Index

References to notes, figures and tables are entered as (respectively) 21n, 21f or 21t.

Abbs, J., 357
abduction, vocal folds, 141–6
Abercrombie, D., 552, 557, 558, 560
Aberdeen English, 721
Abramson, A. S., 144–5
accelerometers, 65, 67
accent (accentual prominence), 531–40
see also stress
Ackermann, H., 226, 235, 238, 539, 578–9
acoustic phonetics, 81–2, 436–44
definition, 81
methodology, 82, 717–20, 728, 730
quantal/enhancement theory, 426, 427–47
research questions, 427
vowel spectra, 89–91
acoustics see also signal processing
acoustic resonator coupling, 430, 436–44
definition, 39
effect of increasing flow velocity, 45
filters, 768–9, 787–8
modeling of articulatory-acoustic features, 429–47, 808, 814–21
hierarchy, 445–7
modeling of vocal tract, 56, 68–73, 430–45, 785–7, 788–9
modeling of voice source, 379–80, 384–7
normalization of spectra, 45–7, 720, 779–80
transfer function, 379, 436
activation patterns (brain), 230–9, 264–5
actuation problem, language change, 734
Adachi, S., 72
adduction, vocal folds, 141–6, 396
adenoids, 174
adolescents
motor control, 268, 283
social identity, 708–9
adult papilloma, 190f
aerodynamics, 39–74t
aeromechanical interactions (AMI), 430, 431–6
Bernoulli effect, 42–3, 56
boundary layers, 43, 44–5, 71
of breathing, 47–50
constants, 41–2, 73–4f
convection velocity, 39
definition, 39–40
flow spoilers, 46–7, 52, 65, 67–8
fluid dynamics, 41–7, 71–2
fluid statics, 40–1
laminar flow, 43–4, 71–2
measurement techniques, 41, 62–8
modeling of, 56, 68–73, 431–6
oscillation/feedback, 44–5, 56–62
particle velocity, 42, 64–5, 67–8
pipe flow, 43
pressure, 73–4f
shear layers, 71
aerodynamics (continued)
source-filter interaction, 70–1, 436–45, 774
steady flow, 42–3
turbulence, 39, 42, 43–7 modeling of, 53–4, 60, 71–2
volume velocity, 42, 64, 66–7, 73–4
affective aspects, speech variation see paralinguistic variation
affricate consonants, 435–6, 695, 699
African American English, 714
Africanist transcription conventions
tone transcription), 610, 611, 612
age, effect on speech, 175–6, 178, 179–80, 181, 414, 569–70, 710–11, 737
AH (aspiration noise), 392, 393–4
Aichert, I., 231
air, behavior of see aerodynamics
Al-Bamerni, A., 328, 338
Al Shareef, J., 710
Alexander, M. P., 225–6
Alipour, F., 58
Allen, G. D., 550
Allen, J. B., 832
allophones, 449, 660
Alphen, P. M. van, 499
alveolar consonants, 693
assimilation patterns, 345
coarticulation effects, 95, 99, 340, 341
measurement of tongue-palate interaction, 29
spectra, 104
alveolopalatal consonants, 688, 693, 698
coarticulation effects, 341–2
Alwan, A., 69–70, 395
American English
coaiculation effects, 321, 323–4, 338–9
consonants, 100–2
perception of, 726
prosodic features, 526, 543, 549, 555, 556, 560, 576
stress, 531, 532, 533, 534, 537–9, 549
sociophonetic variation, 709–10, 714, 717–18, 719
vowel quality, 86, 87–8, 323–4, 578
Amman, Johann Conrad, 655–6
analysis–synthesis method, 785, 792 see also speech synthesis
Anderson, S. R., 662, 663–4
Andruski, J., 407, 499
anterior cingulate gyrus (ACG), 219–20
anterior insular cortex, 215
anterior nasal spine (ANS), 168
anticipatory coarticulation, 337–40, 341
apes, 203, 204, 215
approximants, 668–9
formants, 100–2
modeling of, 443–4, 699
spectra, 86–7
apraxia of speech (AOS), 220–2
Arabic, 534, 690, 710
L2 speakers, 715
Arai, T., 554
Arsenin, V., 360
articulators see also specific
cartilages, e.g. tongue
modeling of, 51–4, 685–7, 688–90, 730–2, 789–92
motor control, 253–9, 265–79, 355–70
coordination, 275–6, 278–9, 357–9
effect of speech rate, 364
speech perturbation studies, 357–8
variability, 271–9
obstruents, 109–10
relationships between, 9, 25–6, 316–17, 336–7 see also coarticulation
secondary articulation, 690
tongue-tip trills, 60–1
vowel-approximant transitions, 50
“articulatory filter” model, 307
articulatory model (coarticulation), 325, 343–4
articulatory models (speech synthesis), 789–92
Articulatory Phonology, 621, 630
articulatory velocity see speech rate
Articulograph AG500, 26
Arvaniti, A., 559, 625–6, 639
arthyenoid cartilage, 138–9, 162f, 395
Ash, S., 708
aspiration, 55, 103, 111–12, 698 see also breathy voice
control of, 143–4
aspiration noise (AH), 392, 393–4
assimilation, 320–1, 345–6, 721
associative learning, 260
Asu, E. L., 565
auditory feedback, effect on speech production, 364–6
auditory input models, 308–9
auditory processing, 454–82, 770–1, 776
auditory filter, 454–5
auditory processing, across-channel processes, 464–8
bandpass filtering, 479
excitation patterns, 461–4
dominance principle, 473
effect of hearing loss, 365–6, 570
gap thresholds, 476, 478
off-frequency listening, 456
pitch, 472–3, 474–5
timbre, 469, 470–1
and sociophonetic variation, 726–7
suppression, 461
temporal analysis, 475–9
timbre, 469–71
and vowel identification, 469, 470–1
Australian English, 96–7
automatic speech recognition
Autosegmental-Metrical Phonology, 612, 618, 622
Autosegmental Phonology, 621–2
Aylett, M., 92
bilingualism, 364–5, 276, 279, 280, 308, 557
and preverbal melodies, 611
back-off models (n-gram models), 826–7
back vowels, 84, 86–7, 437–9
backed-off context-dependent phone modeling, 816
basilar membrane (auditory filter), 454, 462
Baum-Welch algorithm, 817
Baumann, S., 532, 537
Bayes’ theorem, 807–8
Beckman, M. E., 345, 523–4, 527, 530, 538–9, 543, 547–8, 555, 556, 568, 620, 621–2, 625, 630, 640
Beddor, P. S., 118
Beijinghua (Chinese dialect), 612–13, 615–16, 634, 639, 640
Chinese (Mandarin/Putonghua)
Bell, A., 715
Bell, Alexander Melville, 679, 680
Bell-Berti, F., 337, 338
Bell Labs, 791
Bengali-English speakers, 286
Benguerel, A. P., 338
Berber (Afro-Asiatic language), 616
Bernoulli effect, 56
Bernoulli’s Equation, 42–3
Bernstein, N. A., 275, 362
Beskow, J., 797–8
Bezooijen, R. van, 725
bilabial consonants
Bininj Gun-wok (Australian language), 535
Bishop, H., 725
Bismarck, G. von, 469
bizygomatic width, 168f, 169
Bizzi, E., 361
Black, A., 794–5
Bladon, R. A. W., 89, 327–8, 338
blending, 343, 344, 364
coarticulation
Blumstein, S. E., 104, 114, 116
Bohland, J. W., 231, 253–4
Bolton point, 168f
Bosma, J. F., 175
boundary layers, 43, 44–5, 71
Boves, L., 66
Boyce, S., 338, 340
Bradford English, 714
Bradford, P., 258
brain, 202–42
activation patterns, 230–9, 264–5
central pattern generators (CPGs), 252–3
growth of, 166, 254–5
brain (continued)
lateralization/asymmetry, 214–15, 218, 220–2, 223–4
measurement of activity, 217–18, 228–39
inner speech, 237–8
modeling of, 239–41, 251–2 see also
cognitive processing
motor control see motor control
nonhuman species, 202–4, 211–15, 468
psycholinguistic functions, 205
sex differences, 282–3
structure of, 203–8f, 242n, 260, 270–1
basal ganglia, 204, 224–6
cerebro-cerebellar loops, 226–7
clinical evidence for, 219–27
corticobulbar tracts, 214, 220, 222–3, 225
in subhuman primates, 211–15
white matter, 220–1, 255
Brazilian Portuguese, 565–6
breath groups (segmentation of speech signal), 616–17
breathing, 141, 264
aerodynamics of, 47–50
breath noise, 65
breathy voice, 60, 393, 396f–9f, 400, 403, 404, 405
Bregler, C., 797
Britain, D., 712, 722
British English
modeling of, 720
prosodic features, 564–5, 607–8
sociophonetic variation, 414, 706, 707–8, 710–11, 714, 716
transcription of, 613
Broad, D., 93–5
Broca homologue, 211, 215
Broca’s area, 205, 220, 221–2, 229, 230
Brodmann areas, 204, 208f
Brosses, Charles de, 656
Brownman, C. P., 307, 337, 343, 450
Bruce, G., 549, 622–5
Bucholtz, M. B., 709
Busà, M. G., 346
Butcher, A., 114–15, 431, 573–4
Butler, A., 204
Byrd, D., 545, 546
Cajun English, 709–10
Californian youth culture, 708–9
Cambier-Langeveld, T., 545, 546
Campbell, N., 411–12, 544
Campione, I., 574
canalization, 183
Cantonese, 504, 615, 632–5, 638
Caplan, L. R., 205
carcinoma, 190f
Cardiff English, 708
Carlson, R., 792
Carpentier, F., 793–4
Carter, H., 612–13
cascade synthesizers, 788 see also
speech synthesis
Catalan, 534, 561, 567
Catford, J. C., 396, 688
caudate nucleus, 204
Cedergren, H., 639
CELP (Code-Excited Linear Prediction), 774
central pattern generators (CPGs), 252–3
centralization, 91, 92, 560
F2, 92
cepstral coefficients, 777–8
