Contents

Preface XV
About the Editors XVI
List of Contributors XIX

Part I Fluid Dynamics in Microchannels 1

1 Multiphase Flow 3
Axel Günther and Michiel T. Kreutzer
1.1 Introduction 3
1.2 Fundamentals of Multiphase Flow 4
1.2.1 Properties of Fluids and Interfaces 5
1.2.1.1 Microchannel Surface Characteristics and Wetting 6
1.2.1.2 Scaling of Forces 7
1.2.1.3 Surface Tension Variations 8
1.2.1.4 Particles and Fluid Interfaces 8
1.2.2 Classification of Phase Distributions 9
1.3 Dynamic Behavior of Multiphase Microflows 9
1.3.1 Flow Instabilities 10
1.3.1.1 Capillary Instability 10
1.3.1.2 Deformation of Stratified Liquid Layers 12
1.3.2 Multiphase Flow Regimes 12
1.3.3 Formation of Multiphase Flow 15
1.3.4 Susceptibility of Multiphase Flow to Pressure Fluctuations 15
1.3.5 Separation of Phases 16
1.4 Role of Channel Geometries 17
1.5 Experimental and Numerical Techniques 20
1.5.1 Numerical 20
1.5.2 Experimental 20
1.5.2.1 Brightfield Microscopy 21
1.5.2.2 Fluorescence Microscopy 21
1.5.2.3 Particle Tracking and Particle Image Velocimetry 23
1.5.2.4 Confocal Microscopy 24
1.5.2.5 Flow Sensors 24
1.5.2.6 Magnetic Resonance Imaging 24
1.5.2.7 X-ray Tomography 25
1.6 Annular and Stratified Two-phase Flows 25
1.7 Droplet and Bubble Flows 26
1.7.1 Lubrication Analysis 26
1.7.2 Pressure Drop in Segmented-flow Microfluidic Networks 28
1.8 Practical Aspects of Microfluidic Networks 28
1.8.1 Parallel Scaling 28
1.8.2 Using Multiphase Flows for Controlling Fluid Paths 30
References 32

2 Microfluidic Networks 41
Norbert Kockmann
2.1 Introduction 41
2.2 Fluid Mechanics 41
2.3 Basic Channel Structures 44
2.4 Network Design 46
2.5 Lumped Element Modeling 48
2.6 Parallel Channel Devices 52
2.7 Headers and Manifold for Plate Stacks 54
2.8 Conclusion 56
References 58

3 Boiling and Two-phase Flow in Microchannels 61
John R. Thome and Gherhardt Ribatski
3.1 Introduction 61
3.2 Macro-to-Microscale Transition 62
3.3 Flow Patterns in Microscale Channels 63
3.4 Pressure Drop 66
3.5 Boiling Heat Transfer 67
3.6 Critical Heat Flux 70
3.7 Two-phase Flow Instabilities 72
3.8 Prediction Methods 76
3.8.1 Frictional Pressure Drop 76
3.8.2 Heat Transfer 78
3.8.3 Critical Heat Flux 82
References 87

4 Microscale Flow Visualization 93
Marko Hoffmann, Michael Schlüter, and Norbert Räbiger
4.1 Introduction 93
4.2 Fundamentals 94
4.3 Visualization of Flow Fields in Micro- and Minichannels 95
4.3.1 Microparticle Image Velocimetry (μ-PIV) 95
4.3.1.1 Correlation Averaging Method 96
4.3.1.2 3D Reconstruction 98
4.3.1.3 Accuracy of μ-PIV Measurements 99
4.3.1.4 Depth of Correlation 100
4.3.1.5 Brownian Motion 101
4.3.2 Extension of Common μ-PIV for Enhancement of Spatial and Temporal Resolution 102
4.3.2.1 Multiphase Flow 102
4.3.3 Confocal Microparticle Image Velocimetry 103
4.3.4 Stereoscopic Microparticle Image Velocimetry 104
4.3.5 3D Particle Tracking Velocimetry 105
4.4 Visualization of Concentration and Temperature Fields in Micro- and Minichannels 106
4.4.1 Analysis of Concentration Fields 107
4.4.2 Analysis of Temperature Fields 109
4.4.3 Visualization of Mixing Processes Without Chemical Reactions 110
4.4.4 Visualization of Reactive Mixing 110
4.5 Conclusion 113

