Note: Page numbers in italics refer to Figures; those in bold to Tables

abundance
bacteria, seasonal variation 138–40
dominant zooplankton species 140, 140–2, 141
terrestrial invertebrates 19–20, 30, 50
viruses, in Antarctic lakes 69–70
year/age class variation, krill 177, 180, 341–2

Acari see mites
acclimation
and environmental unpredictability 26
mechanisms and limits 104–5, 381
photoacclimation and water mixing, plankton 135–6
acidification, seawater 100, 234, 256, 276, 321
adaptations
evolutionary 105–6, 357–8, 364–7
for low temperature activity 102–3, 103
molecular and cellular level 384–5, 387–9, 388
physiological 76–8, 360–4, 382–3
to polar environmental niches 75, 433
scale of study 1

Adélie penguin (Pygoscelis adeliae) 143–5, 144, 146, 148
breeding success variation 345–6, 347
foraging trip duration 342, 348
population genetics 445
advection, pathways and flows 165, 190–1, 195
aerobic scope 381, 393–7, 396, 407

Agreement on the Conservation of Albatrosses and Petrels (ACAP) 500
air temperature
causes of warming, hypotheses 98–9
observed changes and trends 123, 124, 233, 277, 329, 344
oscillations 51–2, 125–7, 126
albatrosses 29, 189, 191, 435, 500
population monitoring 515, 515
algae
growth in sea ice 175–6, 222–3
isolated and endolithic 49–50, 55
surface mats, stream beds 48–9
alien (introduced) species 14, 24, 263, 264–5
eradication, unforeseen consequences 504, 517
human agents 426, 427, 505, 515
interaction with climate change effects 28, 278–9
altitude
related to invertebrate body size 18
upward spread of vascular plants 28
amphipods
deep benthic scavengers 300–301, 302, 312, 315–6
pelagic and predatory 186
ANDEEP survey expeditions 292, 292, 294
animals
as agents of benthic disturbance, absence 266
biogeography, roles of vicariance and dispersal 420, 427–8
human disturbance, protection measures 504–5
seasonal migration 16, 191
vertebrate population changes 251
Antarctic Bottom Water (AABW) 217, 309, 317, 318
Antarctic Circumpolar Current (ACC)
flow rate and temperature 160–1
frontal zones and boundary gyres 162, 163–4, 245–6, 474
historical onset, dating 3, 296
southward displacement 94
water mass components 96, 127–8, 161
Antarctic Oscillation Index (AAO) see Southern Annular Mode
Antarctic Peninsula
flora 423
native flowering plants 28, 426
ice cover 95, 109
recent rapid warming observations 2–3, 93, 122, 340
see also Western Antarctic Peninsula
Antarctic Specially Protected/Managed Areas (ASPAs/ ASMAs) 503, 505, 509–10
Antarctic Surface Water (AASW), characteristics 96–7, 215
Antarctic Treaty System (ATS)
area and scope 492, 495, 509
early development 497–8
environmental protection (Madrid Protocol) 498–500, 499
management of living resources, conventions 498
anthozoans 307
anthropogenic changes see human impacts
antifreeze proteins (AFPs)
freezing point depression mechanism 360
genes, evolution and environment 364–7, 433–4
glycoproteins (AFGP) and potentiating protein (AFPP) 366
in nototheniod fish 360–64
in planktonic bacteria 76
aragonite, seawater undersaturation 100, 234
archaea 69, 138
ascidians 275, 307
asteroid impacts 260
Atlantic Ocean 294–5, 318–9, 341–4
see also Scotia Sea
atmospheric circulation
related to ENSO/SAM 127, 346
shift to cyclonic pattern 94
see also air temperature
autecological studies 15
Azorella selago (cushion plant) 28, 426
bacteria 65–6, 69
growth coupling with phytoplankton 138–40, 139, 170–1
nutrient acquisition 76–7
size and distribution 224
bathymetry
East Antarctic coast 245
Scotia Sea 164–5
Beacon Valley, McMurdo region 50
behaviour, environmental forcing 339
Bellingshausen Sea
Eltanin asteroid impact 260
ice advance and retreat, seasonality 125
surface temperature 3, 94
benthos (benthic realm) 472, 479
deep ocean systems
biogeography and endemism 311–3
depth zonation and biodiversity 296–304, 299, 302, 313–6
megafauna, lifestyles 304–307
taxonomic diversity and evolution 308–10, 442
worldwide connections and dispersal 318–20, 435
environmental disturbance, causes 257–66, 278
invertebrate species range limits 110, 269, 278, 483, 482–3
organic matter input 229, 232, 303
responses to climate change 276–8, 292
shelf, recolonization after disturbance
controlling factors 107, 229, 266, 269–70
hard substrate colonization 266–9
long undisturbed community structure 275–6
succession on soft sediments 230, 269–73
timescale and outcomes 260–1, 273–5
shelf depth zonation and biodiversity 229–30
see also seabed
biodiversity 13
Convention on Biological Diversity definition 471
hotspots and coldspots 45, 428, 482
marine 473
deep ocean floor 292, 296–7, 319–21
polar shelf benthos 256, 274
sea ice 478–9
pump hypothesis 417, 418, 437, 449, 451
related to latitude 20, 418
survey data requirements 514–5, 520–21
terrestrial Antarctic 14, 15–16, 473
impacts of environmental changes 50–5
biogeographic zones 423, 433, 474–5, 475
influence of South America 482
marine 481–5
terrestrial 480
biosecurity 504, 505, 515
biospheric impacts of climate change see global changes
biotic interactions see trophic interactions
birds
arrival, phenology 106
conservation measures 500, 507–8
diets and foraging behaviour 188–9, 190, 226
eggs, DDT contamination 145
phylogeny and speciation 435–6
birds (Continued)

populations in Ross Sea 228
sub-Antarctic breeding performance 342–3, 344–5