Cepstral Mean Normalization (CMN), 779–80
cerebellum, 205–8f
cerebral networks, 227–42
modeling of, 239–41, 251–2, 279–80, 309–10
motor control, 228–37, 238–9, 251–88
and speech rate, 232–7f
cerebro-cerebellar loops, 226–7
Chakraborty, R., 286
Chan, M. K. M., 636, 637
Chanthaburi dialect (Khmer), 405
Chao, Y. R., 627, 639, 643n
Chen, S. F., 826
Chen, Y., 616, 618–19
Cheng, H. Y., 269
Chennoukh, S., 100, 332
chest register, 57, 140
Chi, X., 437
children
brain development, 166, 254–5
cochlear implant recipients, 286
motor control, 257–79
development of adultlike patterns, 269, 271–9
gender differences, 282–3
oral motor reflexes, 256, 257–9
sociophonetic variation, 710–11, 715–16
speech rate, 271–3
voice quality, 57, 178, 180–1, 706
Chinese (Mandarin/Putonghua), 407, 504
coarticulation effects, 625
prosodic features, 535, 605, 612–13, 615–16, 634–5
dialects, 636–7, 638–9
transcription of, 627
Chinese (Wu), 404, 407, 414, 636–7, 638–9
Chistovich, L. A., 86, 325, 527, 551, 577
Cho, T., 506, 507, 537, 542, 546–7
Chomsky, Noam, 303, 320, 425, 426, 436
Christophe, A., 506
Cine-MRI, 16–17
Clark, M. M., 610
Classe, A., 553
Clay, J. L., 258
Clements, G. N., 427
Clermont, F., 93–5
clicks, 435, 692, 699
Clifton, C., 493
close-copy stylization, 606–8
Clumeck, H., 340
cluster adaptive training (speech recognition systems), 820
CMN (Cepstral Mean Normalization), 779–80
co-modulation masking release, 464–6
Coanda effects, 59
cocarticulation, 316–47
anticipatory coarticulation, 337–40, 341 as coproduction, 335–43
definition, 316, 320, 354
effect on consonants, 95–100, 317–20
effect on utterance, 281–2
effect on vowels, 91, 92–100
measurement of, 29, 316–20, 332–3
modeling of, 308, 783–4
and nasalization, 114–16, 317–20
research questions, 346
research studies, 281–2, 320–1, 325–9, 344–6
resistance, 325–9, 336–7
theories, 323–46, 354–5
articulatory model, 325, 343–4
DAC model, 340–3
grammar-based theories, 324–9
hyper- and hypoarticulation model, 91–2, 329–33
output constraints hypothesis, 334–5
overlapping innervation wave theory, 323–4
window model, 333–5
universals, 334–5, 625
vowel-to-vowel, 320–1, 325
cochlear implant recipients, 286
Code-Excited Linear Prediction (CELP), 774
cognitive processing, 489–510, 770–1, 776
effect of hearing loss, 365–6, 570
feedback vs. feedforward, 490–1, 496–8
learning effects, 497, 726–7
lexical processing models, 490–8, 499, 500
normalization, 501, 502–3
prelexical processing, 490–1, 492, 495, 496, 500–3, 509–10
research questions, 508–9, 510, 664–5
segmental level, 498–503
suprasegmental level, 503–8
Cohen, C., 338
Cohen, J., 819
Coker, C. H., 791
Coleman, J., 616
Collins, B., 708
communities of practice framework, 708
computed tomography (CT), 11–13
computer modeling, 302, 607–8, 627–32
see also signal processing; speech recognition systems; speech synthesis
connected speech processes, 321–3, 343–6, 366–70 see also prosody
Connine, C. M., 493
consonants see also specific types of consonant, e.g. fricatives
acoustic structure, 100–16, 614–15, 720
aerodynamic characteristics, 44, 50–62, 66
assimilation patterns, 721
cocarticulation effects, 91, 92–5, 327, 332, 342
consonants (continued)
 effect of preceding vowels, 95–100, 327–8
 and control of larynx, 144–5
duration, 546, 579
modeling of, 55–6, 66, 361–2, 614–15, 720
perception of, 103, 110–11, 114, 345
phonological contrasts, 404–6
strengthening, 538, 546–7
voice quality, 698
constants, 41–2, 73–4
context-dependent phone modeling, 816
 see also speech recognition systems
context-oriented clustering (concatenative
speech synthesis), 794
contrasts, phonological see phonological
contrasts
convection velocity, 39
Cooper, W. E., 526, 532, 542, 544
coordination (motor control), 275–6, 278–9, 282–3, 359–63, 366–70
 research studies, 362–3
coproduction, 335–43 see also coarticulation
Corby English, 714
coronal consonants, 450
coronal plane, 11, 12
coronal suture, 168f
corpus studies, 546, 555, 575
 and speech synthesis, 792–3
 SWITCHBOARD corpus, 532
cortex see brain
corticobulbar tracts, 214, 220, 222–3, 225
Coupland, N., 725
Cranen, B., 66
cranial nerves, 213–14
cranium, life cycle changes, 166, 167f
creaky voice, 396f–9f, 401–2, 404, 405, 605
Creek, 544
cricoarytenoid joint, 138–9
cricoid cartilage, 138, 162f, 395f
cricoarytenoid joint, 138, 139
cricothyroid joint, 139, 147–8f
Croatian, 626
cross-linguistic comparisons
 assimilation patterns, 320–1, 345–6
 coarticulation, 320–1, 325, 333–5, 340
duration, 531–3, 536–7, 544–5, 553
early vocal patterns, 304–5
lexical stress, 505–6
metrical prominence, 638–41
paralinguistic variation, 413
phonological contrasts, 431, 504–6
 voice quality, 403–6
 prosody, 506–8, 531–7, 625–6
 research questions, 665–9
 rhythmic structure, 552–68
 sociophonetic variation, 414, 720–1
tempo, 571–2
tone languages, 407, 504, 535, 638–41
voice onset time (VOT), 113
Crystal, T. H., 544, 555, 556, 560
CT (computed tomography), 11–13
Cummins, F., 551, 561–2
Curaçao Papiamentu (Creole
language), 535
cut-on frequency, 73n
Cutler, A., 492, 501, 505, 508, 556
Czech, 567
DAC model, 340–3
Dagher, A., 225
Daniloff, R., 324
Danish, 630–1
Danly, M., 544
Darwin, Erasmus, 656
data, collection and analysis of see
 measurement; methodology
Dauer, R. M., 557, 560, 561
Davies, P. O. A. L., 70
Davis, B. L., 261, 306
Davison, D. S., 407
dc offset, 60
DCT (discrete cosine transformation),
 90–1, 108–9
Deacon, T. W., 204
degree of articulatory constraint see DAC
 model
Déjerine, J., 220
Delattre, P., 84, 85, 553, 560
deletion, 343, 565
Dell, F., 616
Dell, G. S., 492
Dellow, P. G., 260
Dellwo, V., 566
delta coefficients, 779
Denes, P., 113
Index

Denny, M., 264
dentition see teeth
dentolabial articulation, 697
depalatalization, 340–1
derhoticization, 732
Derwing, T., 570
Deschamps, A., 574, 575
Deshaies-Lafontaine, D., 703
Deutsch, K. M., 255, 276
deoicing, 666–8 see also voicing
Dexter, E. R., 501
diachronic phonology, 670
dialectology, 712 see also sociophonetic variation
diaphragm, 47
Dickson, D. R., 161
difference spectrum, 116
diffusion tensor MRI (DTI), 15–16, 254–5
digital signal processing (DSP), 769–70
diphones, 793
diphthongs, 87–8
dipoles, 45, 52–3, 59–60
Direct Numerical Simulation (DNS), 72
discrete cosine transformation (DCT), 90–1, 108–9
disease see pathology
DIVA model, 280, 308–9
Dix, R. P., 405
DNS (Direct Numerical Simulation), 72
Docherty, G. J., 710, 721, 738
Doric (Aberdeen English), 721
Down syndrome, 186, 188
Dronkers, N. F., 221
DSP (digital signal processing), 769–70
DTI (diffusion tensor MRI), 15–16, 254–5
Dubois, S., 709–10
Duez, D., 555
Duffy, J. R., 232
duration
accentual lengthening, 536–7
consonants, 579
cross-linguistic comparisons, 531–3, 536–7, 544–5, 553
final lengthening, 541–2
initial lengthening, 546–7
measurement of, 524–8
modeling of, 526–7, 545–6, 784
morae, 577
and phrase boundary marking, 506–7, 540–9
preboundary lengthening, 540–6, 547–8
research studies, 728
and rhythmic structure, 551
shortening, 547–9, 555–6
and tempo, 576–7
vowels, 92–5, 491–2, 531, 533–5, 538, 539, 544–5, 560, 566, 576, 577
Scottish Vowel Length Rule, 710–11
Dutch, 721
phonetic features, 499, 507
prosodic features, 507, 548, 558, 560, 572, 576–7
intonation, 626
stress, 505, 506, 531–2, 533, 534
sociophonetic variation, 569–70
vowel quality, 578
Dutch English speakers, 714–15
Dutoit, T., 794
Dyer, J. M., 714
dynamic leakage (RA), 389–91
dysarthria, 218–19, 222–7
dysphagia, 218
Eckert, P., 710, 711
Edelman, G. M., 279
edge tone (whistling), 62
Edinburgh English, 414
education, and sociophonetic variation, 736
Edwards, J., 523–4, 530, 538–9, 543, 547–8
EE (excitation strength), 389, 390f, 407–9
Eefting, W., 532
eigenfunctions (linear systems), 764 see also sinusoids
ejectives, 692, 699, 700
everly people, voice quality, 178, 179–80, 181
electroencephalography, 217–18
electroglottography (EGG), 132–5, 137–8
electromagnetic articulometer (EMA), 25–7
electromyography (EMG), 135–6
Electron Beam CT, 13
electropalatography (EPG), 29–30, 730
Elman, J. L., 490, 495
Elmedlaoui, M., 616
emotions
expression of, 219, 241, 409–13
and tempo, 569
English see also specific varieties, e.g.