5 Modeling of Microfluidic Devices 117
 David F. Fletcher, Brian S. Haynes, Joëlle Aubin, and Catherine Xuereb
 5.1 Introduction 117
 5.2 Characteristics of Microsystems 117
 5.2.1 Non-continuum Effects 118
 5.2.2 Laminar Flow 118
 5.2.3 Surface Roughness 119
 5.2.4 Viscous Energy Dissipation 120
 5.2.5 Gravitational Effects 120
 5.2.6 Electric Effects 121
 5.2.7 Surface Tension Effects 122
 5.2.8 Wall Slip Effects 123
 5.3 The Importance of Appropriate Solution Methods 124
 5.3.1 Conventional Navier–Stokes Solvers 124
 5.3.1.1 Numerical Diffusion 124
 5.3.1.2 Interfacial Surface Location and Parasitic Currents 125
 5.3.2 Advanced Solution Methods 126
 5.4 Single-phase Simulations 127
 5.4.1 Heat Transfer Enhancement 127
 5.4.2 Mixing 129
 5.5 Multi-phase Simulations 134
 5.5.1 Taylor Bubble Simulations 134
5.5.2 Droplet Simulations 136
5.6 Summary and Perspective 138
References 139

Part II Mixing in Microsystems 145

6 Characterization of Mixing and Segregation in Homogeneous Flow Systems 147
Laurent Falk and Jean-Marc Commenge
6.1 Introduction 147
6.2 Mixing Principles and Features of Microsystems 148
6.2.1 Molecular Diffusion 149
6.2.2 Mixing in a Shear Field 150
6.2.3 Application to Mixing in Microchannels 151
6.2.4 Chaotic Mixers 154
6.2.4.1 Additional Readings: Chaotic Mixing Model in Microchannels 156
6.2.5 Mixing Efficiency 158
6.3 Experimental Mixing Characterization 159
6.3.1 Physical Methods 159
6.3.2 Chemical Methods 161
6.3.3 Villermaux–Dushman Reaction 162
6.3.4 Mixing Time 165
6.4 Comparison of Performances of Micromixers 166
6.5 Conclusions 170
References 170

7 Passive and Active Micromixers 175
Zhigang Wu and Nam-Trung Nguyen
7.1 Introduction 175
7.2 Passive Micromixers 177
7.2.1 Parallel Lamination Micromixers 177
7.2.2 Serial Lamination Micromixers 183
7.2.3 Micromixers Based on Chaotic Advection 184
7.2.3.1 Chaotic Advection at High Reynolds Numbers 184
7.2.3.2 Chaotic Advection at Intermediate Reynolds Numbers 185
7.2.3.3 Chaotic Advection at Low Reynolds Numbers 186
7.2.4 Droplet Micromixers 188
7.3 Active Micromixers 190
7.3.1 Pressure-induced Disturbance 190
7.3.2 Electrohydrodynamic Disturbance 191
7.3.3 Magnetohydrodynamic Disturbance 192
7.3.4 Acoustic Disturbance 192
7.3.5 Thermal Disturbance 193
7.4 Fabrication Methods 194
Part III Heat/Mass Transfer 253

