(RTILs), 150, 151. See also Room temperature ionic liquid entries
Polystyrene (PS) layers, on flat surfaces, 19
Polystyrene opal structure, 19, 20, 23
Polystyrene spheres, applying, 19, 20, 21
Poly(tetrafluoroethylene) (PTFE) membrane, 152
Porous alumina membranes, 152
Porphyrin sensitiser, 330–331
“Post-prediction” simulations, 201
Potassium impurities, 5. See also Molten KCl
Potential régime, 16
Potentialistic electrodeposition, of 3DOM silicon, 20
Predictive MD simulations, of novel ionic liquids, 201
Predictive theoretical methods, 218
Pressure units of, 252
in vacuum systems, 252
Pressure drop technique, 358
Primary amines, 214
INDEX

Pringle, Jennifer M., xii, 305
 Probe method, 272
 Probe molecules, 90, 91
 Projection pursuit regression (PPR) analysis, 196–197
 Projective index, 196
 Propylene/propane selectivity, 153
 “Protective ionic liquid layers,” 76
 Proteins, 141–143
direct extraction of, 142–143
 extraction efficiencies of, 141
 Proton affinity, 186–187, 214
 studying, 66, 217
 Protonated cations, 232
 Proton transfer, 214–215
 Prowald, Alexandra, xii, 1
 [PSpy]3[PW], 140
 PTx phase diagram, 362, 363, 364–365, 366
 Pulsed electrodeposition, 16–17
 Pure interfaces, 55, 65–66, 71–73
 Purity issues, 4–5
 Purity levels, 4
 Px phase diagram, 363, 366
 Pyridinium-containing ionic liquids, in fuel desulfurisation, 137
 Pyridinium salts, 289
 Pyrrolidinium ionic liquid studies, 67
 QSPR model, 194, 199. See also
 Quantum structure–property relationship (QSPR) approaches/methods
 Quantitative structure–activity relationship (QSAR) modelling, 289
 Quantum-chemical calculations, gas-phase, 214
 Quantum-chemical descriptors, 194–195
 Quantum-chemical methods, 205–206
 Quantum-chemical studies, 206
 Quasi-reference electrode. See Platinum (quasi-)reference electrode
 Quasi-solid state DSSCs, 321. See also
 Dye-sensitised solar cells (DSSCs) ionic liquids for, 318–332
 Quasi-solid state electrolytes, 338
development of, 323–324
in dye-sensitised solar cells, 305
Quasi-solid state electrolyte system, 319
Quaternary ammonium iodide silica-based material, 322–323
Quaternisation reaction, 187, 188
Radioactive metals, extraction of, 124
Raffinate phase, 158–159
Random cation orientation, 72
Random errors, 357–358
Raoult’s law, 367
RDC extraction column, 154. See also
Rotating disc contactor (RDC)
REACH (Registration, Evaluation, Authorisation, restriction of CHemical substances), 284
Reaction enthalpies, 187–188
Reactions, free energies of, 187–188
Recursive neural network (RNN) approach, 196, 199
Redlich–Kwong (RK) EOS, 359
Redox couples, 310, 312, 313
alternative, 325–326
cobalt-based, 326
Reduced pressure distillation, 255
Refining electrolysis, 2
Reflection absorption infrared spectroscopy (RAIRS), 270
Reflectivity curves, 41
REFPROP program, 352, 364
Refractive index (RI) detection, 95
Regression tree model, 198–199
Reorientations, at the ionic liquid/electrode interface, 9
Reproducible experiments, requirements for, 3
Reproducible results, 10
Repulsion–dispersion parameters, 203
Results extrapolating, 14
reproducible, 10
Retention factor (Rf), 107
solute, 91
Retention index, 90
Reverse EOF, 109. See also Electro-osmotic flow (EOF)
Reverse Menshutkin reactions, 254
Reverse phase high-performance liquid chromatography (RP-HPLC), 92–93, 93–94, 95
Rhodamine units, 328
Rigid ion model, 31
$R_M$ values, 108
“Robeson plot,” 150, 151
Rohrschneider–McReynolds system, 90
Room-temperature ionic liquid electrolytes, 310–313, 337
Room temperature ionic liquids (RTILs), copolymers of, 150. See also Poly(RTILs)
Root mean square deviation (RMSD), 161
Rotating disc contactor (RDC), 153. See also RDC extraction column