American English
assimilation patterns, 334, 345, 425
coarticulation effects, 325, 334–5, 338
connected speech processes, 322–3
enhancing gestures, 443, 448
L2 speakers, 286, 566–7, 714–15
modeling of, 720
paralinguistic variation, 413
phonetic features, 428, 499, 507
prosodic features, 506, 507–8, 537, 542, 544, 548, 554, 564–5, 576, 607–8
intonation, 640–1
stress, 505–6, 530–1, 534
stress foot, 537
tonal morphemes, 635–6, 638
sociophonetic variation, 414, 705–6, 707–8, 717–20, 721–2, 723–4
English–Arabic speakers, 715
Engstrand, O., 579
enhancing gestures, 443, 447–8 see also gestural phonology
epenthesis, 565, 721
EPG (electropalatography), 29–30, 730
epiglottals, 688–9, 695, 697
epithelium, 139, 140f, 164
pathologies, 190f
Epstein, M., 409
equilibrium-point model, 361, 369
Erath, B. D., 59
Ertmer, D. J., 286
Esling, J. H., 414
essentialism, 302–3
Estep, M., 260
Estonian
prosodic features, 549, 555, 561, 565
vowels, 534–5
Euler, C. von, 262
European Portuguese, 561, 565–6
Evans, B., 726
excitation patterns, 460–4
excitation strength (EE), 389, 390f, 407–9
expectation maximization algorithm, 813
exponential decay, 762
\(f_{0r} \) 57 see also tone languages; tones
and control of pitch, 147–9, 364–6, 392
definition, 389
harmonics, 764–6
life cycle changes, 166, 178–80
and measurement of pitch, 604–7
modeling of, 784
and pitch perception, 472, 473–5
and voice onset time (VOT), 113
and voice quality, 407, 412–13, 473
and vowel height, 87
F1
and constrictor location, 84
and harmonics, 394–5
and voice onset time (VOT), 111
F1 \(\times \) F2 plane (vowels), 83–5, 717–20
F2
centralization, 92, 93–5
coarticulation effects, 95–100, 114–16
and consonant identification, 110–11
and constrictor location, 84
locus theory, 95–100, 114
lowering, 92
upwards shift, 85–6
F3
coaarticulation effects, 95–6f
and consonant identification, 110–11
F3 and \(f_{or} \), 85–7
facial skeleton, life cycle changes, 166–75,
181 see also orofacial structure
falsetto, 57
Fant, G., 50, 84, 392–3, 532–3, 553, 555, 559, 785, 791
Faria, A., 819
Farnetani, E., 346
feature geometry, 670–1
feature spreading (coarticulation), 324
features see phonetic features
feedback/oscillation (aerodynamics), 44–5,
56–62
feedback (sensory/auditory feedback),
283–4, 355, 364–6
feedback vs. feedforward (cognitive processing), 490–1, 496–8
feet (stress feet) see stress: stress foot
FEM (finite-element models), 58
FG/RG (glottal frequency), 390f, 391, 785–7
fiber interdigitation, 16
fiberscopes, 131–2, 133f
fibromas, 190f
filters, 379, 436, 768–70, 787–8
 inverse filtering, 60, 67, 70, 380–4
Finan, D. S., 257, 260
finite-element models (FEM), 58
Finnish, 537, 549, 553, 555
Fisher, W. M., 810, 831
Flanagan, J. L., 53, 69
flaps, 692, 698–9
Fletcher, H., 454, 560
Fletcher, J., 555
flow resistance, 68
flow spoilers, 46–7, 52, 65, 67–8
flow visualization, 56, 65
flowrate, measurement of, 63–5, 67–8
fluid dynamics, 41–7, 71–2
fluid statics, 40–1
fMRI (functional magnetic resonance imaging), 19–20, 228
focal stress, 409, 532
Foix-Chavany-Marie syndrome, 223
foot (stress foot) see stress: stress foot
forensic phonetics, 724, 737
formants, 818 see also F1; F2; F3
 approximants, 100–2
 and harmonics, 394–5
 modeling of, 89–91, 92–5, 819–20
 nasal consonants, 113–16
 obstruents, 103–9
 oral anti-formants, 114
 sonorants, 720
 synthesis of, 787–9, 790, 792–3
 vowels, 83–91, 330, 331f, 533, 534, 578
 nasalization, 116–18
 sociophonetic variation, 717–20
 synthetic speech, 88, 89, 95, 462–4
Foss, D. J., 491–2
Fougéron, C., 577, 639
Foulkes, P., 710, 721, 723–4, 738
Fourakis, M., 577, 578, 721
Fourier analysis, 764–8
 Fourier transforms, 770–3, 777, 779
Fowler, C. A., 320, 335–7, 342, 532
Fox, P. T., 230, 504
frame/content theory, 262, 269–71, 306
Frankel, S. H., 72
FRC (functional residual capacity), 47, 48
French
 coarticulation effects, 325, 337–8
 prosodic features, 507, 536, 540, 543, 549, 555, 558–9, 560, 575, 577
dialects, 639
frequencies, 73n see also f0; formants
 control of, 57, 147–9, 364–6, 785–7
 natural frequency (resonance), 758
 normalization of spectra, 45–7, 720, 779–80
frication, definition of, 83
fricatives
 acoustic structure, 102–3, 108–9, 110–11, 433–4
 aerodynamic characteristics, 44, 50–4, 61–2
definition, 83
 modeling of, 69–73, 433–4, 688–9, 693, 699
 perception of, 103, 110–11, 494–6
 sociophonetic variation, 721
 voicing, 50, 102–3, 113, 667–8
 whistly fricatives, 61, 62
Friedreich ataxia, 227
Frøkjær-Jensen, B., 136–7
front vowels, 84, 85–6
frontal operculum, 242n
Frota, S., 565–6
Fuchs, S., 539
Fujisaki model, 629–30, 631
functional magnetic resonance imaging (fMRI), 19–20, 228
functional residual capacity (FRC), 47, 48
functional synergies, 278–9
definition, 275–6
fundamental frequency see f0
Fung, R. S.-Y., 635
Gales, M. J. F., 820, 821
gang culture, 708–9
gang effects (neural network models), 309
Ganong, W. F., 496, 504
gap thresholds, 476, 478
gases, behavior of see aerodynamics
Gaussian mixture models, 814–15
Gauvain, J.-L., 819–20
Gay, T., 317, 340, 576, 578
Gaza Arabic, 710
Gee, J. P., 542
Gelbart, D., 819
geminate consonants, 666–7, 691
generative phonology, 670–1, 783
Gentner, D., 368
German
connected speech processes, 323, 345
fricatives, 108–9
lax vowels, 90, 539
prosodic features, 555, 558, 560, 577
stress, 532, 537
Germanic languages, 558
Gernsbacher, M. A., 491–2
Geschwind, N., 223
Gestel, J. C. van, 474–5
gestural phonology, 307–8, 363–4
articulatory model, 325, 343–4
coproduction, 335–43
Giedd, J. N., 254
Gilman, S., 226
Gimson, A. C., 322–3
Glasberg, B. R., 461
Glaswegian English, 712, 713
f, 720, 722
glissandi, 643n
transcription of, 612, 613
glottal frequency (FG/RG), 390f, 391, 785–7
glottal stop, 147
glottal symmetry/skew (RK), 390f, 391–2, 407–9
glottalization, 708
glottis
aerodynamic characteristics, 58–61
glottal airflow, 378
subglottal pressure, 48, 49–50, 57, 66, 141, 145–6f
supraglottal pressure, 66
transglottal pressure, 141, 145–6f
GLOVE synthesizer, 788–9
Gobl, C., 381, 392, 409, 412–13
Goffman, L., 280, 281, 282
Gold, B., 780
Goldinger, S. D., 502
Goldman-Eisler, F., 573
Goldstein, L., 307, 337, 343, 450, 614
gonion, 168f
Good-Turing smoothing, 827
Goodman, J., 826
Gopal, H. S., 86, 87
Gordon, M., 404, 712
Gottfried, M., 88
Grabe, E., 564–5
Gracco, V. L., 228, 357, 361–2
Grammont, M., 558
Granström, B., 792
Greek, 559, 577, 625–6, 639, 711
Green, D. M., 466, 477–8
Green, J. R., 262–3, 269–70, 271
Green Mong (Hmong dialect), 407
Greenberg, S., 532
Green’s function, 71
Grice, M., 625
Gröne, B. F., 235
Grønnum, N., 630–1
Grosjean, F. E., 542, 574–5
growth patterns, 157, 158f, 159f, 166–81, 257, 269 see also organic variation
brain development, 166, 254–5
influence of environmental factors, 182–3
Grundzüge der Phonologie (1939), 659
Guenther, F. H., 231, 253–4, 280, 308
Gujarati, 404
Gunter, H., 58
Gussehoven, C., 609, 622, 625, 632, 640, 642
Haagen, M. van der, 714–15
Hain, T., 822
Hakoda, K., 794
Halder, P., 287–8
Hall effect transducers (HETs), 31
Hall, J. W., 464–6
Halle, M., 303, 320, 425, 426, 427, 428, 436, 444, 447, 738n
Halliday, M. A. K., 638
Hamada, H., 794
Hammarberg, R., 324
Handbook of the International Phonetic Association (1999), 680
Hanson, H., 394–5
Haraguchi, S., 620
Hardcastle, W., 317
Harlem street gangs, 709
harmonics, 394–5, 473–4, 764–6
Harris, K. S., 110, 337
Hassan, T., 186
“hat pattern,” 607–8, 609, 617
Hauser, M. D., 301
Hazrati, L. N., 225
head register, control of, 140, 147
hearing see auditory processing
hearing loss
effect on pitch control, 365–6
effect on tempo, 570
Heath, J., 712
Hebb, D. O., 260
Heinz, J. M., 110
Heldner, M., 532, 537
Helfrich, H., 178, 181
Henke, W. L., 325
Hermansky, H., 779, 832
Hermes, D. J., 474–5
Hertrich, I., 226, 235, 539, 578–9
Hertz, S. R., 792
Heselwood, B., 714, 720
Hess, S. A., 407
Hesselin, J. M. K., 225
HETs (Hall effect transducers), 31
Hewlett, N., 710–11
Hidden Markov models (HMMs), 795, 808–13, 816, 821, 833
high-resolution magnetic resonance imaging (hMRI), 15, 16f
Hillenbrand, J., 89
Hiller, S., 555
Hillis, A. E., 221–2
Hirai, T., 629
Hirano, M., 139, 191
Hirata, Y., 535, 577
Hirose, H., 317
Hirschberg, A., 59, 71
Hmong (Green Mong), 407
ICMS (intracortical microstimulation), 211–12
iconic notation, 679, 680
identity, 708–9 see also sociophonetic variation
Igbo (Niger-Congo language), 609–10
Ijaz, M., 364
imaging techniques, 10–25, 132–5, 138, 791–2
computed tomography (CT), 11–13
diffusion tensor MRI (DTI), 15–16, 254–5
digital imaging, 132–5
functional magnetic resonance imaging (fMRI), 19–20, 228
limitations of, 11, 13, 19–21, 22–3
magnetic resonance imaging (MRI), 14–21, 138, 791–2
positron emission tomography (PET), 227–8
Ultrasound Tongue Imaging (UTI), 731–2
X-rays, 10–13
implosives, 692, 699
Indefry, P., 229
indexical features, 705, 723–5, 738n
individual differences see organic variation; variability
Indo-Aryan languages, 404
inner speech, 237–8
Institute for Perception Research (IPO) framework, 606, 609, 611, 627, 784
intensity (speech intensity), 180–1
inter-speaker variation, 405–6, 805
age differences, 414, 569–70, 710–11, 737
class differences, 414, 705–6, 707–10
and community/social networks, 708–10
ethnic and racial differences, 714, 722
Huang, C. S., 270–1
Hunt, A., 794–5
Huntington chorea, 224–5
Husson, R., 661
Hyman, L. M., 641, 642
hyoid bone, 149, 175
hyper- and hypoarticulation model, 91–2, 328–33, 527–8, 715
hyperplasia, 190f
Hockett, Charles, 354
Hotchkins, C. Jr., 560
Hofmans, G. C. F., 59
hole tone (whistling), 62
Holmes, W. J., 792
Honda, K., 72, 147
Honjo, I., 178
Hopkin, G. B., 175
Horvath, B., 709–10
hot-wire anemometers, 64–5, 67
House, A. S., 92, 544, 555, 556, 560
Housum, J., 532
Howe, M. S., 53, 71
inter-speaker variation (continued)
forensic phonetics, 724, 737
gender differences, 405, 569–70, 707–8, 711–12, 713f, 714, 723–4, 726
indexical features, 705, 723–5, 738n
and language change, 708, 712, 717–18, 725–6
modeling of, 796–7
organic variation see organic variation
regional differences, 712–14, 725, 726–7
second language speakers, 714–15