bivalves
on continental shelf bottom sediments 230, 232, 269–6
deep sea species richness 303
phylogenetic relationship studies 310, 312
black cods (Notothenia spp.) 366, 372, 387

blood
oxygen transport mechanisms 368
plasma proteins
AFGP transport and reabsorption pathways 364
biosynthesis sites 362–3
and seawater, osmotic concentrations 360, 363
see also cardiovascular system adaptations

blooms
bacterial response 138–40, 223–4
consumption of dissolved inorganic carbon 131
dominant phytoplankton species 134, 222
in meltwater streams (diatoms) 53
patterns of development
inter-annual variability 135, 137, 137, 170
nutrient utilization 130, 130, 136–7, 168–70
seasonal, ocean 97, 168–9, 184, 479
Boeckella poppei (copepod) 65, 74
Bonney, Lake
organisms 72, 73, 77–8
physical environment and origins 48, 52, 65, 66
breeding colonies
access, related to ice and snow conditions 144–5, 188
competition with fisheries 5
disturbance regulation 504–5
BROKE surveys 243, 244, 245, 247
bryophytes, endemism 18, 19, 23
see also mosses
bryozoans
benthic colonization 267, 270, 313, 316
growth performance studies 110, 404

carbon cycle
atmosphere–ocean CO2 exchange 131–2, 233–4
dissolved organic (DOC) 132, 138, 148
legacy sources, dry soils 50
particulate (POC) sedimentation 133, 133, 134, 142–3
rate related to Phaeocystis antarctica growth 221–20, 222
role of viruses, in Antarctic lakes 70
cardiovascular system adaptations, icefish 368, 371
catalytic rate, cold-adapted enzymes 384–6, 385
CCAMLR see Convention on the Conservation of Antarctic Marine Living Resources
Cenozoic era
biotic responses to climate change 3, 368, 418
seaways between oceans, tectonic history 296
cetaceans
impacts of whaling 228, 234, 496–7
population genetics 447–8
Western Antarctic Peninsula populations 146, 147
Chaenocephalus aceratus (icefish) 368, 370, 372
chimaeric genes 367
chimstrap penguin (Pygoscelis antarctica) 342
chlorophyll a, ocean distribution 137, 137, 168–9, 170
correlation with oceanographic features 248
cyclical and long-term change 251
seasonal variation, Ross Sea 219, 220
ciliates (protozoa) 71, 72
Circumpolar Deep Water (CDW) 96, 99, 215, 318
modified by Ross Gyre (MCDW) 215–17
climate change
long-term, in geological history 3, 98, 260, 380, 451
observations 93, 218, 336–7, 338
predictions 98–100, 233, 276–8, 337
recent, regional 2–3, 93–4, 329–31
risk assessment and mitigation 519–20
see also models
climate envelope models, biogeography 379–80, 407
co-variability, ocean and atmosphere 125–7, 126
coastal locations
Antarctic Coastal Current 161, 245, 247
glacial maximum ice cover 18, 214, 257, 351
oases (ice-free) 63–4, 64
polynya sites 217–16
see also littoral (shoreline) environment
Coastal Zone Colour Scanner (CZCS) 474
cold-shock induction, ice-active substances 76, 389
Collembola see springtails
colonization
after volcanic wipeout 482
agents, for lake organisms 67
clearance/artificial substrate experiments 267–8
evidence from genetic variation 17, 425, 428–9
timescale, after ice scours 273–5, 280–1
commercial fishing
fish stock depletion 497
food web effects 234, 264
locations 162, 184
prohibited areas 511
long-line, incidental predator mortality 340, 503, 508
management legislation and principles 500, 505–6, 507–8
target species 5, 194, 227
Committee on Environmental Protection (CEP) 499–500, 513–4, 521
communities
equilibrium and disturbance 52, 52, 231–2, 275–6
responses to climate change 106–7, 142, 234, 292, 339
structure, investigation techniques 67–9
competition, for food resources 342–3
Index 529

conservation 5–6
agreements and tools (outside ATS) 500–2, 501
Antarctic Treaty System development 14, 493, 497–500
challenges 515–8
harvesting regulation, history 234, 495–7
multilateral agreements 520
practical measures 502
living resources management 505–8
protected areas 509–512
threat management 502–5
science and monitoring 31, 235, 513–5
contaminants see pollution
continental shelf benthos 97, 229, 269, 275–6
Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) 5, 194, 264, 498, 505–7
cooling
causes, late Eocene 380
climate trend, McMurdo dry valleys 54
ocean water, in UCDW incursions 128–30, 129
copepods
food-web interactions with krill 184–6, 343
ontogenetic migration 141–2
species
Ross Sea 225, 298
WAP continental shelf 140
coupling, above and below ground systems 46–8, 47, 52, 56
crustacea
benthic Peracarida, types and species 300–1, 320, 436–7
decapod, Tertiary extinctions 266, 297, 299–300, 407–8
occurrence in lakes 67, 73–5
cryoconite holes 63, 74
cryptophytes 70, 71, 77, 134
Cryptopygus antarcticus (springtail) 17, 428
crystal krill (Euphausia crystallorophias) 225, 226, 233, 249
cyanobacteria, mat communities 75, 77
Daphniopsis studeri (cladoceran) 73–5, 73, 78
data
accurate positioning of records 110
collection, uneven coverage 14, 15, 30–1, 266, 476, 477
interpretation 343, 346
recent sampling programmes 6, 481, 514
Deception Island 274, 482, 514, 517
depth (ocean)
eurybathy, as response to climate change 309, 437–91
related to water temperature 96, 358–9, 359
of seabed, continental shelf 97, 214
zonation of benthic communities 229–30 269, 296–304, 302, 313–16
Deroceras panormitanum (slug) 17, 20, 21–2
Deschampsia antarctica (grass) 28, 426–7
diatoms
freshwater blooms 53
