Contents

List of Contributors XVII
Preface XXIX

Volume 1

Section I Sample Preparation and Sample Pretreatment 1

1 Preparation of Liquid and Solid Samples 3
 Brian M. Cullum and Tuan Vo-Dinh
 1.1 Introduction 3
 1.2 Preparation of Samples for Analysis 3
 1.2.1 Measurement Process 3
 1.2.2 Preparation of Samples for Analysis 4
 1.2.3 Solid Samples 5
 1.2.4 Liquid Samples 10
 References 13

2 Liquid and Solid Sample Collection 15
 Paolo de Zorzi
 2.1 Introduction 15
 2.2 Sampling Process 16
 2.3 Sampling Strategy and Collection 18
 2.3.1 Liquid Sampling 20
 2.3.2 Solid Sampling 22
 2.4 QA/QC in Sampling 23
 References 26

Section II Methods 1: Optical Spectroscopy 27

Introduction 29
References 30
3 Basics of Optical Spectroscopy 31
Martin Hof and Radek Macháň
3.1 Absorption of Light 31
3.2 Infrared Spectroscopy 33
3.3 Raman Spectroscopy 35
3.4 UV–vis Absorption and Luminescence 36
References 38

4 Instrumentation 39
Valdas Sablinskas
4.1 MIR Spectrometers 40
4.1.1 Dispersive Spectrometers 40
4.1.2 Fourier-Transform Spectrometers 41
4.2 NIR Spectrometers 45
4.2.1 FT-NIR Spectrometers 46
4.2.2 Scanning-Grating Spectrometers 46
4.2.3 Diode Array Spectrometers 47
4.2.4 Filter Spectrometers 47
4.2.5 LED Spectrometers 47
4.2.6 AOTF Spectrometers 47
4.3 Terahertz Spectrometers 48
4.4 Raman Spectrometers 49
4.4.1 Raman Grating Spectrometer with Single Channel Detector 49
4.4.2 FT-Raman Spectrometers with Near-Infrared Excitation 52
4.4.3 Raman Grating Polychromator with Multichannel Detector 53
4.4.4 Handheld Raman Spectrometers 55
4.5 UV/vis Spectrometers 56
4.5.1 Sources 57
4.5.2 Monochromators 57
4.5.3 Detectors 58
4.6 Fluorescence Spectrometers 59
4.7 Spectral Imaging Devices 61
4.8 Instrumentation for Nonlinear Vibrational Spectroscopy 64
4.8.1 Stimulated Raman Scattering (SRS) Spectrometers 64
4.8.2 Sum Frequency Generation (SFG) Spectrometers 65
4.8.3 Coherent Anti-Stokes Raman Scattering (CARS) Systems 66
Further Reading 69

5 Measurement Techniques 71
Gerald Steiner
5.1 Transmission Measurements 71
Section III Methods 2: NMR 183

Introduction 185

7 An Introduction to Solution, Solid-State, and Imaging NMR Spectroscopy 193
Leslie G. Butler

7.1 Introduction 193
7.2 Solution-State 1H NMR 195
7.3 Solid-State NMR 203
7.3.1 Dipolar Interaction 204
7.3.2 Chemical Shift Anisotropy 206
7.3.3 Quadrupolar Interaction 207
7.3.4 Magic Angle Spinning (MAS) NMR 209
7.3.5 T_1 and $T_{1\rho}$ Relaxation 210
7.3.6 Dynamics 214
7.4 Imaging 215
7.5 3D NMR: The HNCA Pulse Sequence 219
7.6 Conclusion 221
References 223

8 Solution NMR Spectroscopy 225
Gary E. Martin, Chad E. Hadden, and David J. Russell

8.1 Introduction 225
8.2 1D (One-Dimensional) NMR Methods 226
8.2.1 Proton Spin Decoupling Experiments 227
8.2.2 Proton Decoupled Difference Spectroscopy 227
8.2.3 Nuclear Overhauser Effect (NOE) Difference Spectroscopy 228
8.2.4 Selective Population Transfer (SPT) 228
8.2.5 J-Modulated Spin Echo Experiments 229
8.2.6 Off-Resonance Decoupling 231
8.2.7 Relaxation Measurements 232
8.3 Two-Dimensional NMR Experiments 234
8.3.1 2D J-Resolved NMR Experiments 235
8.3.2 Homonuclear 2D NMR Spectroscopy 238
8.3.3 Gradient Homonuclear 2D NMR Experiments 248
8.3.4 Heteronuclear Shift Correlation 249
8.3.5 Direct Heteronuclear Chemical Shift Correlation Methods 250
8.3.6 HSQC, Heteronuclear Single Quantum Coherence Chemical Shift Correlation Techniques 252
8.3.7 Long-Range Heteronuclear Chemical Shift Correlation 255
8.3.8 Hyphenated-2D NMR Experiments 268
8.3.9 One-Dimensional Analogs of 2D NMR Experiments 271
8.4 Conclusions 283
References 285
9 Suspended-State NMR Spectroscopy (High-Resolution Magic Angle Spinning (HR-MAS) NMR Spectroscopy) 293
Markus Kramer and Klaus Albert
References 294