segmental level, 717–20
singers vs. nonsingers, 365–6
statistical analysis, 733
subsegmental level, 720–1
suprasegmental features, 721–2
tempo, 578–9
interarytenoid muscle, 139, 142–3
intercostal muscles, 47
interference, 285
interferometry, 65
International Congress of Phonetic Sciences, 703–4
International Phonetic Alphabet (IPA), 610, 680–700
description of prosodic features, 691–2
description of voice quality, 694–5
description of vowel quality, 685–7, 689–90
elaborated chart, 695–700
notation for atypical speech, 694
secondary articulation, 690, 700
symbols, 683f
Unicode values, 684f
intonation, 407–9, 603–44
cross-linguistic comparisons, 625–6
definition, 603–4
downstep, 628, 629, 630–1
final lowering, 628, 630
focal tone, 622
“hat pattern,” 607–8, 609, 617
L-tone scaling, 629–30
measurement of, 604–7
metrical prominence, 638–41
modeling of, 607–8, 614–32, 792–3
perception of, 474
prosodic grouping, 638
research questions, 631–2, 635–6
research studies, 615, 622–4, 625–6, 630–2, 722
sociophonetic variation, 722
tonal space, 626–32
transcription of, 606, 610–12, 613, 617–23, 627, 628, 633–4, 643n
and vowel quality, 615
intra-speaker variation, 157, 158f, 159f, 160–81 see also organic variation
interlocutor effects, 715–16
intracortical microstimulation (ICMS), 211–12
intrasylvian cortex, 229
inverse filtering, 60, 67, 70, 380–4
IPA see International Phonetic Alphabet
IPO (Institute for Perception Research) framework, 606, 609, 611, 627, 784
Iseli, M. H., 395
Ishizaka, K., 69
isochrony, 552–3, 554–7
definition, 552
Isshiki, N., 178
Italian
assimilation patterns, 345–6
couarticulation effects, 322f, 327–9
prosodic features, 507, 555–6, 558, 560
stress, 532, 691
Iverson, P., 726
Jackson, M., 393, 405
Jakobson, R., 425–6
Jalapa de Díaz (Mazatec), 405
Jancke, L., 254
Janse, E., 576–7
Japanese
coarticulation effects, 326f, 327, 337–8, 345
modeling of, 625, 628–30, 631
paralinguistic variation, 413
prosodic features, 529, 544, 553–4, 555, 570, 572, 577, 639–40
pitch accent, 147, 504, 535, 610, 617–22, 625, 628–30, 631, 638
jaw
growth patterns, 169, 171–2
motor control, 266–71, 276–9, 366, 538–40
Index 851

muscles, 255
reflexes, 256–9
relationship with teeth, 169, 173–4, 184–6, 187f
relationship with tongue height, 9
Jianfen, C., 407
Jiang, J. J., 58
jitter (pitch perturbation), 181, 392
Jones, J., 365–6
Jong, K. J. de, 531, 538
Jongman, A., 405
Joos, M., 323–4, 336
Juang, B.-H., 815
Jun, S.-A., 557, 577, 639
Jung, Y., 437

Kahane, J. C., 175
Karlsson, I., 60
Kato, H., 572
Kelly, R. M., 236
Kelso, J. A. S., 357, 362–3, 368
Kennedy, G. A., 637
Kent, R. D., 255, 279, 280–1
Keough, D., 365–6
keratosis, 190f
Kerswill, P., 345, 710, 711, 721, 730
Key, T. Hewitt, 657
Keyser, S. J., 444
Khmer (Chanthaburi dialect), 405
Kieffe, M., 89
Kikuchi, H., 639
Kindaichi, H., 618
King, S., 806
Kiparsky, P., 655
Kirk, P. L., 405
Kirsner, K., 574
Kissine, M., 721
Klatt, D. H., 474, 500, 526, 542, 543, 548, 785, 787–8, 789
Klatt, L., 785
Kluender, K., 89, 475
Kluin, K. J., 226, 228
Knudsen, E. I., 285, 286
Kohler, K. J., 113, 323, 555, 567, 568, 577
Koiso, H., 570
Kolta, A., 261–2
Konczak, J., 235
Kongo (Niger-Congo language), 612–13
Koopmans-van Beinum, F. J., 560
Korean, 543–4, 546, 557, 639–40
Kozhevnikov, V. A., 325, 527, 551, 577
Kpelle (Niger-Congo language), 668f
Krakow, R., 118, 338
Krane, M. H., 53
Kraochevil, P., 615
Kroos, C., 539
Kruell, D., 96, 332, 534–5
Kubozono, H., 641
Kuehn, D. P., 578
Kurowski, K., 114, 116
L-tone scaling, 629–30
L2 acquisition
and sensitive period hypothesis, 284–5, 286
sociophonetic variation, 714–15
L2 speakers, 566–7, 570, 714–15
labial consonants, 104, 110, 668–9
Labov, W., 707, 709, 714, 715, 717, 718, 722–3, 726, 738
Lacerda, A. de, 323, 354
Ladd, D. R., 612, 626, 631, 636, 640–1
Ladefoged, P., 396, 404, 405, 435, 530
Lahiri, A., 450
Laine, T., 186
lamina propria mucosa, 139, 140f, 163–4
pathologies, 190f
laminar flow, 43–4, 71–2
language
definition, 301
evolution of, 255, 261–2, 301
language acquisition, 299–310, 360
“articulatory filter” model, 307
babbling, 261–2, 263, 264–5, 276, 279, 280, 308, 557
child-directed talk, 611, 715–16
cochlear implant recipients, 286
DIVA model, 280, 308–9
early vocal patterns, 304–5, 611
frame/content theory, 262, 269–71, 306
modeling of, 302, 307
Neighborhood Activation model, 310
neural net models, 309–10
and nonspeech motor functions, 259–62
phonetic perspectives, 300–1, 304–8
phonological perspectives, 300, 302–4
preverbal melodies, 611
Index

language acquisition (continued)
 “re-use” hypothesis, 306–7
 sensitive period hypothesis, 284–6
 social-functional factors, 305
 and sociophonetic variation, 710–11, 715–16
 speech motor control, 259–88
 babbling, 261–2, 263, 264–5, 279, 280–1
 theories, 279–88
language change, 708, 712, 717–18
 actuation problem, 734
 perception of, 725–6
 theories, 733–5
language pathology see pathology
language typology
 stress-timed vs. syllable-timed, 552, 553–8, 561–2, 567–8
 tone vs. stress-accent, 642
Large-Eddy Simulation (LES), 72
laryngography see electroglottography (EGG)
larynx, 130–50, 317f
 control of phonation, 140–9
 control of pitch, 147–9, 364–6
 effect of speech rate on movement, 364
 life cycle changes, 161–6
 modeling of, 685–7, 688–90
 nonspeech functions, 130–1
 observation techniques, 131–8
 pathologies, 190f, 191–3
 physiology of, 138–41, 395–6
 muscles, 138–40, 162f, 163–6, 395f, 396
 raising/lowering, 148–9
 research questions, 149–50
 lateral consonants, 101–2, 444
 lateral cricoarytenoid muscle, 139
 lateralization of the brain, 214–15, 220–2
 see also brain
Lathi, B. P., 780
Latina gang girls, 708–9
Laver, J., 156, 195, 395, 399, 400, 722
Law, S., 635
lax voice, 402
lax vowels, 87–9, 90, 539
Laziczius, Gyula, 660
learnability, of languages, 300
Lechtenberg, R., 226
Lee, C.-H., 819–20
Lee, K.-F., 362
Lee, L., 816
left anterior precentral cortex, 221
left inferior precentral cortex, 221
Leggetter, C. J., 820
Lehiste, I., 532, 547, 548, 554, 576, 577
Lemieux, S. K., 231, 238
lengthening see duration
lenition, 638–9
Lenroot, R. K., 254
LES (Large-Eddy Simulation), 72
Leshowitz, B., 475
Levett, W., 229, 237, 238
lexical stress, 449, 505–6, 531, 557, 576–7
lexicon
 definition, 489
 modeling of, 490–8, 502–3
 speech recognition systems, 815–16, 821–2
LF model (voice source model), 785
 see also speech synthesis
Li, B., 635
Li, Z., 616, 618–19
Liberman, A. M., 114
Lieberman, P., 616–17
life cycle changes see organic variation
light register, control of, 140, 147
Liljencrants-Fant (LF) model, 385, 386f
Lin, Q., 791
linear filtering, 768–9
Linear Prediction (LP), 773–4, 776
linear predictive coding (LPC) analysis, 382–4
linear systems (signal processing), 762–4
linguistic phonetics, definition, 82
linguolabial articulation, 698
Linville, S., 180
lips, 175, 317
 coarticulation effects, 327, 337, 338–40
 motor control, 266, 269, 276–9
 muscles, 255, 256, 258
Lisker, L., 113
listener perceptions see speech perception
Index

Lisu (Sino-Tibetian language), 407
literature reviews see research studies
Liu, F., 625
LND (Log Normal Distribution), 574
localized hyperarticulation, 538
locus equations, 95–100, 114, 332–3, 533
Löfqvist, A., 100, 145, 361–2, 364
Log Normal Distribution (LND), 574
longitudinal tension, vocal folds, 396
Louisiana Cajun English, 709–10
LoVerme, S. R., 226
Low, E. L., 564–5
low vowels, 437–9
Lowry, G. H., 169
LP (Linear Prediction), 773–4, 776
LPC analysis (linear predictive coding), 382–4
Lubker, J. F., 340
Lublinskaya, V. V., 86
Luce, P. A., 310
Lund, J. P., 260, 261–2
lungs see respiratory system
Luschei, E., 258
Lyberg, B., 541
Macaulay, R. K. S., 706
MacNeilage, P. F., 261, 262, 306, 355
Maddieson, I., 405, 407, 636, 637
Maeda, S., 55–6
Maekawa, K., 639
magnetic resonance imaging (MRI), 14–21, 138, 791–2
magnetoencephalography, 217–18
magnitude spectra, 767–8
Mahsie, J., 381
Malécot, A., 114
malocclusion, 184–6, 187f
Mandarin (Chinese) see Chinese
(Mandarin/Putonghua)
mandible (lower jaw) see also jaw
growth patterns, 169, 171–2
relationship with teeth, 173–4
Mann, V. A., 495
manometers, 41, 62–3
Manuel, S., 334–5
markedness, 303–4
masking, 455–68 see also auditory processing
co-modulation, 464–6
masking patterns, 461–2
modulation detection interference (MDI), 467–8
profile analysis, 466–7
mastication, 260, 261–2
mastoid process, 168f
Ma’ta (Austronesian language), 535
Matthies, M. L., 338–40
Mattys, S. L., 566–7
Maue-Dickson, W., 161
maxilla (upper jaw) see also jaw
growth patterns, 169, 170f
relationship with teeth, 169,
173–4
maximum a-posterior adaptation (MAP adaptation), 819–20
Mazatec (Jalapa de Díaz dialect), 405
MBROLA method (concatenative speech synthesis), 793–4
McChryystal, L., 714
McCLean, M. D., 258
McClelland, J. L., 490, 495
McFarland, D. J., 258
McGlone, R., 30
McGowan, R. S., 53, 59, 61, 71
McQueen, J. M., 492, 493–4, 495–6, 499, 501, 507
MDI (modulation detection interference), 467–8
measurement
auditory filter, 455–68
brain activity during speech, 217–18
diffusion tensor MRI (DTI), 254–5
functional magnetic resonance imaging (fMRI), 228
positron emission tomography (PET), 227–8
coaortication, 316–20, 332–3
facial skeleton, 168f
flow visualization, 56, 65
flowrate, 63–5
normalization of spectra, 45–7, 720, 779–80
prosodic features, 524–8, 562–8, 570–4, 604–7
reliability, 566, 616
static pressure, 41, 63
subglottal pressure, 48
Index

measurement (continued)
vocal tract, 10–31, 730–2
imaging techniques, 10–25, 132–5, 138, 791–2
limitations of different techniques, 9–10, 11, 13, 15–16, 19–21, 22–3, 26–7, 28, 30
point-tracking, 25–8
tongue–palate interaction, 29–31, 730
Ultrasound Tongue Imaging (UTI), 731–2
voice source
inverse filtering, 60, 67, 70, 380–4
source model matching, 388–9
spectra, 393–5
of voicing, 566
medial compression, 396
Mees, I. M., 708
Mega, M. S., 225–6
Mel-frequency cepstral coefficients, 776–9
memory
superpositional memory, 309
word representation, 502–3
men, voice quality, 178, 179 see also organic variation: gender differences
Mendoza-Denton, N., 708–9