importance and species, Ross Sea 220
net community production contribution 132, 134
xanthophyll cycle 135–6
dispersal
evidence from phylogenetic analysis 420–2, 422
mechanisms
passive rafting 422–3
rates and agents, terrestrial species 17, 421, 425–7
vectors and transport for benthic colonists 268, 318–19
propagule resistance to conditions 102
distribution of species
climate envelope 379–80
database coverage 14, 189, 257
disjunct, continental drift explanation 420–1
migration response to environmental change 102, 142, 178–9, 339, 451
predictability (krill) 171
disturbance
food web consequences 194, 234
human/anthropogenic 494, 504–5
pulse and press types 52, 52
resilience of ecosystems 108, 272, 273–5, 274
scale of events, global and polar 255–6, 257–8, 278–80
tolerance, benthic pioneer species 270, 271
diversity see biodiversity
dragonfish (Gymnodraco acuticeps) 361–2, 362
Drake Passage
effects of topography on current flow 161, 163
opening, timing and effects 3, 164, 173, 296, 434
dry valleys, soil biodiversity 46–7
see also McMurdo dry valleys
East Antarctica
coastline, bathymetry and currents 243, 244
offshore ecosystems
change, measurements 251–2
eastern region productivity 245–6
west of Kerguelen Plateau 245–7
scientific surveys 243–4
see also Vestfold Hills, lakes
echinoderms
deep sea diversity 305, 313
embryonic and larval development 400–2, 401, 402
longevity and growth 403, 404
ecosystems
monitoring programmes 514–5
processes and global benefits 44–6, 45
responses to climate change 100, 107, 107–8, 109, 276–8
indicator species 340
thermal tolerance and adaptation 405–409
stability and human impacts 339
variation, spatial and temporal 184–92, 192, 471–3
see also marine ecosystems: terrestrial ecosystems
ectotherms
cold-compensated energy budget 408–9
growth and development 400–5
temperature tolerance limits 380–1, 381
genomic adaptation 390–3
molecules and membranes 383–91
oxygen-limited 393–7, 408–9
time dependence 399–400, 400, 401
whole organism performance capacity 397–9
ectotherms, growth and development 102, 103, 265
eelpout, Antarctic (Pachycara brachycephalum) 391, 394, 395, 397
elephant seal, southern (Mirounga leonina) 147, 448, 496
Eltanin impact event 260
emperor penguin (Aptenodytes forsteri) 228, 234, 448, 496
endangered species 507–8, 517
endemism
cyanobacteria 75
deep sea benthic species 311–13, 322
degree of, in Antarctic biota 419, 484
intra-regional 480, 485
Ross Sea region 219, 229
microorganisms 69, 78
molluscs 482
mosses and lichens compared 423–4
terrestrial organisms 18–19, 429–30
ENSO (El Niño/Southern Oscillation) events 101, 127
and longer-term change prediction 347–9
related to sea surface temperatures 167, 181, 182, 337–8, 338
weather pattern effects 336, 338
see also Southern Oscillation Index (SOI)
environmental forcing 4, 100–8, 101
Environmental Impact Assessments (EIAs) 502, 504
enzymes, low-temperature activity 76, 77, 383–7, 385, 390
epibiotic relationships, benthos 275–6
epishelf lakes 65, 65, 74
eradication, non-native species 504, 516–7
erythropoietic genes 372–4, 373
euphausids
habitats preferences 340
populations, genetic differentiation 442
see also crystal krill; krill, Antarctic
eythermal organisms 398
evolution
adaptation in populations 105–6
environmental drivers 417–18, 450
evidence from extremophile physiology 76–7
genetic analysis techniques 67–9, 75, 364–7, 365
genetic loss and compensation 368–72, 374, 390–3
role of viruses 70
selection mechanisms 450
transitional forms 367
extinctions
benthic macrofauna, and evolutionary response 266, 297
potential for ecosystem disturbance 108
reduction in niche competition, effects 351, 368, 436
on Southern Ocean islands 24, 422
timing of events 452
extreme events 30, 255, 337–8, 422
extremophiles
notothenioid fish 351–2, 360, 374
prokaryote 76–7
fauna see animals
fish
bottom-dwelling types 278, 305
population genetics 443–4
roles in food webs 187–8, 226–7, 348
fisheries see commercial fishing
flagellates (protozoa) 70–1, 138, 139, 225
flora see plants
fluorescence
quenching, in diatoms 135
in situ hybridization (FISH) technique 68, 366
used for biomass tracking 222, 224
food webs
dynamic variation
alternative pathways 187–8, 188, 347, 348
recovery after harvesting 339–40
seasonal distribution 183, 183–4, 191
in lakes 66, 67, 67
marine
impact of seasonality on food chains 161, 231–2
microbial interactions 138–40, 139, 171–2
predicted climate change impacts 100, 145, 163–4, 233–4, 340
structure, Southern Ocean 107, 107–8, 149, 162
modelling analysis 147–8, 148, 195–6, 478
terrestrial Antarctic, unusual features 25, 47
see also trophic interactions
foraminiferans
effects of temperature and carbonate level 317
komokiaceans 297, 304
phylogenetic relationships 308, 439, 442–3
sampling and abundance 297–8
spatial range of species 311, 313–14
fossil record, Antarctic 25–6, 29, 75, 351, 420
freezing, tolerance and avoidance
anti-freeze protein (AFP) production 76, 360–7
Phaeocystis antarctica 222, 223
scale of environmental challenge 358–60, 359
springtails and mites 26
sub-Antarctic insects 26
freshwater habitats
ephemeral meltstreams and ponds 48–9, 53
lakes 63–6
freshwater influx, marine disturbance 265
fulmar, southern (Fulmarus glacialoides) 344–5
fur seal, Antarctic (Arctocephalus gazella) 147, 448