10 Solid-State NMR 297
Steven P. Brown and Lyndon Emsley
10.1 Introduction 297
10.2 Solid-State NMR Lineshapes 300
10.2.1 The Orientational Dependence of the NMR Resonance Frequency 300
10.2.2 Single-Crystal NMR 301
10.2.3 Powder Spectra 303
10.2.4 One-Dimensional 2H NMR 305
10.3 Magic-Angle Spinning 307
10.3.1 Cross Polarization Magic-Angle Spinning Nuclear Magnetic Resonance CP MAS NMR 309
10.3.2 1H Solid-State NMR 313
10.4 Recoupling Methods 315
10.4.1 Heteronuclear Dipolar-Coupled Spins: REDOR 315
10.4.2 Homonuclear Dipolar-Coupled Spins 317
10.4.3 The CSA: CODEX 319
10.5 Homonuclear Two-Dimensional Experiments 319
10.5.1 Establishing the Backbone Connectivity in an Organic Molecule 320
10.5.2 Dipolar-Mediated Double-Quantum Spectroscopy 324
10.5.3 High-Resolution 1H Solid-State NMR 327
10.5.4 Anisotropic–Isotropic Correlation: the Measurement of CSAs 327
10.5.5 The Investigation of Slow Dynamics: 2D Exchange 329
10.5.6 1H–1H DQ MAS Spinning-Sideband Patterns 333
10.6 Heteronuclear Two-Dimensional Experiments 335
10.6.1 Heteronuclear Correlation 335
10.6.2 The Quantitative Determination of Heteronuclear Dipolar Couplings 337
10.6.3 Torsional Angles 340
10.6.4 Oriented Samples 341
10.7 Half-Integer Quadrupole Nuclei 342
10.8 Summary 347
Acknowledgments 348
Appendix 349
Anisotropic Interactions: The Orientation Dependence of the Resonance Frequency 349
References 350
Section IV Methods 3: Mass Spectrometry 355

11 Mass Spectrometry 357
Michael Przybylski
11.1 Introduction: Principles of Mass Spectrometry 357
11.1.1 Application Areas of Mass Spectrometry to Biopolymer Analysis 358
11.2 Techniques and Instrumentation of Mass Spectrometry 359
11.2.1 Sample Introduction and Ionization Methods 359
11.2.2 Mass Spectrometric Analyzers 363
11.2.3 High-Resolution Mass Spectrometers 368
11.2.4 Ion Detection and Spectra Acquisition 372
11.2.5 Sample Preparation and Handling in Bioanalytical Applications 373
11.2.6 Combination of Mass Spectrometry with Microseparation Methods and New Mass Spectrometric Hybrid Systems 376
11.3 Applications of Mass Spectrometry to Biopolymer Analysis 383
11.3.1 Introduction 383
11.3.2 Analysis of Peptide and Protein Primary Structures and Posttranslational Structure Modifications 384
11.3.3 Tertiary Structure Characterization by Chemical Modification and Mass Spectrometry 387
11.3.4 Characterization of Noncovalent Supramolecular Complexes 389
11.3.5 Mass Spectrometric Proteome Analysis 391
11.3.6 Application of Affinity-Mass Spectrometry to the Analysis of Biomolecular Recognition Structures 393
11.3.7 Identification of Oligomerization – Aggregation Structures and Pathways of Neurodegenerative Proteins by Ion Mobility Mass Spectrometry 397
Acknowledgments 398
References 399

12 Multiparametric Analysis of Mass Spectrometry-Based Proteome Profiling in Gestation-Related Diseases 407
Michael O. Glock, Claudia Röwer, Manja Wölter, Cornelia Koy, Toralf Reimer, and Ulrich Pecks
12.1 Introduction on Gestational Diseases 407
12.1.1 Preeclampsia 407
12.1.2 HELLP Syndrome 409
12.1.3 Intrauterine Growth Restriction (IUGR) 410
12.2 Mass Spectrometric Data Acquisition from Plasma Samples 411
12.2.1 Mass Spectrometric Data Collection Without Sample Fractionation 412
12.2.2 Mass Spectrometric Data Collection upon Sample Fractionation 414
12.3 Multiparametric Analysis of Mass Spectrometry Data 415
12.3.1 Recalibration and Standardization Strategies 415
19 Ion/Neutral Probe Techniques 741
 Anna Macková and Andrew Pratt

20 Photon Probe Techniques 779
 Simon Morton

Section VII Methods 6: Spectroscopy in Nano Dimensions 821

21 Single-Molecule Spectroscopy 823
 Frank Schleifenbaum, Christian Blum, Marc Brecht, and Alfred J. Meixner

22 Single-Molecule Interfacial Electron-Transfer Dynamics 877
 Hong Peter Lu

23 Scanning Near-Field Gap-Mode Microscopy 911
 Dai Zhang and Alfred J. Meixner

Volume 3

Section VIII Applications 1: Bioanalysis 941

24 Trends in Bioanalytical Spectroscopy 943
 Willem M. Albers

25 Quality Assessment of Spectroscopic Methods in Clinical
 Laboratories 977
 Heike Schneider, Georg Kurz, and Peter B. Luppa