Roughness values, for silica, 60
Running electrolytes, 105
Ruthenium-based dyes, 328, 330
Safety, of gas solubility techniques, 359
Salting-out effect, 144–145
Same-charged species, dispersion interactions between, 214
Sapphire–ionic liquid interfaces, 59–60
SBIL-100-coated column, 101
Scanning electron microscopy (SEM), 254, 270
Scanning electron microscopy pictures, 23, 272, 273, 274, 337
of gold thin film, 21
of 3DOM germanium, 22
of 3DOM silicon, 20
of 2DOM silicon/germanium, 22
Scanning probe microscopy studies, 5–7
Scanning tunnelling/atomic force microscopy (STM/ATM) experiments, 2, 3
Scanning tunnelling microscopy (STM), 1. See also STM entries
Scattering length density profile, 67, 68, 71
Screening models, 372
Secondary metabolites, of fungi, 294–295
Seddon, Kenneth R., viii
Selective solvents, 143–144
Selectivity enhancement, 375
Self-diffusion coefficients, 204, 205
Self-healing liquid samples, 263
SEM analysis, 270. See also Scanning electron microscopy entries
Sensitiser optimisation, 326–332
Separated products, recovery of, 163
Separation combination, in the liquid phase with membranes, 148–149
Separation process design, 160–162
Separation processes novel, 119, 120–121
with ionic liquids, 119–179
Separation properties, unique to ionic liquids, 120
Separations, 97, 98, 100, 101, 103, 109. See also Analyte separations; Aromatic/aliphatic separation; Aromatic compound separation; Bioseparation; Chiral separation; Chromatographic separations; CO$_2$ separation; Conventional separation processes; Electrophoretic separations; Ephedrine separation; Gas separation; Liquid separations; Liquid–liquid separation; Mica–mica separations; Olefin/paraffin separation; Phase separation
alkene/alkane, 146
of amines, 93–94
aromatic/aliphatic hydrocarbon, 147
of 2-arylp propaneoic acids, 106
biphasic, 123
hexene/hexane, 146
hydrocarbon gas, 152–153
ionic liquids in, 104
mobile phase additives for, 108
of noble organometallic Wilkinson and Jacobsen catalysts, 126
olefin/paraffin, 146
organic compounds/water, 147
of polyphenolic compounds, 105
trimethyl borate/methanol, 147–148
Separation science
ionic liquids in, 87–117
polymeric ionic liquids in, 87–89
Separation selectivity, tuning for hydrogen bonding analytes, 101
SFG spectra, 32, 70, 72. See also Sum-frequency generation (SFG) spectroscopy
Shake flask method, 95
Shiflett, Mark B., xii, 349
Short-circuit current density ($J_{sc}$), 307
Short path sublimation apparatus, 255
Short-range dispersion interactions, 213
Silanol groups, 91, 92–93, 107
Silica, surface properties of, 60–61. See also SiO$_2$ nanoparticles
Silica–ionic liquid interfaces, 60–62
Silica materials, 323
Silica monolith, dynamically coating, 106
Silica surface charge, 60, 61
Silicon. See also 3D ordered macroporous (3DOM) silicon
at the ionic liquid/UHV interface, 4 migration of, 263
Silicon cells, 306
Silva Pereira, Cristina, xii, 283
Simulation runs, longer, 201
SiO$_2$ nanoparticles, 321. See also Silica entries
Slow bulk diffusion process, 269
Slow dynamics, of ionic liquids, 200, 201
Slow processes, probing, 10
Small angle neutron scattering (SANS) peak, 58
Small angle neutron scattering spectra, 53, 73
Small molecule impurities, 263
Sodium ion partitioning, 124
Software mapping modes, 273
Soil bioremediation, 297
Solar cell efficiency, 307
Solar cells, 306–308, 309. See also Dye-sensitised solar cells (DSSCs)
ionic liquid use in dye-sensitised, 305–347
liquid crystals as electrolytes for, 324
Solar energy, 306
Solid interfaces, hydrophobic, 75
Solid–ionic liquid interface, 55–65
adsorption at, 64–65
Solid/liquid interface, 39–42, 46
Solid state electrolytes, 318, 325