foraging habits and prey 187, 191, 348
impact of hunting 495–6
population status 194, 343, 347, 496, 507
genomes
erthropoietic gene expression 372–4, 373
genesis, for novel proteins 360, 366–7
icefish and temperate relatives, compared 364–6, 365
loss of genetic capacity 390–3
globin gene complex 368–70, 369, 370, 435
mitochondrial and nuclear markers 450
transcription, cold adaptation 389–90
genes
foraging habits and prey 187, 191, 348
impact of hunting 495–6
population status 194, 343, 347, 496, 507
harvesting
historical patterns of exploitation 4–5, 161, 495
impact on marine populations 147, 194, 339–40, 347, 495–7
heat shock proteins 104, 392–3, 453
heterotrophic nanoflagellates (HNAN) 138, 139
historical context
climate change trends, long-term 3, 97–8, 256–7, 453
conservation development 495–502
discovery and exploration (human) 13, 219, 293–4
Holocene epoch, climate conditions and biogeography 101
homeoviscous adaptation, membranes 387–9, 388
human impacts 2, 4–6, 219, 494
ecosystem disturbances 44–6, 55, 261–2
scale of direct and indirect effects 13–14, 66, 493–5
hydrochory 425, 428
hydrothermal vents 320–21
hypoxia
metabolic, pejus thresholds 393–7, 396
seabed 261
ice crystals
ingested by icefish 362, 363–4
in water column 359–60
ice krill see crystal krill
ice shelves
effects of atmospheric warming 2–3, 94, 95, 233, 276–7
freshwater epishelf lakes 65, 65, 74
marine communities underneath 100, 107
sub-shelf water, ice crystals and temperature 359–60
underlying water circulation (Ross) 215, 217, 232
icebergs
frequency and physical effects 259–60, 259, 274
scouring, biotic effects 218, 229, 230, 25960
icefish, Antarctic see notothenioid fish
illegal, unregulated and unreported (IUU) fishing 497, 506, 519
Indian Ocean 230, 344–5
indigenous species
interactions with invasive aliens 28
population genetics 17
individual variation, spatial and temporal 16–18, 26
Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report (AR4) models 93–4, 98
prediction scenarios 99
International Union for the Conservation of Nature (IUCN) 507, 509
International Whaling Commission 496–7, 500
intestinal fluid, icefish 362, 363–4
introductions see alien species
invertebrates
freshwater, survival and dispersal 65, 427
marine
invertebrates (Continued)
  activity and oxidative stress 394, 395
  benthic and pelagic, compared 101–2
  evolutionary history 436–7, 442–3, 481
  growth rates and longevity 403–4, 404, 408
  temperature tolerances 104–6, 105, 380–1, 381
  terrestrial, diversity and abundance 17–18, 19–20
  in dry valley ecosystems 48, 49–51, 51
  genetic differentiation 429–32, 430, 431
iron (dissolved micronutrient) 100, 130, 136–7, 170–1
  haptophyte and diatom requirements 222
islands, sub-Antarctic
  conservation agreements 500–2, 501
  endemism, terrestrial species 19, 427–8
  environmental variety 16
  floristic affinity and dispersal 421–2
  national reserve designations 504, 513
  offshore krill, Indian and Atlantic zones 174, 251, 341–2
  overwintering strategies (lake crustacea) 73
  species richness 24, 67
  woody plants, arrival 28
isolation
  of Antarctic continent, impacts on evolution 1, 102, 257, 351, 417
  organisms in subglacial lakes 65–6
  role of Antarctic Circumpolar Current 448–9
  saline lakes, biodiversity and speciation 71, 74
  shelf and slope communities 319
isopods
  diversity, shelf and deep benthos 293, 300, 312
  community composition zonation 314–15, 315, 318
  eye development 308
  global distribution patterns 319
  radiation and evolution, molecular studies 308–9, 438
kelp, southern bull (Durvillaea antarctica) 223, 268, 421, 439
kelp fly (Paractora dreuxi) 27
Kerguelen Islands 248–9, 341, 497
killer whales (Orcinus orca) 227, 339–40
krill, Antarctic (Euphausia superba)
  climate and reproductive success 142, 171, 176–7, 342
  distribution and habitat limits 174–6, 225, 248–9
  fishery catches 162, 497, 506
  growth rates 173–4
  importance in food webs 107–8, 142–3, 143, 147, 343
  linked to consumer populations 162, 187–9, 188
  long-term biomass decline; Scotia Sea 109, 181–3, 194–5, 341–2
  seasonal and spatial abundance 140, 141, 177–8, 179–81, 183
  vertical migration behaviour 141, 177, 178–9
lakes
  environments and locations 63–6, 64, 66
  planktonic diversity 67, 67–74
  selection pressures and evolution 76–8
  variation, biogeographical 74–6
Larsemann Hills 64, 74, 511
Larsen Ice Shelf collapse 2, 94, 298
larvae, invertebrate
  development and dispersal
    barriers to gene flow 449
    brooding groups 320, 443
    krill 175, 177, 178
  environmental tolerance limits 17–18, 400–5, 402
  pelagic abundance 266, 274
larval survival paradox, notothenioid fish 360–2, 362
legal frameworks, conservation 495–502
lichens 423–4
light (photosynthetically active radiation, PAR)
  availability in lakes 66, 77
  related to phytoplankton growth 134–6, 137
limnology see freshwater habitats
littoral (shoreline) environment
  algae, range of types 223, 229
  fast-ice and ice foot 258
  intertidal fauna 102, 104, 380, 382
  physical characteristics 475
  longevity see growth rates and longevity
low-diversity systems
  global relevance 44–6, 56
  low functional redundancy 50–1, 108
  usefulness for research 74, 78
mackerel icefish (Champsocephalus gunnari) 343, 447