9 Heat Transfer in Homogeneous Systems 255
Franz Trachsel and Philipp Rudolf von Rohr
9.1 Introduction 255
9.2 Continuum Assumption 256
9.2.1 Gases 257
9.2.2 Liquids 257
9.3 Heat Transfer in Homogeneous Microfluidic Systems 259
9.4 Pronounced Effects in Microchannel Heat Transfer 261
9.4.1 Axial Heat Conduction in the Fluid 261
9.4.2 Conjugate Heat Transfer 265
9.4.3 Surface Roughness 266
9.4.4 Viscous Dissipation 267
9.4.5 Variation of Thermophysical Properties 268
9.4.6 Electric Double Layer 269
9.4.7 Entrance Region 269
9.4.8 Measurement Accuracy 270
9.5 Conventional Heat Transfer Correlations for Macroscale Tubes and Channels 270
9.5.1 Developing Hydrodynamic Regions of Laminar Flow 271
9.5.2 Developing Thermal Flow 271
9.5.3 Fully Developed Laminar Flow 271
9.5.3.1 Constant Wall Temperature 271
9.5.3.2 Constant Heat Flux 272
9.5.4 Turbulent Flow 272
9.5.4.1 Transition Regime $2300 < Re < 10^4$ 274
9.6 Conclusion 274
References 279

10 Transport Phenomena in Microscale Reacting Flows 283
Niket S. Kaisare, Georgios D. Stefanidis, and Dionisios G. Vlachos
10.1 Introduction 283
10.2 Spatial Gradients in Microchannels 284
10.2.1 Axial Thermal Gradients 285
10.2.2 Transverse External Thermal Gradients 287
10.2.3 Transverse External Mass Transfer 287
10.2.4 Internal Heat and Mass Transfer 288
10.3 Thermal Radiation in Microchannels 289
10.4 Transverse Heat and Mass Transfer Correlations 292
10.5 Homogeneous Microburners 293
10.5.1 Effect of Transverse Transport on Flame Stability 293
10.5.2 Transverse Heat Transfer and Nusselt Number 295
10.6 Catalytic Microreactors 296
10.7 Conclusions 300
References 301

11 Fluid–Fluid and Fluid–Solid Mass Transfer 303
Michiel T. Kreutzer and Axel Günther
11.1 Introduction 303
11.1.1 Relevance 303
11.1.2 Basics, Relevant Time Scales 304
11.2 Stable Fluid Interfaces: Annular Flows and Falling Films 307
11.3 Droplet/Bubble Segmented Flows 309
11.3.1 Fluid–Fluid Mass Transfer Without Reaction at the Wall 311
11.3.2 Continuous Phase to Wall Mass Transfer 313
11.3.3 Disperse Phase to Wall Mass Transfer 314
11.4 Complex Geometries – Packed Beds and Foams 317
References 319

Part IV Microstructured Devices for Purification and Separation Processes 323

12 Extraction 325
Nobuaki Aoki and Kazuhiro Mae
12.1 Introduction 325
12.2 Parallel Flow of Two Immiscible Phases 325
12.2.1 Instances of Extraction Systems and Devices Using Parallel Flow 326
12.2.2 Surface Modification of Channel Geometry for Stabilizing Parallel Flow 329
12.2.3 Application in Organic Synthesis 330
12.3 Droplet Manipulation 331
12.3.1 Devices for Continuous Generation of Dispersed Droplets 332
12.3.2 Coalescence of Droplets in Dispersions 333
12.3.3 Precise Operation of Individual Droplets 334
12.4 Liquid–Liquid Slug Flow 336
12.4.1 Extraction Process Based on Slug Flow 337
12.4.2 Quantitative Study of Mass Transfer in Slug Flow 339
12.4.3 Application of Mass Transfer in Slug Flow to Organic Synthesis 339
12.5 Conclusion 341
References 342

13 Capillary Electrochromatography 347
Hans-Joerg Bart
13.1 Introduction 347
13.2 Theory 348
13.3 Stationary Phases 353
13.3.1 o-CEC Phases 354
13.3.2 Granular Packed Columns 354
13.3.3 Monolithic Phases 355
13.4 Chip Electrochromatography 356
13.5 Conclusions and Perspectives 358
References 358