mental lexicon
definition, 489
processing models, 490–8, 502–3
menton, 168f
Menzerath, P., 323, 354
Merge model (lexical processing), 490–8
mesiofrontal cortex, 219–20
methodology, 606, 661–2 see also measurement
acoustic phonetics, 82, 717–20, 728, 730
aerodynamic models, 68–73
close-copy stylization, 606–8
computer modeling, 302, 607–8, 627–32
description of speech signal, 353–4, 368, 524–8, 562–8, 604–8, 717–22
reliability, 616
discrete cosine transformation (DCT), 90–1, 108–9
Fourier analysis, 764–8
Hidden Markov models (HMMs), 795, 808–13
intracortical microstimulation (ICMS), 211–12
inverse filtering, 60, 67, 70, 380–4
reliability, 384
laboratory studies vs. fieldwork, 727–30
linear filtering, 768–9
linear predictive coding (LPC) analysis, 382–4
locus equations, 95–100, 332–3, 533
Log Normal Distribution (LND), 574
masking studies, 455–68
measurement of coarticulation, 316–20
measurement of prosodic features, 524–8, 562–8, 570–3
reliability, 566, 616
measurement of tone/intonation, 604–7
multidimensional scaling, 85
pairwise variability index (PVI), 563–5
phase plane representation, 368
phase-resetting analysis, 369
principal components analysis (PCA), 89–90
recording techniques, 382
signal-analysis programs, 604–5, 606–8
sociophonetics, 704–5, 708, 727–33
source model matching, 388–9
spectral parameterization, 53, 105–9, 393–5, 770–3
speech recognition systems, 806–30
evaluation of, 830–2
speech synthesis, 783–95
concatenation methods, 793–5
rule-based parametric methods, 783–93
speech variability measures, 271–3, 274, 411–12
statistical analysis, 733, 807–13, 815, 824–7
task design, 229, 230–2, 239, 477, 501, 531, 551, 724–5, 729
cross-spliced stimuli, 500
vocal tract measurement, 66–8
movements during speech, 267–8
reliability, 9–10, 11, 13
vocal tract observation, 131–8
metrical phonology, 551, 559, 621 see also rhythmic structure
metrical prominence (tonal stress), 638–41
Meyer-Eppler, W., 51
microphones, 65
<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>855</td>
<td>Index page</td>
</tr>
<tr>
<td>midsagittal plane</td>
<td>11, 12, 13f, 25</td>
<td></td>
</tr>
<tr>
<td>Miller, J. L.</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>Milner, T.</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>Milroy, L.</td>
<td>729</td>
<td></td>
</tr>
<tr>
<td>Milton Keynes English</td>
<td>710, 711</td>
<td></td>
</tr>
<tr>
<td>Minkyu, L.</td>
<td>793</td>
<td></td>
</tr>
<tr>
<td>Mirman, D.</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>mispronunciations</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>Missouri English</td>
<td>718, 719f</td>
<td></td>
</tr>
<tr>
<td>mixed prosody languages</td>
<td>535, 561, 565–6</td>
<td></td>
</tr>
<tr>
<td>Möbius, I.</td>
<td>631</td>
<td></td>
</tr>
<tr>
<td>modal register</td>
<td>57, 140</td>
<td></td>
</tr>
<tr>
<td>modal voice</td>
<td>396f–400</td>
<td></td>
</tr>
<tr>
<td>modulation detection interference (MDI)</td>
<td>467–8</td>
<td></td>
</tr>
<tr>
<td>Mokhtari, P.</td>
<td>411–12</td>
<td></td>
</tr>
<tr>
<td>Moll, K.</td>
<td>324, 578</td>
<td></td>
</tr>
<tr>
<td>monkeys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>brain structure</td>
<td>204, 211–15</td>
<td></td>
</tr>
<tr>
<td>communication</td>
<td>202–3, 209–12</td>
<td></td>
</tr>
<tr>
<td>motor control</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>monopoles</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Moon, S. J.</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Moore, B. C. J.</td>
<td>455, 461, 468, 473, 478, 480</td>
<td></td>
</tr>
<tr>
<td>Moore, C.</td>
<td>257, 258, 262, 263–4, 271</td>
<td></td>
</tr>
<tr>
<td>Moore, R.</td>
<td>821</td>
<td></td>
</tr>
<tr>
<td>Mooshammer, C.</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>morae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>duration</td>
<td>577</td>
<td></td>
</tr>
<tr>
<td>mora-timed languages</td>
<td>552, 553–4, 555, 561</td>
<td></td>
</tr>
<tr>
<td>phrase boundary marking</td>
<td>544</td>
<td></td>
</tr>
<tr>
<td>Morgan, N.</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>morphemes, tonal</td>
<td>632–6, 637–8 see also tones</td>
<td></td>
</tr>
<tr>
<td>mother talk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and preverbal melodies</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td>sociophonetic variation</td>
<td>715–16</td>
<td></td>
</tr>
<tr>
<td>motor control</td>
<td>204, 211–15, 251–88 see also brain</td>
<td></td>
</tr>
<tr>
<td>babbling</td>
<td>261–2, 263, 264–5</td>
<td></td>
</tr>
<tr>
<td>control of articulators</td>
<td>253–9, 265–79, 355–70</td>
<td></td>
</tr>
<tr>
<td>coordination</td>
<td>275–6, 278–9, 282–3, 359–63, 366–70</td>
<td></td>
</tr>
<tr>
<td>effects of disease and/or trauma</td>
<td>218–27</td>
<td></td>
</tr>
<tr>
<td>equilibrium-point model</td>
<td>361, 369</td>
<td></td>
</tr>
<tr>
<td>functional synergies</td>
<td>275–6</td>
<td></td>
</tr>
<tr>
<td>inverse problem</td>
<td>359–61</td>
<td></td>
</tr>
<tr>
<td>learning effects</td>
<td>276–9, 360–1</td>
<td></td>
</tr>
<tr>
<td>limbs</td>
<td>276, 358–9, 360, 361</td>
<td></td>
</tr>
<tr>
<td>modeling of</td>
<td>239–41, 363, 367–70</td>
<td></td>
</tr>
<tr>
<td>motor loop</td>
<td>225, 235–6, 240f</td>
<td></td>
</tr>
<tr>
<td>nonspeech functions</td>
<td>259–62, 276, 287–8, 356</td>
<td></td>
</tr>
<tr>
<td>power grip performance</td>
<td>287–8</td>
<td></td>
</tr>
<tr>
<td>preferred rate of activity</td>
<td>550–1</td>
<td></td>
</tr>
<tr>
<td>role of sensory/auditory feedback</td>
<td>260, 283–4, 355</td>
<td></td>
</tr>
<tr>
<td>sensitive period hypothesis</td>
<td>284–6</td>
<td></td>
</tr>
<tr>
<td>speech perturbation studies</td>
<td>356–8, 362–3, 368, 369–70</td>
<td></td>
</tr>
<tr>
<td>stored commands</td>
<td>282, 283–4</td>
<td></td>
</tr>
<tr>
<td>synergies</td>
<td>275–6, 278–9, 362–3</td>
<td></td>
</tr>
<tr>
<td>motoric planning theory</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>Moulines, E.</td>
<td>793–4</td>
<td></td>
</tr>
<tr>
<td>MRI (magnetic resonance imaging)</td>
<td>14–21, 138, 791–2</td>
<td></td>
</tr>
<tr>
<td>mucosa epithelium</td>
<td>139, 140f, 164</td>
<td></td>
</tr>
<tr>
<td>pathologies</td>
<td>190f</td>
<td></td>
</tr>
<tr>
<td>Muellbacher, W.</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Mullenix, J. W.</td>
<td>503</td>
<td></td>
</tr>
<tr>
<td>multidimensional scaling</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>multilingual speech synthesis</td>
<td>795–6</td>
<td></td>
</tr>
<tr>
<td>multimodal synthesis (talking heads)</td>
<td>797–8</td>
<td></td>
</tr>
<tr>
<td>Munhall, K.</td>
<td>357–8, 364</td>
<td></td>
</tr>
<tr>
<td>Munro, M.</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>Murdoch, B. E.</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>muscles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fiber interdigitation</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>larynx</td>
<td>138–40, 162f, 163–6, 317t, 395f, 396</td>
<td></td>
</tr>
<tr>
<td>control of phonation</td>
<td>141–9</td>
<td></td>
</tr>
<tr>
<td>control of pitch</td>
<td>147–9</td>
<td></td>
</tr>
<tr>
<td>modeling of</td>
<td>361–2</td>
<td></td>
</tr>
<tr>
<td>orofacial structure</td>
<td>175, 255, 317t</td>
<td></td>
</tr>
<tr>
<td>reflexes</td>
<td>256–9</td>
<td></td>
</tr>
<tr>
<td>synergies</td>
<td>275–6, 278–9, 362–3</td>
<td></td>
</tr>
<tr>
<td>n-gram models</td>
<td>824–7</td>
<td></td>
</tr>
<tr>
<td>Nadas, A.</td>
<td>817, 827</td>
<td></td>
</tr>
<tr>
<td>Nakajima, S.</td>
<td>794</td>
<td></td>
</tr>
<tr>
<td>Nakatani, L. H.</td>
<td>549, 554–5</td>
<td></td>
</tr>
<tr>
<td>Napadow, V. J.</td>
<td>18–19</td>
<td></td>
</tr>
</tbody>
</table>
Index

NAQ (normalized amplitude quotient), 393
Narayanan, S., 69–70
nasal cavity, growth patterns see teeth
nasal consonants, 302–3
acoustic structure, 113–16, 405, 440–4
assimilation patterns, 668–9
coarticulation effects, 317–20, 338, 340–1
definition, 83
modeling of, 440–4
perception of, 114
nasalization, 115, 116–18, 442, 698
assimilation patterns, 334
coarticulation effects, 320–1
definition, 83
nasion, 168
nasopharynx, 174
Nathan, E., 726
nativist theory, 662
natural frequency (resonance), 758
nature–nurture debate, 299–300
Navier-Stokes equations, 72
neighborhood density, 310
definition, 91
nerds, 709
Nespor, M., 560
neural networks, 279–80 see also cerebral networks
modeling of, 309–10
use in speech synthesis, 789
neuroplasticity, and sensitive period hypothesis, 284–6
Neville, H. J., 286
New Zealand English, 722
Newcastle English, 708, 710, 716
Newell, K. M., 276, 278
Newman, J. E., 492
Ni Chasaide, A., 412–13
Niedzielski, N., 726
Niitsu, M., 18
Nishinuma, Y., 555
Nittrouer, S., 111
Nobiin Nubian, 667
nodules (vocal nodules), 190f
Nolan, F., 345, 565, 721
nonhuman species
brain structure, 209–15, 260, 468
communication, 202–3
cranial nerves, 213–14
Nootenboom, S. G., 525, 548, 577, 606
Nord, L., 544
normalized amplitude quotient (NAQ), 393
Normandin, Y., 817
Norris, D., 490, 492, 494, 496–7, 501, 508
Northern Cities Shift (Northern Cities Vowel Shift), 718
Norwich English, 414, 707–8
notation see transcription
notched-noise method, 457–9
Nubian, Southern, 667
nuclear accent, 531, 576–7
Nygaard, L. C., 503, 726
Nyquist frequency, 769–70
oblique plane, 11, 12f
obstruents, 102–13, 439–40, 666–8
modeling of, 444–5
off-frequency listening, 456
Ohala, J. J., 49–50, 320, 550–1, 614, 617, 664
Öhman, S. E. G., 93, 364, 631
Olive, J. P., 794
Oller, D. K., 542, 549
open bite, 185, 187f
open quotient (OQ), 391
open vowels, 87
Oppenheim, A. V., 780
optimality theory (OT), 303
Optotrak, 28
organic variation, 155–96
age differences, 175–6, 178, 179–80, 181, 414, 569–70, 710–11, 737
definition, 155–6
effects of disease and/or trauma, 158–9, 167, 188–93, 218–27, 414–15f
hearing loss, 365–6, 570
laryngeal disorders, 190f, 191–3
genetic/environmental differences, 157–8, 163, 167, 182–8
Down syndrome, 186, 188
malocclusion, 184–6, 187f
life cycle changes, 157, 158f, 159f, 160–81