Madrid Protocol see Protocol on Environmental Protection
mammals, marine 146–7, 437
man, impacts of see human impacts
management plans 504, 505, 516
marginal ice zone (MIZ) 167, 175, 183, 187
marine ecosystems
  continental shelf 107–8, 121–2, 211
  benthos (shelf floor) 97, 229, 266, 275–6
  deep benthic 285–7, 318–21
  missing taxa and diverse taxa 418, 433
  monitoring, using mammals and seabirds 340, 346–7
  ocean waters (pelagic) 160, 195–7, 247–9, 477–8
  links with benthic systems 176, 188, 232
  sea ice zone 175–7, 478–9
marine protected areas (MPAs) 5, 511–513
Marion Island
  colonization and spread of species 17–18, 426, 429
  environmental variables 20, 21–2
  house mice, impacts on native species 29
  invertebrate responses to temperature 27
  maritime Antarctic region 423, 425, 476
McMurdo dry valleys
above-below ground biotic interactions 47, 47–9
invertebrate diversity 48, 49–51, 51
environmental disturbance impacts 51
cooling trend 54
decadal and global warming 51–3
direct human influence (trampling) 54–6
UV radiation 55
lakes, variety and origins 63, 64–5
location and characteristics 46
megafauna
benthic 274, 304–307
open ocean, feeding grounds 147
meiofauna, benthic 297–9, 299, 308
abundance related to depth 313–14
species distributions 311–12
meltstream communities 48–9, 52–3
membranes, viscosity 387–9, 388
Mesodinium rubrum (‘red tide’ ciliate) 71
Mesozoic era
Antarctic marine environment 101
tectonic origins of southern oceans 294–6, 295
meteorological records 2, 93, 123
microbial ecology
diversity, Antarctic region 18–19, 20
freshwater and saline lakes 67, 69–70
within ice 479
soils 49
taxonomic study techniques 68–70
interaction with phytoplankton productivity 138–40, 139, 171, 478
local refugia and colonization 75–6
migratory species 16, 147, 178, 191, 500, 517
see also distribution of species
Milankovitch cycles 98, 102, 257
mimke whales (Balaenoptera bonaerensis) 228, 497
mites (Acari) 14–15
amorhothroid, speciation timing 23, 29
habitat specificity 20
mitigation, climate change impacts 519–20
mitochondrial density and function, icefish 370–1, 372, 386–7, 389, 391
mixotrophy, in protists 66, 71, 77
models
climate conditions, regional resolution 99, 100
conceptual, current–ice–productivity 247, 247, 248
global climate models 93–4, 98, 99
inverse analysis techniques 108, 147, 148
krill population dynamics 178–9, 195
predator and climate interactions 347
psychrophic model organisms 68–9
zebrafish, in erythropoiesis loss studies 372–4, 373
molluscs
biodiversity studies 482–3
deep benthic species 303–4, 312–13
endemism 483
individual growth history, shell records 110
size range, megafaunal 305–306
monitoring, vegetation 28
mosses
with algal mats, dry valley streambeds 48–9
dispersal mechanisms and timing 425–7
mitochondrial density and function, icefish 370–1, 374, 391
myoglobin
cardiac, absence in icefish 369–70, 372, 391
low-temperature oxygen affinity 384
nematodes
benthic 272, 274, 298–9, 311–12, 317–18
in dry valley soils 48, 49, 50, 51
nitric oxide (NO) metabolism, icefish 371–2
non-indigenous species (NIS) 494, 505
see also alien species
notothenioid fish (Antarctic icefish)
heat shock response, absence 392–3
membrane viscosity 387
phylogenetic relationships 434–5
proteins, ligand-binding and enzyme activity 384, 434
nucleic acids, thermal stability 389–90
nutrients
high-nutrient, low chlorophyll (HNLC) regions 161–2, 168
levels and variation, Scotia Sea 167, 169
micronutrient supply, continental shelf 100, 130, 136–7, 170–1
oligotrophy of Antarctic lakes 66, 76
related to UCDW upwelling and plankton 130, 130–1
turnover, dry valley soils 47, 48, 53, 55
oceans
as carbon dioxide sinks 131–2, 233, 276
characteristics of water layers 96–7, 127–30
currents 165–6, 214–15
detection of warming 3, 94, 96, 329, 382
WAP continental shelf heat flux 129, 129–30
 Index 533
oceans (Continued)
global connectivity, deep sea 319, 336–7, 436
currents 245
eytoplasm, evolution 310, 436, 437
oil spills 262
*Ophionotus victoriae* (brittle star) 104, 105, 380
orbitally forced range dynamics (ORD) hypothesis 433, 445
oscillations see variation, climatic oscillations
osmolarity, seawater and fish 360, 363
oxygen
blood transport and cell adaptation, icefish 368, 370–1
concentration in Antarctic waters 358
demand, stenotherms 393–7
oxidative stress and thermal tolerance 393–7, 396
ozone
bryophyte pigment biochemistry responses 26
negative biotic effects 55, 233
Pacific Ocean 345–6
*Pagothenia borchgrevinki* (notothenioid fish) 227, 362, 384
paleoecorecords
historical climate evidence 98, 278
paleoecological studies (lake sediment cores) 75
see also fossil record, Antarctic
Palmer Deep sediments 3, 98
Palmer Long Term Ecological Research (Pal-LTER) programme 99, 122, 122
pancreas, icefish AFGP production 363
PCR-amplified sequencing 68
pejus temperature thresholds 393, 394, 396–7
pelagic habitat
ecosystem characteristics 477–8
and larvae of benthic organisms 266
penguins
DDT residues 145–6
evolutionary adaptations 435
foraging habits and prey 188, 191, 342–3
populations
effects of predator removal 339–40
Ross Sea 228, 234
Western Antarctic Peninsula 109–10, 143–5, 144, 348
Peninsula, Antarctic see Antarctic Peninsula
performance capacity, thermal adaptation 102–4, 103
permafrost 45, 52, 53, 55