26 UV–Vis and NIR Fluorescence Spectroscopy 999
 Gabor Patonay, Garfield Beckford, and Pekka Hänninen

27 Principles of Vibrational Spectroscopic Methods and their Application
 to Bioanalysis 1037
 David S. Moore, Peter Uhd Jepsen, and Karel Volka

28 Bioanalytical NMR Spectroscopy 1079
 Perttu Permi

29 Direct Optical Detection in Bioanalytics 1115
 Günter Gauglitz and Nicholas J. Goddard

Section IX Applications 2: Polymer Analysis 1159

30 Surface Plasmon Spectroscopy Methods and Electrochemical
 Analysis 1161
 Akira Baba and Rigoberto Advincula
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Applications of Fourier Transform Infrared (FTIR) Imaging</td>
<td>1179</td>
</tr>
<tr>
<td></td>
<td>Al de Leon, Brylee Tiu, Joey Mangadlao, Katrina Pangilinan, Pengfei Cao, and Rigoberto Advincula</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Photon Correlation Spectroscopy Coupled with Field-Flow Fractionation for Polymer Analysis</td>
<td>1201</td>
</tr>
<tr>
<td></td>
<td>J. Ray Runyon and S. Kim Ratanathanawongs Williams</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Surface Plasmon Resonance Spectroscopy and Molecularly Imprinted Polymer (MIP) Sensors</td>
<td>1229</td>
</tr>
<tr>
<td></td>
<td>Allan Cyago and Rigoberto Advincula</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section X Applications 3: Environmental Analysis</td>
<td>1259</td>
</tr>
<tr>
<td>34</td>
<td>LC-MS in Environmental Analysis</td>
<td>1261</td>
</tr>
<tr>
<td></td>
<td>Sophie Bourcier and Michel Sablier</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ion Attachment Mass Spectrometry for Environmental Analysis</td>
<td>1287</td>
</tr>
<tr>
<td></td>
<td>Yuki Kitahara, Seiji Takahashi, Masamichi Tsukagosi, Juhász Márta, and Toshihiro Fujii</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Immunoassays</td>
<td>1313</td>
</tr>
<tr>
<td></td>
<td>Günther Proll and Markus Ehni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section XI Applications 4: Process Control</td>
<td>1335</td>
</tr>
<tr>
<td>37</td>
<td>Process Control in Chemical Manufacturing</td>
<td>1343</td>
</tr>
<tr>
<td></td>
<td>Dieter Fischer, Stefan Stieler, and Stephan Küppers</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Process Control Using Spectroscopic Tools in Pharmaceutical Industry and Biotechnology</td>
<td>1363</td>
</tr>
<tr>
<td></td>
<td>Michael Brudel, Uwe Schmidt, Holger Mueller, and Stephan Küppers</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Applications of Optical Spectroscopy to Process Environments</td>
<td>1397</td>
</tr>
<tr>
<td></td>
<td>Stephan Küppers</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Spectral Imaging in Quality and Process Control</td>
<td>1409</td>
</tr>
<tr>
<td></td>
<td>Rudolf W. Kessler and Waltraud Kessler</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Trends in Spectroscopic Techniques for Process Control</td>
<td>1419</td>
</tr>
<tr>
<td></td>
<td>Michael Maiwald, Igor Gornushkin, and Markus Ostermann</td>
<td></td>
</tr>
</tbody>
</table>
Volume 4

Section XII Applications 6: Spectroscopy at Surfaces 1439

42 Optical Spectroscopy at Surfaces 1441
Georgeta Salvan and Dietrich R. T. Zahn

43 NEXAFS Studies at Surfaces 1485
Maria Benedetta Casu and Thomas Chassé

44 The X-Ray Standing Wave Technique 1507
Alexander Gerlach and Frank Schreiber

45 Photoelectron Spectroscopy Applications to Materials Science 1523
Maria Benedetta Casu and Thomas Chassé

Section XIII Applications 7: Nano-Optics 1557

46 Miniaturized Optical Sensors for Medical Diagnostics 1559
Seong-Soo Kim and Boris Mizaikoff

47 Tip-Enhanced Near-Field Optical Microscopy 1585
Achim Hartschuh

48 Optical Waveguide Spectroscopy 1611
James S. Wilkinson

Section XIV Hyphenated Techniques 1643

49 Mass Spectral Detection 1645
John C. Fetzer

50 Optical Detection 1657
John C. Fetzer

51 Atomic Spectral Detection 1667
John C. Fetzer

52 NMR as a Chromatography Detector 1679
Klaus Albert

Section XV General Data Treatment: Databases/Spectral Libraries 1717

53 Optical Spectroscopy 1719
Steffen Thiele and Reiner Salzer
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>Nuclear Magnetic Resonance Spectroscopy</td>
<td>1749</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Robien</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Mass Spectrometry</td>
<td>1769</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Werther</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Raman Spectroscopy Fundamentals</td>
<td>1813</td>
</tr>
<tr>
<td></td>
<td>David Moore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>1831</td>
</tr>
</tbody>
</table>