birth to puberty, 175, 259, 271–9
influence of environmental factors, 182–3
maturity to senescence, 176
phonetic effects of, 176–81
puberty to maturity, 176
modeling of, 627–8, 796–7, 819–20
research questions, 195
speech perception, 195–6
and voice quality, 414–16
orifice tone (whistling), 62
orofacial structure
life cycle changes, 166–75, 271–9
motor control, 251–88
articulators, 265–79
babbling, 261–2, 263, 264–5
learning effects, 276–9
nonspeech functions, 259–62
research studies, 253–5, 257–88, 305
in subhuman primates, 211–15
verbal vs. nonverbal movements, 238–9
research studies, 257–79, 537–40
sensory receptors, 256
Ortega-Llebario, M., 534
orthodontic treatment, effect on speech
production, 184
orthographic notation, 679
Os, E. den, 532, 558, 560
oscillation/feedback (aerodynamics), 44–5, 56–62
oscillator model (motor control), 363
O’Shaughnessy, D., 449, 555, 793
Ostendorf, M., 806, 822
output constraints hypothesis, 334–5
overbite, 185, 187f
overlapping innervation wave theory, 323–4
Paccia-Cooper, J., 542
pairwise variability index (PVI), 563–5
palatal consonants, 693
palatalization, 344
palate, 12, 169, 170f, 730
palatoalveolar consonants, 693
Pamies-Bertran, A., 553
Panjabi-English speakers, 714, 715
Papiamentu (Creole language), 535
Papoušek, H., 611
Pappas, P. A., 711
para-sagittal plane, 11, 12f
paralinguistic variation, 409–13
modeling of, 797
parallel synthesizers, 788, 791
parametric source models,
384–5, 387f, 783–93
see also speech synthesis
Parent, A., 225
Parkinson syndrome, 218, 224, 232
particle velocity, 64–5, 67–8
definition, 42
pathology, 158–9, 167, 188–93
effect on pitch control, 570
effect on tempo, 365–6
effect on voice quality, 414–15f
modeling of, 60
motor control, 218–27
notation for atypical speech, 694
research questions, 149
and sociophonetic variation, 736
Patra Greek, 711
Pattern Extension (tone sandhi) processes, 636–7
Pattern Playback experiments, 84, 85–6
Patterson, R. D., 455, 457
pause, 573–5
Payne, E. M., 691
PCA (principal components analysis), 89–90
Pearce, D. J. B., 792
Pelorson, X., 56, 68, 71
Peng, S., 286
perceptual center, 554
perceptual dialectology, 725
Perceptual Linear Prediction (PLP), 779
perioral reflex, 258
Perkell, J. S., 280, 338–40
Perrier, P., 540
Peterson, G. E., 576
pharyngeal consonants, 695, 697
pharynx, 174
phase plane representation (relative
timing), 368
phase shift, 760–1
Philadelphia English, 726
phonemic restoration, 492–3
phonetic features, 425–47
articulator-free vs. articulator-bound, 428–9, 430, 445–7
control of phonation, 140–9
definition, 425–47
modeling of, 447–50, 604–8
phonetic features (continued)
 phone models, 815–17
 see also speech recognition systems
phonetic notation see transcription
phonetic universals, 320–1
phonetics, 653–72n
 definition, 654, 655
 history of, 655–62
 methodology, 661–2
 and psycholinguistics, 660–1
 relationship with other disciplines,
 662–4
 relationship with phonology, 658–69
 relationship with sociophonetics, 735
 research questions, 653–4, 662–3
 “taxonomic” vs. “scientific” methods,
 661
phonological contrasts, 425–7
 cross-linguistic comparisons, 431, 504–6
 voice quality, 403–6
 enhancing gestures, 443, 447–8
 redundancy, 448
 suprasegmental features, 503–6 see also
 lexical stress; tone languages
phonological features, 608–10
phonological reduction, 91
phonology, 653–72n
 definition, 654–5
 history of, 655–62
 Prague School, 659–60
 and psycholinguistics, 660–1
 relationship with other disciplines,
 662–4
 relationship with phonetics, 658–69
 relationship with sociophonetics, 735
 research questions, 653–4, 662–3,
 664–71
 theories, 670–1
photoglottography (PGG), 136–7
phrase boundary marking, 407, 409, 506–7,
 536, 540–9
 boundary tones, 634–5
 final lengthening, 541–2
 initial lengthening, 546–7
 preboundary lengthening, 540–6, 547–8
Pi-gesture, 545
Pierrehumbert, J. B., 409, 474, 609, 615,
 620, 622, 625, 630, 640, 720
Pijper, J. R. de, 607–8
Pike, K. L., 615, 641
Pisoni, D. B., 310, 503
pitch
 control of, 147–9, 364–6, 392
 life cycle changes, 181
 definition, 472
 measurement of, 604–7
 perception of, 472–5
 research studies, 472–3, 474–5
 residue pitch, 472
 and sound quality, 57
pitch accent, 409
 definition, 615
 modeling of, 792–3
 research studies, 617–25, 628–30, 631–2
 transcription of, 617–18, 620
 tune-text alignment, 568
pitot tubes, 64
Pitt, M. A., 493–4, 495–6, 508
planning, 91–2
 motoric planning theory, 541
 of movements, 359–62 see also
 coordination (motor control)
 and pause, 574–5
 prespeech planning, 220–2, 253–4, 358
planum temporale, 214
Plato, 302
Plesniak, M. W., 59
Plomp, R., 469, 476
plosives, 56, 695, 698
point-tracking techniques, 25–8
 limitations of, 26–7, 28
Pointon, G., 559
Polish, 534, 561
Pols, L. C. W., 100, 578
Polyglot Project, 796
polyps (vocal polyps), 190f, 191–3
polysyllabic shortening, 547–9, 555–6
Port, R. F., 551, 555, 576, 577, 721
Portuguese, 561, 565–6
positron emission tomography (PET), 227–8
post-alveolar approximant [t], 86
postalveolar consonants, 693
posterior cricoarytenoid muscle, 139,
 142–4, 146
posterior nasal spine (PNS), 168f
Postuma, R. B., 225
Pouplier, M., 730
power grip performance, 287–8
Index

power spectrum model, 455, 461
PPG (pressure palatography), 30–1
pragmatics, 634–6
Prague School, 659–60
prelexical processing, 490–1, 492, 495, 496, 500–3, 509–10
prespeech planning, 253–4
pressure, 73–4t
pressure palatography (PPG), 30–1
pressure transducers, 65, 66
Prieto, P., 534
primates
brain structure, 204, 211–15
communication, 202–3, 209–12
Prince, A., 303
principal components analysis (PCA), 89–90
Principes de phonétique expérimentale
(1897–1908), 672n
Proffitt, W., 30
profile analysis, 466–7
prominence see stress
proportional duration model, 367–8
prosodic phonology, 611–32
synchronization hypothesis, 624–5
prosody, 523–79
cross-linguistic comparisons, 506–8, 531–7, 625–6
definition, 523–4, 643n
duration (lengthening/shortening) see duration
mixed prosody languages, 535
modeling of, 526–30, 545–6, 783, 784, 827–8
morae see morae
motoric planning theory, 541
notation of, 691–2
perception of, 556–7, 568
phrase boundary marking, 407, 409, 506–7, 536, 540–9
Pi-gesture, 545
prosodic grouping, 636–8
research methods, 524–8, 562–8, 570–3
research questions, 556, 568
research studies, 525–8, 531–49, 550–68, 569–70, 573–9
rhythmic structure see rhythmic structure
second language speakers, 566–7
sociophonetic variation, 721–2
and syllable structure, 525 see also syllables
syntax–prosody relationship, 542, 574
typology, 552, 553–5, 561–2, 567–8
word–level phenomena, 449, 529–30, 543–4
PSOLA methods (concatenative speech synthesis), 793–4
psycholinguistics, 660–1
psychophysical tuning curves, 455–7
pulse-shape parameter (R_d), 393
Punjabi English speakers, 714, 715
putamen, 204
Putonghua (PRC Standard Chinese) see Chinese (Mandarin/Putonghua)
PVI (pairwise variability index), 563–5
quadrupoles, 45, 60
quantal/enhancement theory, 426, 427–47, 450
Quebec French, 639
Queen’s Speech, 716
Quené, H., 569–70, 572
RA (dynamic leakage), 389–91
Radio News Speech corpus, 546
Rahm, M., 789
Ramus, F., 561, 562–3, 566, 567
RANS (Reynolds-averaged Navier Stokes), 72
Rapp, K., 547, 548–9, 577
Ratliff, M., 407
Raumer, Rudolf von, 657
R_d, 393
“re-use” hypothesis, 306–7
Recasens, D., 340
recognition vocabularies, 804
recording techniques, 382
reduction
phonological reduction, 91
vowels, 91–5, 330–2, 534, 559–60, 638–9
redundancy
enhancing gestures, 448
and hypoarticulation, 92
Reetz, H., 450
reflexes (motor reflexes), 256–9
Reinke edema, 190f, 191–3
relative timing, 368–70
reliability
inverse filtering, 384
measurement of prosodic features, 566, 616
speech variability measures, 271–3, 274, 411–12
vocal tract measurement, 9–10, 11, 13
Remijen, B., 535
Ren, H., 636, 637
Repp, B. H., 495
research questions, 653–4, 662–3, 664–71
coarticulation, 346
cross-linguistic sound patterns, 665–9
larynx/vocal folds, 149–50
organic variation, 195–6
pathology, 149
primate communication, 211
prosody, 556, 568, 635–6
quantal/enhancement theory, 427, 450–1
sociophonetics, 733
speech perception, 508–9, 510
tone/intonation, 631–2
voice quality, 416–17
research studies
brain activity during speech, 228–39, 253–5
coordination, 362–3
corpus studies, 532, 546, 555, 575
duration, 728
language acquisition, 304–5
orofacial movements, 253–5, 257–88, 305, 537–40
pitch control, 365–6
power grip performance, 287–8
prosody, 525–8, 531–49, 550–68, 569–70, 573–9, 722
rhythmic structure, 552–68, 722
speech perception
lexical processing, 491–8
masking studies, 455–68
pitch, 472–3, 474–5, 504
segmental features, 498–503
sociophonetic variation, 723–7
stress, 505–6
suprasegmental features, 503–8
temporal resolution, 476–8
timbre, 469, 470–1
speech production
error analysis, 554
sociophonetic variation, 706–23
speech signal perturbation, 356–8, 368, 369–70
stress, 531–40
tone/intonation, 614–26, 628–32, 635–6
voice quality, 411–13
residual volume (RV), 47
residue pitch, 472
resonance
acoustic resonator coupling, 436–44
effect of increasing flow velocity, 45
life cycle changes, 166–75, 181
modeling of, 757–8, 759–62
respiratory system
life cycle changes, 160–1
modeling of, 47–50, 66
Reynolds-averaged Navier Stokes (RANS), 72
Reynolds numbers, 43–4, 50–2, 68
RG (glottal frequency/FG), 390f, 391
rhotic consonants, 101, 443, 705–6, 715
derhoticization, 732
rhythmic structure, 507–8, 549–68
see also tones
cross-linguistic comparisons, 552–68
definition, 550–1
effect of speech rate, 566
intermediate languages, 561, 565–6
modeling of, 551, 561–2, 567–8
preverbal melodies, 611
second language speakers, 566–7
tune–text alignment, 568
typology, 552, 553–8, 561–2, 567–8
Riecker, A., 232, 238, 239
Riely, R., 266
Rietveld, T., 531–2
Ritsma, R. J., 473
RK (glottal symmetry/skew), 390f, 391–2, 407–9
Roach, P., 553, 554, 557
Romance languages, 560
Ronken, D., 476
Rose, P., 407, 414
Rosenfeld, R., 806
rotameters, 64
Rothenberg mask, 67, 382
Roudet, L., 658
rounded/unrounded vowels, 86–7