persistent organic pollutants (POPs) 145–6, 146, 503
petrels 345, 500, 507
*Phaeocystis antarctica* (Prymnesiophyceae) 134, 221–2, 222, 223, 439
phenology 27, 106, 339
phenotypic plasticity 26–7, 77–8, 405
phytoplankton
adapts to sub-ice shading 66, 77, 222, 223
functional groups 219–20
nutrient demand and depletion 130, 130, 136–7, 170–1
productivity, southward shift 109
seasonal variation and growth 134–6, 171
see also blooms; diatoms
pinnipeds see seals
pioneer species 267–8, 269–73
plankton
lake food webs 67, 67
role in marine carbon cycle 132, 186
plants
biogeographic distribution 423
invasive weeds 517
variation patterns and spread 16–17, 423–6, 424
vicariance and trans-oceanic dispersal 420–21
biotic interactions with sub-surface systems 46, 47, 47–9
population responses to climate change 28
sensitivity to trampling 54, 503–4
platelet (/anchor) ice 227, 258, 359
pollution 494
contamination of benthic organisms 262–3
land contamination 503
persistent organic residues in penguins 145–6
polychaetes 269–73, 270, 271
genetic studies 310
larvae and dispersal 320
species richness and distribution 301, 303, 313, 315, 316
polynyas 211, 217–18, 229
persistence, effects of changes 214, 228, 234
populations
biology, study initiatives 513–4
genetic structure and colonization history 17, 423–6, 429–33, 448–50
lake zooplankton 73–5, 73
recruitment and inputs (krill) 175, 179–80
responses to climate change 27–9, 102, 339
consumers and top predators 144, 144–5, 147
krill abundance fluctuations 180–3, 193, 251, 341–2
Porifera see sponges
predators
aerobic scope 381
benthic, characteristics 266
concentration of contaminants 145–6, 146, 262
dietary components 188, 228–9
demand for krill 185, 189–90, 193, 225
effects of removal 339–40
as indicators of ecosystem status 340, 346–7
primary production (PP), marine ecosystem 109, 134, 137, 148
grazing impact 142–3, 171
interaction with bacterial production (BP) 139, 139–40
relationship to currents and sea ice 247–9
seasonal and spatial variation 168–9, 219, 220
Prince Edward Island
mice, interactions with indigenous species 28–9
see also Marion Island
Index

protected areas 519
Antarctic Specially Protected/Managed Areas (ASPAs/ASMAs) 503, 505, 509–10
Important Bird Area (IBA) designation 507
marine protected areas 511
visitor avoidance guidelines 504–5
proteins, thermal optima and limits 383–7, 393
Protocol on Environmental Protection (Madrid Protocol) 262, 492, 498–500, 499, 502, 507
protozoa adaptive evolution in Antarctic lakes 70–2
large and agglutinated benthic types 304
in soils 49
see also foraminiferans
pteropods (shelled zooplankton) 142–3, 186, 226, 234
pycnocline, stability 130–1
radio-echo sounding (RES) 65
rafting (dispersal) 268, 421–3
RAPD (random amplified polymorphic DNA) analysis 16, 423
regional impacts of climate change 2–3, 98, 233–4, 337
regulation, range of activities covered 5
remediation, environmental 503
reproduction climate responses, zooplankton 142
parthenogenesis in lake cladocerans 73–4
sexual, rate and climate change 427
spawning and survival, krill 174–7, 178, 341–2
success related to latitude 17, 348
research biodiversity estimates related to survey effort 14, 15, 30–1, 473
comparative study opportunities 6, 78
current action and needs 453, 521
environmental manipulation experiments 30, 399
genomic and proteomic approaches 67–9, 78
history of, in Antarctic 1, 219, 243, 293–4
sampling and data collection 174, 297–8
stations, pollution release 263, 272, 274, 502–3
resources, marine biotic historical exploitation 495–7
management agreements 498
right whale, southern (Eubaleana australis) 343
Ross Sea biotic aspects biodiversity and distinctiveness 219, 221, 232–3
fishes and mobile predators 226–7
food webs and interactions 230–2, 231
primary production 219–25
seabed (benthic) communities 229–30, 298
small consumers (zooplankton/krill) 225–6
top trophic levels 227–9, 345–6, 348
continental shelf features 211, 215
current circulation 214, 214–15, 215
ice cover 217–18, 218, 341
water mass characteristics 215–17, 216
impacts of change conservation and commercial harvesting 234
large-scale climate change 233–4, 337
research and monitoring needs 235
salinity ice shelf water (ISW) 217
and protist evolution 70–1
variation, in and between lakes 64, 67
salps (tunicates) abundance and blooms 140, 141, 142
food web impacts 109, 143, 186
satellite remote sensing 65, 94, 247, 514
chlorophyll a concentration 137, 137, 169, 219, 220
passive microwave, sea ice coverage 218
sea surface temperatures 167
scale process interaction cascades 13, 30
ranges and types 3–4, 192
scientific research see research Scotia Sea ecosystem characteristics 161–3, 164, 195, 196–7
local structures and spatial flows 189–92
plankton productivity dynamics 168–71
requirements for analysis 195–6
trends correlated with krill abundance 109, 180–3
trophic interactions and transfer 184–9, 185, 189
interannual variability and long-term changes 192–4
krill distribution patterns and migration 173, 177–80, 178
growth and life cycle 171–7
in Scotia Sea food web 162–3, 183–4
sea ice variation annual 165–7, 166
long-term 167–8
topography and ocean currents 161, 162, 163–4, 296
Scottnema lindsayae (nematode) 50, 51, 53, 430–1
sea ice, extent and duration 2, 123, 124
and atmospheric gas exchange 131–2