Part V Microstructured Reactors 365

14 Homogeneous Reactions 367
Volker Hessel and Patrick Löb
14.1 Benefits 367
14.1.1 Reaction Engineering Benefits 367
14.1.2 Process Engineering Benefits 368
14.2 Reactor Concepts – the Tools for Process Intensification 369
14.2.1 Micromixers, Micro Heat Exchangers and Minitubes/Capillaries 369
14.2.2 Integrated Reactors 370
14.3 Reaction Optimization 371
14.3.1 Process Parameters with Impact on Reactor Performance 371
14.3.2 Residence Time Distribution 371
14.3.2.1 RTD Studies on Liquid-phase Flows 372
14.3.2.2 RTD Studies on Gas-phase Flows 374
14.3.3 Impact of Mixing 375
14.3.4 Impact of Heat Exchange 379
14.3.5 Impact of Electromagnetic Waves and Alternative Energies 380
14.4 Process Design 380
14.4.1 Combined Reaction–Separation 380
14.4.2 Multi-step Reactions 381
14.5 Novel Process Windows 383
14.5.1 High Temperatures – Rate Acceleration 384
14.5.2 High Pressures – Transition State Volume Effects 385
14.5.3 Solventless and Solvent-free Operation 385
14.5.4 Exploration into Explosive and Thermal Runaway Regimes 386
14.6 From Laboratory to Production Scale – Scale-out 387
14.6.1 Numbering-up 387
14.6.2 Internal Numbering-up or Equaling-up 387
14.6.3 External Numbering-up: Device Parallelization 389
14.6.4 Smart Scale-up 389
14.6.5 Multi-scale Architecture 390