Rousselot, Pierre-Jean, Abbé, 658, 659, 672n
RP English, 555
Ruark, J. L., 263–4
Rubin, P., 492
Russian, 325, 345
RV (residual volume), 47
sagittal plane, 11, 12f, 13f
Saltzmann, E., 336, 337, 342, 368, 369–70
Salverda, A. P., 507
Samuel, A. G., 493, 494, 496, 497, 508
sandhi processes, 636–9 see also tones
Sapir, E., 660
Sawashima, M., 136–7
Scharenborg, O., 832
Schlieren technique, 65
Schötz, S., 569
Schouten, J. F., 469–70, 472
Schroeter, J., 69
Schwartz, R., 816
Scobbie, J. M., 710–11, 716, 721, 730, 731–2
Scottish English, 414, 706, 710–11, 712, 713f, 720, 721
Scully, C., 69
second language speakers, 566–7, 570, 714–15
secondary articulation, 700
Segui, J., 492
Serbian, 626
Shadle, C. H., 53, 69
shadowgraphs, 65
Shailer, M. J., 468, 478
Shaiman, S., 357, 579
Shannon, R. V., 480
Shattuck-Hufnagel, S., 543, 545–6, 548
Shatzman, K. B., 507
shear layers, 71
Sheft, S., 467, 468
Sherrington, C. S., 258
Shetland Islands English, 721
shimmer (intensity perturbation), 392
Shoji, A., 345
shortening see duration
Shuster, L., 231, 238
Sidtis, J. J., 235, 238
Siegel, A. F., 575
signal-analysis programs, 604–5
signal processing, 757–80
applications of, 774
digital signal processing (DSP), 769–70
Fourier analysis, 764–8
Linear Prediction (LP), 773–4, 776
linear systems, 762–4
Mel-frequency cepstral coefficients, 776–9
Perceptual Linear Prediction (PLP), 779
resonance, 757–8, 759–62
sinusoids, 758–62
spectrograms, 770–3
speech signal, 774–80
Simoneau, L., 639
Sinder, D. J., 53, 71
Sindhi (Indo-Aryan language), 666–7
Singapore English, 564–5
singers, control of formant values, 365–6, 627–8
Sinological transcription conventions (tone transcription), 610, 612
sinusoids, 758–62, 764–5
Slis, I. H., 577
Smiljanic, R., 626
Smith, A., 257, 258–9, 264, 266, 269, 270, 271–3, 275, 280, 281, 282
Smith, B. L., 275, 577
Smolensky, P., 303
smoothing (n-gram models), 826–7
sociophonetic variation, 413–14
see also organic variation
age differences, 414, 569–70, 710–11, 737
class differences, 414, 705–6, 707–10
and community/social networks, 708–10
definition, 705–6
ethnic and racial differences, 714, 722
forensic phonetics, 724, 737
gender differences, 414, 569–70, 706, 707–8, 711–12, 713f, 714, 716, 723–4, 726
indexical features, 705, 723–5, 738n
intra-speaker variation, 157, 158f, 159f, 160–81, 715–16
and language change, 708, 712, 717–18, 725–6
modeling of, 796–7
sociophonetic variation (continued)
in non-Western societies, 708
regional differences, 712–14, 725, 726–7
research studies
speech perception, 723–7
speech production, 706–23
second language speakers, 714–15
segmental level, 717–20
subsegmental level, 720–1
suprasegmental features, 721–2
sociophonetics, 703–38
conference papers, 703–4
definition, 703–5, 738n
methodology, 704–5, 708, 727–33
perceptual dialectology, 725
relationship with other disciplines, 735–7
research questions, 733
statistical analysis, 733
theories, 733–5
soft palate, 174 see also velum
soft tissue structures, 11–25, 174–5
Sokolov, A. N., 237
Solé, M. J., 320
Sommer, M., 255
Sommerstein, A. H., 654–5
Son, R. J. H. van, 578
Sonderegger, M., 437
Sondhi, M. M., 69
Sonesson, B., 136
sonorants, 720
sonority expansion, 537
Sound Pattern of English, The (1968), 320
sound waves, behavior of, 41–2
source–filter interaction, 70–1, 436–45, 774
source model matching, 388–9
Southern Nubian, 667
Spanish
coaarticulation effects, 321
prosodic features, 559, 560
stress, 505, 506, 532, 559
Spanish English speakers, 566–7
Spargo, J. W., 658
speaker differences see organic variation;
variability
speaking styles, 715, 796–7, 804–5
spectra
consonants, 103–9, 113–16
difference spectrum, 116
magnitude spectra, 767–8
modeling of, 53, 105–9, 469, 770–3, 775–6
normalization of, 45–7, 720, 779–80
spectral tilt, 393–4, 533, 534
and speech perception, 469–71
voice source, 393–5
and vowel identification, 84–91
spectrograms, 770–3
spectrum see spectra
speech gestures, 363–4 see also gestural phonology
speech perception, 451n, 489–510
across-channel processes, 464–8
auditory filter, 454–5
bandpass filtering, 479
excitation patterns, 461–4
and consonant identification, 103, 110–11, 114, 345, 449
cross-linguistic comparisons see cross-linguistic comparisons
dominance principle, 473
feedback vs. feedforward, 490–1, 496–8
and forensic phonetics, 724
gap thresholds, 476
isochrony, 552–3, 554–7
learning effects, 497, 726–7
lexical processing models, 490–8, 499, 500
mispronunciations, 499
modeling of, 479–81, 490–510
normalization, 501, 502–3
off-frequency listening, 456
and organic variation, 195–6
pitch, 472–5
prelexical processing, 490–1, 492, 495, 496, 500–3, 509–10
of prosodic features, 556–7, 568, 625–6
research questions, 508–9, 510, 664–5
research studies
lexical processing, 491–8
masking studies, 455–68
pitch, 472–3, 474–5
sociophonetic variation, 723–7
stress, 505–6
temporal resolution, 476–8
timbre, 469, 470–1
segmental level, 498–503
sociophonetic variation, 723–7
indexical features, 705, 723–5
suppression, 461
suprasegmental level, 503–8
synthetic speech, 88–9, 412–13
tempo, 571
temporal analysis, 475–9
timbre, 469–71
and vowel identification, 84–91, 345, 469, 470–1
speech production see also speech gestures
articulatory effects of stress, 537–40
and auditory feedback, 364–6
effect of hearing loss, 365–6, 570
effects of disease and/or trauma, 218–27
on phonetic planning, 220–2
error analysis, 554
evolution of, 255, 261–2, 301
expression of emotion, 219, 241
modeling of, 239–41, 717–22, 784–93
motor control, 228–37, 238–9, 279–88
articulators, 253–9, 355–70
evolution of, 253
inner speech, 237–8
learning effects, 276–9, 360–1
perturbation studies, 356–8, 362–3, 368, 369–70
relative vs. proportional timing, 367–70
role of sensory/auditory feedback, 283–4, 355
speech perturbation studies, 356–8
prespeech planning, 220–2, 253–4, 358
sociophonetic variation, 706–23
hyper- and hypoarticulation model, 91–2, 328–33, 527–8
speech rate, 95, 569–79
and brain activation patterns, 232–7f
in children, 271–3
effect on rhythmic structure, 566
and movement amplitude, 265–9
and movement control, 364
speech recognition systems, 804–33
acoustic feature extraction, 813–14
acoustic models, 808, 814–21
adaptation vs. normalization, 818–21
algorithms, 811–13, 817, 820, 828–32
data-driven approach, 806–13
error rates, 805–6, 817, 818, 822, 827–8, 830, 831–2
evaluation of, 830–2
Hidden Markov models (HMMs), 808–13, 833
language models, 808, 822–8
Linear Prediction (LP), 773–4, 776
Mel-frequency cepstral coefficients, 776–9
open-source software, 833
pronunciation dictionaries, 815–16, 821–2
search algorithms, 828–32
and sociophonetic variation, 736, 775–6
statistical analysis techniques, 807–13, 815, 824–7
training of, 806, 807f, 813, 816–20, 822, 831
variability of speech signal, 804–5
speech signal see also signal processing; voice quality
connected speech processes, 366–70
description of, 353–6, 424–7, 524–8, 562–8, 604–8, 656 see also transcription
parameters, 389–93, 614–32
reliability, 566, 616
inverse filtering, 60, 67, 70, 380–4
perturbation studies, 356–8, 362–3, 368, 369–70
source model matching, 388–9
spectra, 393–5
variation in, 378–80, 705–6, 804–5 see also sociophonetic variation
speech synthesis, 781–99
analysis–synthesis method, 785, 792
applications of, 417, 774
articulatory models, 789–92
close-copy stylization, 606–8
components of text-to-speech systems, 781–3
concatenation methods, 793–5
corpus-based methods, 792–3
filters, 787–8
formant synthesizers, 787–9, 792–3
Hidden Markov models (HMMs), 795
speech synthesis (continued)
multilingual projects, 795–6
multimodal synthesis, 797–8
paralinguistic variation, 797
parametric source models, 384–5, 387f, 783–93
pitch-synchronous analysis, 792–3
prosodic features, 526–7, 627–32, 796–7
and sociophonetic variation, 736, 796–7
sound generation, 784–93
analysis–synthesis, 784–5
synthesis by rule, 784–5
wave-form coding, 784–5
speaking styles, 796–7
use of neural networks, 789
vowel quality, 84–5, 88–9
effect of nasalization, 118
and sociophonetic variation, 726
speech therapy see also pathology
and sociophonetic variation, 736
sphenoid, greater wing of, 168f
Spiral CT, 12–13
spoilers, 46–7, 52
squamous carcinoma, 190f
squirrel monkeys, 209–11
Stal, P., 255
Stathopoulos, E. T., 273–5
statistical analysis, 733, 807–13, 815, 824–7
steady flow, 42–3
Stemberger, J. P., 309–10, 492
Stetson, R., 552
Stevens, K. N., 52, 92, 104, 110, 394–5, 427, 429, 436, 437, 444, 451n
[stiff vocal cords] feature, 444–5
stops, 697–8
acoustic structure, 103–7, 433–4
aerodynamic characteristics, 54–6
articulation of, 147, 666–8, 721
aspiration, 103, 143–4, 404–5, 434
coarticulation effects, 95, 495–6
modeling of, 55–6, 66, 361–2, 433–4
voice onset time (VOT), 721
Strand, E., 726
Strange, W., 88–9
Strangert, E., 532, 537
strengthening, 538, 546–7
stress, 530–40
accentual lengthening, 536–7
and control of pitch, 147, 638–41
effect on articulation, 537–40
effect on vowels, 533–5
focal stress, 409, 532
inter-stress intervals, 557–9, 560–2
lexical stress, 449, 505–6, 531, 576–7
metrical prominence, 638–41
notation of, 691
nuclear accent, 531, 576–7
and phonological contrasts, 449
phrase boundary marking, 536
research studies, 531–40
and rhythmic structure, 507–8, 549–68
sociophonetic variation in, 723
stress clash, 559
stress foot, 532, 537, 547–8, 552, 554–5, 557, 558
definition, 530
and voice onset time (VOT), 534
stress-timed languages, 552–3, 554–68
Strick, P. L., 236
strident voice, 404
stroke
effects on language functions, 221–4
effects on motor functions, 218–19
Strouhal numbers, 46–7
structuralism, 659–60
Stuart-Smith, J., 712, 720, 722, 732
Studdert-Kennedy, M., 92
stuttering, 255
style (audience design), 715 see also
intra-speaker variation
subcortical white matter, 220–1
subglottal pressure, 49–50, 617
control of, 57, 141
measurement of, 48, 66, 145–6f
Suh, J., 72
Suomi, K., 537
superposition model, 93–5
superposition (signal processing), 763–4
superpositional memory, 309
supplementary motor area, 216–17
suppression, 461
supraglottal pressure, 66