obstacles in designing, 321–322
Solid stationary phase supports, 96
Solid substrates, amphiphile adsorption onto, 65
Solubility behaviours, 367
of gases, 349
Solubility data, 362
Solute retention factor, 91
Solvation, three-step process for, 90
Solvation behaviour, 284
Solvation energies, 196
of ions, 185–186
Solvation interactions, 89–90, 95, 100
Solvation layers, 1
Solvation characteristics, for extractive distillation processes, 145
Solvent extraction technologies, traditional, 122
Solvents tailoring, 160
used in DSSCs, 308–309
Solvent systems, for counter-current chromatography, 96
Solvent-to-feed (S/F) ratio, 144
Solvophobic clustering, 64
Solvophobic forces, surface tensions and, 69
Solvophobic interactions, 58, 59, 66
with uncharged molecular regions, 62
Solvophobicity, 52
Spectroscopic gas solubility methods, 358–359
Standard absolute entropy, 183
relationship with molecular volume, 184
Standard entropies, estimating, 193
Standard ionic liquids, 153
Stationary phase(s), 91, 95
dynamically coated, 106
ionic liquids as, 98–99
mass transfer in, 89
in planar chromatography, 107
Stationary phase classification methods, 90
Step size reduction, 64
Stern Layer, 103
STM experiments, 5, 11–14. See also In situ STM studies; Scanning tunnelling microscopy (STM) platinum (quasi-)reference electrode in, 14–15
STM image noise, 16
STM images, 8, 9. See also In situ STM images of [PF$_6$]$^-$ ions, 43 quality of, 10
STM tips, 16
Stoichiometric method, 358
Stokes–Einstein ratio, 312
Strong damping, 34
Strong IPBEs, 214. See also Ion-pair binding energies (IPBEs)
Sublayers, anion and cation, 58
Substrate charge quenching, 57
Substrate packing arrangements, 58
Substrates, wettability of, 44
Subsurface ionic liquid region, 68
Succinonitrile, 324
Sulfolane, 154, 155, 156, 160
Sulfolane regeneration, 128
Sulfur compounds
distribution coefficient of, 138
low removal rate of, 139
removal of, 136, 137
Sulfur removal, 135–137
Sum-frequency generation (SFG)
spectroscopy, 17, 66–67, 269–270. See also Infrared visible sum-frequency generation (IR-VIS SFG); SFG spectra of silica–ionic liquid interface, 61
Sum frequency generation vibration spectroscopy, 30, 31. See also Vibrational SFG
Supercritical carbon dioxide (scCO$_2$), 102
Supercritical fluid chromatography (SFC), ionic liquids in, 102–103
Supercritical fluids, “green” potential of, 102
Suppliers, blind reliance on, 5
Supported ionic liquid membranes (SILMs), 148–149, 376 selectivity in, 149
Supported liquid membranes (SLMs), 151
CO$_2$ separation with, 150–152
Support vector machines (SVN), 196, 198
Surface(s)
defined, 29
irradiating, 262
Surface active species, investigating, 70
Surface adsorption sites, 64–65
Surface aggregate structures, 65
Surface charge, of silica, 60, 61
Surface charge density, of sapphire, 59
Surface charging, 266
Surface chemistry
dependence on liquid quality, 23–24
ionic liquid influence on, 24
Surface-concentrated impurities, 264
Surface diffusion process, 269
Surface dipole layer, 36
Surface dipole moment densities, 35, 36
Surface displacement, 34
Surface excess entropy, 37
Surface hydrocarbon aggregation, 67
Surface layer reorientation, 8
Surface light scattering spectroscopy, 30, 34
Surface polarisation effects, 35
Surface roughening, 32
Surface roughness, 52, 60
Surface science experiments, 5
Surface-sensitive probes, 30
Surface-sensitive techniques, 17, 66
Surfaces forces apparatus (SFA), 55
Surface structure, mechanisms for controlling, 56
Surface tension data, 35
Surface tensions, 36–37, 69
Surfactant adsorption, at air–ionic liquid interfaces, 69–71
Surfactant CMC values, 69
Surfactant molecules, 69, 70
ionic-liquid specific, 69