References 390

15 Heterogeneous Multiphase Reactions 395
Madhvanand N. Kashid, David W. Agar, Albert Renken, and Lioubov Kiwi-Minsker
15.1 Introduction 395
15.2 General Criteria for Reactor Choice and Design 397
15.3 Fluid–Solid Reactors 398
15.3.1 Pressure Drop 399
15.3.2 Residence Time Distribution 400
15.3.3 Mass Transfer and Chemical Reaction 404
15.4 Fluid–Fluid Reactors 407
15.4.1 Gas–Liquid Systems 407
15.4.1.1 Pressure Drop 410
15.4.1.2 Residence Time Distribution 413
15.4.1.3 Mass Transfer and Film Saturation 416
15.4.2 Liquid–Liquid Systems 418
15.4.2.1 Pressure Drop 419
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4.2.2 Residence Time Distribution</td>
<td>421</td>
</tr>
<tr>
<td>15.4.2.3 Chemical Reaction in Liquid–Liquid Systems</td>
<td>422</td>
</tr>
<tr>
<td>15.5 Three-phase Reactions</td>
<td>424</td>
</tr>
<tr>
<td>15.5.1 Gas–Liquid–Solid</td>
<td>424</td>
</tr>
<tr>
<td>15.5.1.1 Continuous-phase Microstructured Reactors</td>
<td>427</td>
</tr>
<tr>
<td>15.5.1.2 Dispersed-phase Microstructured Reactors</td>
<td>428</td>
</tr>
<tr>
<td>15.5.2 Gas–Liquid–Liquid Systems</td>
<td>430</td>
</tr>
<tr>
<td>15.6 Conclusion</td>
<td>431</td>
</tr>
<tr>
<td>References</td>
<td>435</td>
</tr>
<tr>
<td>16 Photoreactors</td>
<td>441</td>
</tr>
<tr>
<td>Roger Gorges and Andreas Kirsch</td>
<td></td>
</tr>
<tr>
<td>16.1 Photochemical Reactions</td>
<td>441</td>
</tr>
<tr>
<td>16.2 Single-phase Photochemical Reactions</td>
<td>442</td>
</tr>
<tr>
<td>16.3 Multi-phase Photochemical Reactions</td>
<td>447</td>
</tr>
<tr>
<td>16.4 Immobilized Photocatalysts</td>
<td>451</td>
</tr>
<tr>
<td>16.5 Conclusion</td>
<td>455</td>
</tr>
<tr>
<td>References</td>
<td>456</td>
</tr>
<tr>
<td>17 Microstructured Reactors for Electrochemical Synthesis</td>
<td>459</td>
</tr>
<tr>
<td>Sabine Rode and François Lapicque</td>
<td></td>
</tr>
<tr>
<td>17.1 Fundamentals of Electrochemical Processes</td>
<td>459</td>
</tr>
<tr>
<td>17.1.1 Electrode Reaction Stoichiometries and Faraday’s Law</td>
<td>460</td>
</tr>
<tr>
<td>17.1.2 Electrode Potentials and Gibbs Free Energy Change of the Overall Reaction</td>
<td>461</td>
</tr>
<tr>
<td>17.1.3 Kinetics and Mass Transfer Limitations of the Electrode Reaction</td>
<td>461</td>
</tr>
<tr>
<td>17.1.4 Process Performance Criteria</td>
<td>462</td>
</tr>
<tr>
<td>17.1.5 Specific Energy Consumption and Cell Voltage</td>
<td>463</td>
</tr>
<tr>
<td>17.1.6 Ohmic Drop and Heat Generation</td>
<td>463</td>
</tr>
<tr>
<td>17.2 Electrochemical Equipment and Process Flow Schemes</td>
<td>464</td>
</tr>
<tr>
<td>17.2.1 Some Overall Process Options</td>
<td>464</td>
</tr>
<tr>
<td>17.2.1.1 Divided and Undivided Cells</td>
<td>464</td>
</tr>
<tr>
<td>17.2.1.2 Direct and Indirect Electrosynthesis</td>
<td>465</td>
</tr>
<tr>
<td>17.2.1.3 Simple and Paired Electrosynthesis</td>
<td>465</td>
</tr>
<tr>
<td>17.2.2 Typical Commercial Cells</td>
<td>465</td>
</tr>
<tr>
<td>17.2.2.1 Tank Cells</td>
<td>465</td>
</tr>
<tr>
<td>17.2.2.2 Filterpress-type Flow Cells</td>
<td>466</td>
</tr>
<tr>
<td>17.2.2.3 Cells with Parallel Electrodes and a Millimeter or Submillimeter Inter-electrode Gap</td>
<td>466</td>
</tr>
<tr>
<td>17.2.2.4 Cells with Non-parallel Dissymmetric Electrodes</td>
<td>467</td>
</tr>
<tr>
<td>17.2.3 Process Flow Schemes</td>
<td>467</td>
</tr>
<tr>
<td>17.3 Microreactors in Electrochemical Synthesis</td>
<td>468</td>
</tr>
<tr>
<td>17.3.1 Process Intensification Mechanisms</td>
<td>469</td>
</tr>
<tr>
<td>17.3.1.1 Enhancement of the Mass Transfer Rates</td>
<td>469</td>
</tr>
<tr>
<td>17.3.1.2 Coupling of the Electrode Processes</td>
<td>469</td>
</tr>
</tbody>
</table>
17.3.1.3 Reduction of the Ohmic Drop 469
17.3.1.4 Operation in Single-pass High-conversion Mode 469
17.3.2 Coplanar Interdigitated Microband Electrodes 470
17.3.3 Plate and Channel Microreactors 471
17.3.3.1 Reagent Flux and Applied Current 471
17.3.3.2 Mass Transfer Limitations and Reagent Conversion 471
17.3.3.3 Liquid–Solid Mass Transfer Coefficient and Coupling of the Electrode Processes 472
17.3.3.4 Increase in the Space–Time Yield at a Constant Ohmic Penalty 473
17.3.3.5 Experimental Investigations Reported in the Literature 473
17.3.3.6 Reactor Model 476
17.4 Conclusion and Outlook 477
References 479

Index 481