biotic impacts 106, 110, 142, 175–6
drift direction 179
habitat characteristics 478–9
regional East Antarctica 245–7
Ross Sea 211–12, 217, 218
Weddell and Scotia Seas 165–7, 166
West Antarctic Peninsula 94, 99–100, 123–5, 124
responses to climate warming 167–8, 329–30
and sediment (particle) flux 133, 133
survey correlation with productivity 247–50
wintering communities, in/below ice 175
sea level changes 63, 102
Index

seabed
  abyssal, nature and sessile fauna 306–7
  hard bottom communities 229–30, 266–9
  soft sediment communities 230, 269–76
  temperatures and depth 97, 216–17
  texture and food availability 317–18, 319
seals
  Convention on the Conservation of Antarctic Seals (CCAS) 498
  human exploitation 495–6
  population genetics 448
  Ross Sea populations 228
  species, ecology related to sea ice 146–7
seamounts 438
seasons, environmental variation
  effects on benthic colonization 269–70, 270
  and life history flexibility 25, 27
  ocean temperatures and irradiance 97, 191
  rectification hypothesis (CO2 sink activity) 131–2
  related to cryptophyte nutrition 71, 77
sediments
  colonisation 269–73
  core analysis 3, 25, 98, 479
  preserved planktonic DNA 76
  detrital flux, seasonal and annual variation 133, 133, 134, 226, 232
  grain size and faunal communities 303, 317–18
  slumping instability 261
sewage outfall
  biotic effects 267, 268, 275
  disposal arrangements 502–3
sheathbill, greater (Chionis alba) 16
shipping, environmental impacts 262–3, 500
signals, climate change
  biological, detection and clarity 339–41
  short-term climate oscillation anomalies 337–8, 338
Signy Island
  fur seal populations 496
  penguin populations 342
  warming evidence 329
silverfish (Pleuragramma antarcticum) 147, 225, 226–7, 361
size (body), Antarctic species 398, 405, 406
skuas (Catharacta spp.) 447–8
snow petrel (Pagodroma nivea) 345
snowfall and accumulation 48, 144–5
soil
  dry valleys
    depth and water availability 47, 47–8
    trampling disturbance 54–5
    wet and dry communities 48–9, 51
  ecosystem structure and functions 45, 46–7
South Georgia
  bird and mammal populations 342–3
  krill growth and population studies 173–5, 189–90, 341–2
  observed warming trends 168, 452
  ocean currents 163–4
  plankton megabooms 170
  sealing and whaling 495–7
  survival of Antarctic species 105
South Orkney Islands
  biodiversity measurement 473, 477–8, 482, 513
  climate anomalies and impacts 337
  marine protected area 511
  see also Signy Island
Southern Annular Mode (SAM) 101, 125, 127, 167
  correlation with predator populations 346
Southern Ocean
  food web structure 107, 107–8, 149, 162
  modelling 346–7
  increasing sea ice (recent trend) 123, 124, 125, 251
  isolation and consistency of marine environment 6, 102, 160–1, 265
  oceanographic data 94, 161, 218, 292, 336
  see also Scotia Sea
Southern Oscillation Index (SOI) 125, 126, 344, 345
spatial scale
  distribution heterogeneity in food webs 184, 195
  in ecological studies 4, 132
  terrestrial biodiversity variation 16–25
spawning, krill 174–5, 177, 178
speciation
  continental taxa 29
  cryptic 437–8, 481–2
  on/around Southern Ocean islands 24, 29, 305
  physiological differences in protists 70
  taxonomic analysis, molecular methods 309
  timing of divergence, microbial 69
species
  conservation of 507–8
  definition problems 447–8
  new to science, deep sea discoveries 285–6, 297, 479
  population depletion 494, 495–8
  responses to climate change 338–9, 400, 433
  richness, related to energy 24
  spatial distribution patterns, deep sea 303–4
  sponges (Porifera) 269–72
  species, ecology related to sea ice 146–7
  species, related to cryptophyte nutrition 71, 77
  species, related to cryptophyte rectification hypothesis (CO2 sink activity) 131–2
  species, related to cryptophyte related to cryptophyte nutrition 71, 77
  southern equivalent to the SOM index 125
  Southern Ocean food web structure 107, 107–8, 149, 162
  Southern Ocean marine protected area 511
  Southern Oscillation Index (SOI) 125, 126, 344, 345
  spatial scale
    distribution heterogeneity in food webs 184, 195
    in ecological studies 4, 132
    terrestrial biodiversity variation 16–25
  spawning, krill 174–5, 177, 178
  speciation
    continental taxa 29
    cryptic 437–8, 481–2
    on/around Southern Ocean islands 24, 29, 305
    physiological differences in protists 70
    taxonomic analysis, molecular methods 309
    timing of divergence, microbial 69
  species
    conservation of 507–8
    definition problems 447–8
    new to science, deep sea discoveries 285–6, 297, 479
    population depletion 494, 495–8
    responses to climate change 338–9, 400, 433
    richness, related to energy 24
    spatial distribution patterns, deep sea 303–4
    sponges (Porifera) 269–72
    deep sea types, surveyed 306–7
  endemism 311
  springtails (Collembola) 14–15
    dispersal and genetic diversity 17, 428–30, 430
  rapid supercooling point responses 26
  squid
    gene flow and dispersal 443, 484
    roles in food webs 187–8, 227
  stenothermal physiology 103–4, 278, 358, 380
  metabolic rate 398–9, 407
  storms, effect on biota 226, 261, 428
sub-Antarctic region
biogeographic definition 423, 476
penguin species, range and spread 144, 144, 342–3
rafting dispersal, on macroalgae 268