Surfactant-stabilised nanodroplets, 73
Synchrotron-based experiments, 254, 275
Synchrotron X-ray reflectivity measurements, 30, 32
Synthetic gas solubility methods, 358
Systematic errors, 357, 358
Systematic fragmentation method (SFM), 219
System pressure, effect on products of heating, 258

Tailoring, 160
Tantalum electrodeposition, 3
Task-specific ionic liquids, 120, 123, 163
liquid–liquid extraction with, 125–126
Temperature, viscosity decrease and, 36
Temperature-driven phase separation behaviour, 242–243
Temperature programmed desorption (TPD), 254
Temperature-sensitive phase separation, 231
Temperature-sensitive phase transitions, 242
Template-assisted electrodeposition, of nanomaterials, 19, 20, 21
Ternary EOS model, 373
Ternary melts, 316
Ternary phase behaviour, 373–375
Ternary system, 373
Tertiary amines, 214
Tetraalkylphosphonium amino acid ionic liquids, decomposition temperatures of, 238
Tetraalkylphosphonium iodide ionic liquids, 317
Tetrafluoroborate ionic liquids, distillation of, 260
Thermal stability, of ionic liquids, 109. See also Heat entries
Thermodynamic-based approach, shortcomings of, 193–194
Thermodynamic descriptors, 194
Thermodynamic excess functions, 367–369
Thermodynamic interfacial characteristics, 30
Thermodynamic model, 359
Thermodynamic properties, 183–192, 206–207
calculating, 215
predicting, 219
Thermogravimetric analysis (TGA), 254–255
Thermophysical data, predicting, 161
Thick liquid film studies, 40
Thienothiophene dye, 328–330
Thin layer chromatography (TLC), 107–108
stationary phases used for, 107, 108
Thiocyanate system, 333
Thiophenes, 135–137
Thiourea-appended functionalised ionic liquid, 126
Three-descriptor models, 195
Three-dimensional (3D) surface images, 11
Three-dimensional gas chromatograph (GC3) instrumentation, 101
3DOM conducting polymers, 19
3D ordered macroporous (3DOM) aluminium, 21
3D ordered macroporous (3DOM) germanium, 19, 20, 22
3D ordered macroporous (3DOM) silicon, 19, 20–21, 23
3D ordered macroporous (3DOM) substrates, 19–21
Time-of-flight secondary ion mass spectrometry (TOF-SIMS), 270. See also TOF-SIMS imaging
TiO2 nanoparticles, 320, 322. See also Titanium entries
TiO2 solar cell, 306–308
Tip-to-sample distance, variation in, 12–13
Titanium deposition, 3. See also TiO2 entries
Titanium phosphate, layered, 322
TLC-MS method, 108. See also Thin layer chromatography (TLC)
TLC separations, mobile phase additives for, 108
TOF-SIMS imaging, 273. See also Time-of-flight secondary ion mass spectrometry (TOF-SIMS)
Toluene extraction, 159
Toluene/heptane selectivity, 148
Toluene/heptane separation, 132, 133, 154–155, 156–157, 157–159
Topological descriptors, 194
Total errors, estimating, 357–358
Total negative ion SIMS map, 274
Toxicity prediction, 289
Traditional DSSC structures, variations from, 332–337. See also Dye-sensitised solar cells (DSSCs)
Transferable polarisable force field, 203
Transition zone, 74, 75
of ionic liquid interfaces, 54
ion-pair layers in, 73
Transition zone structure, 66, 67–69
predictions of, 72
Transmission electron microscopy (TEM), 270
Transport properties, 192–194
from first principles, 207–216
ion mobility and, 214
prediction of, 199–200
Trialkylsulfonium iodides, 317
Tributyl(alkyl)phosphonium chlorides, toxicity of, 289–290
Trichloromethane, ionic liquid replacements for, 97
Tricyanomethanide anion, 315
Triiodide diffusion, methods for measuring, 313
Trimethyl borate (TMB)/methanol separation, 147–148
Tuning, of physicochemical properties, 101
Tunnelling barrier (ϕ), 5, 11, 12, 13, 16
Tunnelling electron microscopy (TEM), 254
Tunnelling parameters, 24
Tunnelling spectroscopy, 11
TURBOMOLE, 185
Two-box model, 32
Two-dimensional (2D) interfacial phase transitions, 30
2D ordered macroporous (3DOM) silicon/germanium, 22

Ultra-high-purity liquids, 259
Ultra-high vacuum (UHV), 4, 30, 258–263. See also UHV entries
applications of, 263
benefits of measuring at, 259
defined, 252
distillation at, 259
ionic liquids studied at, 251–282
Ultraviolet (UV) detection, 95, 98
Ultraviolet light, polymerization and, 320
Ultraviolet photoelectron spectroscopy (UPS), 4
Ultraviolet photoemission spectroscopy (UPS), 66, 254, 263
Uncharged molecular regions, solvophobic interactions with, 62
UNIFAC, 161, 162
UNIQUAC, 161
Univariant state, 355, 356
“Universal” functionals, 218
Universal gas constant (R), 359
Upper critical solution temperature (UCST), 242–243
UV radiation absorption, 109. See also Ultraviolet entries

Vacuum, quality of, 251–252
Vacuum-based techniques, 66
Vacuum-based technologies, applications of, 254
Vacuum/liquid interface, 31–37
Vacuum systems
pressures in, 252
rôle of, 253
van Deemter equation, 89
van der Waals forces/interactions, 63, 213
Vapour density, calculating, 357. See also Gas entries
Vapourisation enthalpies, 191, 204, 206–207, 215, 258, 259, 260
Vapourisation temperature (Tvap), 258
Vapour liquid diagram, 146, 147
Vapour–liquid equilibria (VLE), 349, 350, 359. See also VLE entries
ternary, 373
Vapour–liquid–liquid equilibria (VLLE), 349, 350, 356–357, 377. See also VLLE entries
Vapour phase
of ionic liquids, 254–261
thermodynamic quantities of, 258
Vapour phase fugacity, 370, 371
Vapour pressure(s) ($p_{vp}$), 30, 107, 206–207
of ionic liquids, 253
measuring, 258–259, 260
Vertical displacement, 34
Vibrational SFG, 66, 67. See also Sum frequency-generation vibration spectroscopy
Viscosity ($\eta$), 192–193, 211, 212
of amino acid ionic liquids, 233–237, 238
conductivity and, 199
differences in, 208
from first principles, 207
of ionic liquids, 97–98
overestimation of, 201
Viscosity decrease, as a function of raising temperature, 36
VLE data, 364, 377. See also Vapour–liquid equilibria (VLE)
VLE predictions, 376
VLLE calculation, 376. See also Vapour–liquid–liquid equilibria (VLLE)
VLLE experiments, 364
Volatile entrainers, 144, 145
Volatile organic compounds (VOCs), 88
Volatility, of iodine, 317
Volume-based Jenkins approach, 188
Wakeham, Deborah, xii, 51
Walden plot ($\Delta W$), 211, 214
Walden rule, 199
Watanabe approach, 210–211
Water
at the air–ionic liquid interface, 70
mutual solubility of ionic liquids and, 125
Water content, expressions of, 243–245
Water-immiscible liquids, 297
Water-in-oil liquid systems, 73
Water miscibility, of ionic liquids, 120
Wavefunction-based methods, 217
Weakly bound cations, 63
“Wet” ionic liquids, 297
Wettability, of substrates, 44
Wetting, 46
characteristics of, 42–45
Wetting/electrowetting phenomena, 30
Whole genome transcriptomic profiling, 296–297
Wilkinson (W) catalyst, 126
Wormlike structures, on STM images, 10
XP (X-ray photoelectron) spectra, 264, 265, 266, 269, 271
XPS experiments, 5, 265–266. See also X-ray photoelectron spectroscopy (XPS)
X-ray photocorrelation spectroscopy, 36
X-ray photoelectron spectroscopy (XPS), 4, 66, 253, 254, 263–269. See also XPS experiments
X-ray photoelectron spectroscopy methods, 30, 32–34
X-ray powder diffraction (XRD) analysis, 322
X-ray reflectivity (XRR), 66, 67, 70
X-ray reflectivity measurements, 30, 32. See also High-energy X-ray reflectivity experiments
Yalkowsky thermodynamic approach, predicting ionic-liquid melting points based on, 190
Yokozeki, Akimichi, xii, 349
Young–Lippman equation, 44
Yttrium(III), extraction–separation of, 124–125
Z907 dye, 326, 337
$\alpha$-Zirconium phosphate, layered, 322
Zwitterions, 232