see also islands, sub-Antarctic
subtractive suppression hybridization (SSH) 372–4, 373
succession
after ice scour, subtidal communities 107, 230, 266–7, 269–5
experimental simulation, on land 30
summer melt period and phytoplankton blooms 161
terrestrial biotic activity 48–9, 52–4
suspension feeders 230, 232, 269, 275
sustainable management, challenges 5, 340
Tanaidacea (benthic crustaceans) 301, 309–10, 312
Tasman Seaway 3, 451
Taylor Valley, McMurdo region 49, 51–2, 65, 72, 73
tectonic events, dating and significance 3, 294–6, 295, 418–20
temperature
annual fluctuations in lakes 64, 66, 66
change
decadal pulse cycles 52–3, 337–8, 338
rapid response, springtails and mites 26
ttoleration, terrestrial and marine species 4, 264–5
warming and cooling trends 54, 93, 98
coastal water 128–30, 129, 265
depth profiles, Ross Sea 215, 216, 217, 358–9, 359
see also air temperature
temporal scale see time scale
terrestrial ecosystems
biotic components
above-below ground interactions 46–9, 47
diversity and spread 16–25, 106, 423–33
history and adaptation 18, 25–30
characteristics 6, 14, 23, 471, 475–6
compared with Arctic 44
compared with marine 418
environmental changes 2–3, 29–30
climate change signals 96
tipping points 51, 52
unpredictability 26
habitats 16, 19, 46, 48, 479–80
thermal adaptation
energy efficiency, metabolic 397–9
heat shock response (hsp expression) 104, 392–3
intolerance of warm water 103–4, 105, 105, 265, 278
lctal temperatures, icefish 358, 384
limits and activity, invertebrates 380–1, 381, 394, 395
specialization mechanisms 382–3
time dependence 399–400, 400, 401
see also freezing, tolerance and avoidance
thermal hysteresis (TH) 360, 361
time scale
ages and colonization of lakes 72
of Antarctic microbial strain evolution 69
of climate variability 97–8, 181, 182, 255–6
of genetic responses to change 4, 276
population responses to temperature 343–4, 346
terrestrial biodiversity variation 25–30, 53
thermal tolerance limits 399–400, 400, 401
TLP (trypsinogen-like protease) gene 363, 366–7
toothfish (Dissostichus spp.) 188, 226, 227
Antarctic (D. mawsoni) 363, 364, 366–7
commercial fishing 497, 506, 508
Patagonian (D. eleginoides) 366, 367, 443
tourism 504, 510–11
trampling, impact on dry valleys 54–6, 503–4
trawling, benthic damage 264, 508
trophic interactions
consumer mobility and primary production 161, 232
ergy transfer efficiency 188, 189, 220
between planktonic groups 184, 223–5
predator–prey relationships 185, 187–9, 225, 226–9
terrestrial, above and below ground 46–9, 47
ultraviolet (UV) radiation
avoidance, incryptic habitats 428
benthic impacts and adaptations 263
moss variation and UV-B exposure 16, 24
protective pigmentation, copepods 78
responses of dry valley communities 55
UNESCO World Heritage Convention 500
Upper Circumpolar Deep Water (UCDW)
characteristics 96, 127–8
incursions onto continental shelf 97, 128, 128–30, 248
upwelling, mixing and nutrient status 130–1, 136–7
variation
climatic oscillations 101, 125–7, 276, 337–8, 346
genetic, species differentiation patterns 440–2, 448–50
spatial 16–25, 74–5, 340
temporal 25–30, 75
vascular plants
absence in Antarctic dry valleys 47, 47
expansion of range and spread 28
Vestfold Hills, lakes 63–4, 67, 69
vicariance 420–1, 434, 437
Victoria Land
evidence for glacial refugia 428
flora and fauna 16, 19
human impacts 54
see also McMurdo dry valleys
viruses 69–70, 70
volcanic eruptions 263–4, 268, 274
Vostok, Lake 65–6
Vulnerable Marine Ecosystems (VMEs) 511
Index

warming
impacts on dry valleys 51–3
ocean temperatures 94, 96, 129–30, 168, 329
spatial and seasonal variability 99, 123
waste
disposal management 502–3
sea dumping prohibition 263, 500, 503
wave action disturbance 261–2, 262
weather stations 2, 53, 123
Weddell Sea 165, 173
polychaete diversity 303
sea ice generation 165–7, 166
tectonic origins, history 294, 295, 295–6
Weddell seal (Leptonychotes weddellii) 228, 232
weevils, sub-Antarctic populations 17–18, 20, 29
Western Antarctic Peninsula (WAP)
biotic responses to climate change
community level 106–7
ecosystem level 107, 107–8, 143, 148–9
marine species and populations 102–6, 145, 176
observed, to date 109–10, 137
climate and ice
covariability 125–7
sea ice reduction 2, 94, 123–5, 124
marine ecosystem structure and processes 147–8, 148
birds and mammals 143–7
microbial ecology 138–40
nutrients and carbon 130–4
phytoplankton dynamics 134–7
zooplankton 140–3

oceanographic features 97, 121, 127–30
predicted environmental changes 98–100
whales see cetaceans
wind action
as driver of coastal water mixing 131
prevailing direction and biotic dispersal 421, 474
promotion of polynyas 218
speed related to phytoplankton production 134–7, 135, 136
strengthening associated with climate change 99, 137, 168, 233
winter sea-ice, duration 106, 110, 123–4, 127
winter survival strategies
adult krill 175, 176
in plankton 72, 77
Winter Water (WW) 97, 128
Wordie Ice Shelf 2, 94
zebrafish (Danio rerio) 372–4, 373
zonation, benthic 229, 230, 269, 301, 302
zooplankton
community structure, continental shelf 140, 140–2
larval forms 266
transition to oceanic zone 247
continental lakes 73–5
population trends and effects of climate 142, 248
roles in food webs 142–3
grazing impacts, copepods and krill 183–4
Southern Ocean Atlas 477