suprasegmental features, 407–9 see also
specific features, e.g. stress
breath groups, 616–17
sociophonetic variation, 721–2
transcription of, 610–12, 613, 617–23, 627, 628, 633–4
Sussman, H. M., 95, 99, 100, 332–3, 340
swallowing, 23, 218–19
Swedish
 coarticulation effects, 331f
 prosodic features, 541, 544–5, 548–9, 555
 intonation, 622–5, 640–1
 stress, 531, 532, 536, 537
 voice quality, 407–9
Sweet, H., 323, 692
SWITCHBOARD corpus, 532
Sybesma, R., 635
syllable-timed languages, 552, 553, 554–68
syllables
 importance in vocal development, 280–1, 282
 polysyllabic shortening, 547–9, 555–6
 repetition tasks, 231–7f, 238–9
 structure of, 231–2, 525, 560–2
 syllable fusion, 633
 zi (morpheme-syllable), 615–16, 633, 636–7
synchronization hypothesis, 624–5
synergies (muscles), 275–6, 278–9, 362–3
tempi, 569–79 see also speech rate
 cross-linguistic comparisons, 571–2
 and duration, 576–7
 measurement of, 570–3
temporal analysis (auditory processing), 475–9
Tenango Otomi (Oto-Manguean language), 669t
tense voice, 396f–9f, 402
tense vowels, 87–9, 90
terminal analog formant synthesizers, 787–9
text-to-speech systems see speech synthesis
Thai, 535
Thelen, E., 275
theories
 Articulatory Phonology, 621, 630
cointercalation, 323–46, 354–5
 chain vs. comb models, 355
cognitive processing models, 494–5
 DAC model, 340–3
grammar-based theories, 324–9
 output constraints hypothesis, 334–5
 overlapping innervation wave
 theory, 323–4
 window model, 333–5
coproduction, 335–43
diachronic phonology, 670
 feature geometry, 670–1
generative phonology, 670–1, 783
grammars, 670–1
historical development of, 655–62
language acquisition, 301–10
 "articulatory filter" model, 307
 DIVA model, 280, 308–9
 frame/content theory, 262, 269–71, 306
Neighborhood Activation model, 310
 neural net models, 309–10
 "re-use" hypothesis, 306–7
 sensitive period hypothesis, 284–6
 speech motor control, 279–88
language change, 733–5
metrical phonology, 551, 559, 621
theories (continued)
motor control
 chain vs. comb models, 355
 equilibrium-point model, 361, 369
 inverse problem, 359–61
 oscillator model, 363
 proportional duration model, 367–8
 relative duration (timing), 368–70
 synergies, 275–6, 278–9, 362–3
nativist theory, 662
optimality theory (OT), 303
prosodic phonology, 611–32
 synchronization hypothesis, 624–5
sociophonetics, 733–5
speech perception, 479–81
 cascaded processing, 498–500
 isochrony, 552–3, 554–7
 lexical processing models, 490–8, 499, 500
 power spectrum model, 455, 461
 prelexical processing, 500–3
 temporal resolution models, 479
speech production, 353–70, 449–50, 541, 545–6
 chain vs. comb models, 355
 hyper- and hypoarticulation model, 91–2, 328–33, 527–8, 715
 inverse problem, 360–1
 quantal/enhancement theory, 426, 427–47, 450
 rhythm hypothesis, 551
universal grammar (UG), 303
voice source models, 384–7f
Thomas, E. R., 725, 737
thyroarytenoid joint, 138
thyroarytenoid muscle, 139, 147
thyroid cartilage, 138, 162f, 395f
Tikhonov, A., 360
timbre, perception of, 469–71
timing
 motor control, 367–70, 540
 rhythmic structure, 507–8, 540, 549–68
 cross-linguistic comparisons, 552–68
 definition, 550–1
TIMIT corpus, 810–11, 831
TLC (total lung capacity), 47
Tokuda, K., 795
Tokyo Japanese, 617–18
Tom, K., 13
tomography, 11–25
tone languages
 control of pitch, 147, 365
 cross-linguistic comparisons, 407, 504, 535, 638–41
 definition, 615
 prosodic features, 535
 speech perception, 504
 transcription of, 606
 tune–text alignment, 568
voice quality, 407
tone of voice (paralinguistic variation), 409–13
tonemes/tonal morphemes, 632–6, 637–8
tones, 603–44 see also rhythmic structure
 cross-linguistic comparisons, 625–6
 definition, 603–4, 615
 downstep, 628, 629, 630–1
 effect of truncation, 622, 623
 final lowering, 628, 630
 focal tone, 622
 “hat pattern,” 607–8, 609
 L-tone scaling, 629–30
 measurement of, 604–7
 metrical prominence, 638–41
 modeling of, 614–32, 792–3
 phrase boundary marking, 634–5
 preverbal melodies, 611
 prosodic grouping, 636–8
 research questions, 631–2, 635–6
 research studies, 614–26, 628–32, 722
 restricted tone systems see pitch accent
 segmentation of, 614–21
 sociophonetic variation, 722
 tonal space, 612, 626–32
 tone sandhi processes, 636–9
 transcription of, 606, 610–12, 613, 617–23, 627, 628, 633–4, 643n
 X-JToBI tagging, 617–18, 620
 undershoot, 622, 623
 and vowel quality, 615
 whistling, 61–2
tongue, 316, 317–20
 life cycle changes, 174–5
 motions during speech
 coarticulation, 327–9
 measurement of, 19, 22–4, 67–8, 731–2
 notation of, 692–3
muscles, 255, 256, 361
 relationship with jaw, 9, 359
tongue–jaw articulatory system, 9
tongue–palate interaction, measurement of, 29–31, 730
tongue-tip trills, 60–1 see also trills
tonsils, 174
total lung capacity (TLC), 47
TRACE model (lexical processing), 490–8
Traill, A., 405, 435
Traité de la formation mécanique des langues, et de principes physiques de l’étymologie (1765), 656
transcription, 678–700 see also International Phonetic Alphabet (IPA)
definition, 678
 glissandi, 612, 613, 643n
 orthographic notation, 679
 principles of phonetic notation, 679–80
 tone/intonation, 610–12, 613, 617–23, 627, 628, 633–4, 643n
 X-JToBI tagging, 617–18, 620
tone languages, 606
 transfer function see filters
transglottal pressure, 141
 measurement of, 145–6f
transverse plane, 11, 12f
trauma see pathology
Traunmüller, H., 87
Trent, S. A., 722
trills, 57–60, 61, 434, 692, 698
Trouvain, J., 574
Trubetzkoy, N. S., 659–60
Trudgill, P., 414, 707–8
truncation, 622, 623
Tsao, Y.-C., 578
Tsonga (Bantu language), 404, 405
Tswana (Bantu language), 668f
Tuller, B., 576
tunes see tones
turbulence, 39, 42, 43–7
 modeling of, 53–4, 60, 71–2
Turk, A. E., 92, 531, 543, 545–6, 548
Tyneside English, 723–4
typology see language typology
 Uchanski, R., 570
 Ueyama, M., 544
 ultrasound, 21–5
 Ultrasound Tongue Imaging (UTI), 731–2
 Umeda, N., 532, 543, 544, 549
 undershoot, 91–5, 330–2, 578–9, 622, 623
 universal grammar (UG), 303
 universals, 425–6, 428
 assimilation patterns, 320–1, 425
 coarticulation patterns, 334–5, 625
 preboundary lengthening, 540–1
 turn-taking signals, 611
 Unkefer, J., 504
 unrounded/rounded vowels, 86–7
 Urban, P. P., 223
 UTI (Ultrasound Tongue Imaging), 731–2
van Son, R. J. J. H., 99–100
Vanderslice, R., 530
Varga, A., 821
variability, 82, 321
 articulatory movements, 271–9, 316–47, 538 see also assimilation;
 coarticulation
 in children, 271–9, 283
 connected speech processes, 321–3, 345–6, 366–70
 cross-linguistic comparisons, 404–6, 413
 inter-speaker variation see inter-speaker variation
 organic variation see organic variation
 paralinguistic variation, 409–13
 phonetic variation, 155 see also phonetic features
 segmental level, 717–20
 sociophonetic variation see sociophonetic variation
 subsegmental level, 720–1
 suprasegmental features, 721–2
 voice quality see voice quality
 vowels, 92
velar consonants
 assimilation patterns, 345, 668–9
 coarticulation effects, 95, 99, 317–20, 321
 spectra, 104
 voice onset time (VOT), 110
velum, 317f, 326f, 327, 337–8, 340
ventral striatum, 204
Verhoeven, J., 572
Verner, Karl, 657–8
Véronais, J., 574
verrucous carcinoma, 190f
Vicon, 28
Vigário, M., 565–6
Vihman, M. M., 307
Visible Speech (1867), 680
vital capacity, 47
Viterbi algorithm, 812–13, 828
vocal folds
 abduction vs. adduction, 141–6, 396
 imaging techniques, 22
 life cycle changes, 163–6
 longitudinal tension, 396
 modeling of, 56–60, 61
 nonspeech functions, 130–1
 observation techniques, 131–8
 pathologies, 190f, 191–3, 414–15f
 research questions, 149–50
 [stiff vocal cords] feature, 444–5
 structure of, 139–40
 vocal motor schemes (VMS), 307
 vocal tract see also organic variation
 aerodynamics see aerodynamics
 control of articulators, 253–9, 265–79, 355–70
 control of phonation, 140–9
 cortical maps of, 215–17 see also brain:
 motor control
 life cycle changes, 175
 measurement of, 10–31, 730–2
 imaging techniques, 10–25, 132–5, 138, 731–2, 791–2
 limitations of different techniques, 9–10, 11, 13, 15–16, 19–21, 22–3, 26–7, 28, 30
 point-tracking, 25–8
 tongue–palate interaction, 29–31, 730
 modeling of, 51–4, 68–73, 430–45, 685–7, 688–90, 774, 785–7, 788–92
 muscle fibers, 16
 nonspeech functions, 130–1
 observation techniques, 131–8
 organic variation see organic variation
 physiology of, 9, 138–41
 subglottal pressure, 49–50, 57, 141, 617
 transfer function, 379
 transglottal pressure, 141
 vocalis muscle, 139, 140f, 165
 vocoder, 792
 voice conversion, 796
 voice onset time (VOT), 499
 fricatives, 113
 stops, 55, 111–13, 721
 and stress, 534
 voice quality, 393–4, 395–403
 breathy voice, 60, 393, 396f–9f, 400, 404, 405
 children, 57, 178, 180–1, 706
 consonants, 698
 creaky voice, 396f–9f, 401–2, 404, 405, 605
 cross-linguistic comparisons, 404–6, 413
 elderly people, 178, 179–80, 181
 lax voice, 402
 linguistic variation, 403–9
 men, 178, 179
 modal voice, 396f–400
 notation of, 694–5
 organic variation, 414–16
 phonological contrasts, 403–6
 research questions, 416–17
 research studies, 411–13
 segmental features, 404–6
 sociophonetic variation, 414, 722
 strident voice, 404
 suprasegmental features, 406–9
 tense voice, 396f–9f, 402
 whispery voice, 178, 393, 396f–9f, 400–1, 404
 women, 57, 60, 178–80, 181, 414–15f
 voice source, 378–418
 definition, 378
 description of, 389–93
 inverse filtering, 60, 67, 70, 380–4
 linguistic variation, 403–9
 modeling of, 379–80, 384–7, 784–7
 source model matching, 388–9
 spectra, 393–5
 voicing
 fricatives, 50, 102–3
 measurement of, 566
 modeling of, 57–60, 61
 obstruents, 666–8
 stops, 55, 406
 volume velocity, 42, 73–4f
 measurement of, 64, 66–7
 Vorperian, H. K., 269
 VOT (voice onset time) see voice onset time (VOT)
vowels
 acoustic structure, 83–100, 432, 436–9, 614–15, 717–20
 aerodynamic characteristics, 44, 67–8
 assimilation patterns, 320–1
 back vowels, 84, 86–7
 centralization, 91, 92, 560
 coarticulation effects, 91, 92–100, 320–1, 325–9, 341, 342
 constriction location, 83–4
 deletion, 565
 duration, 92–5, 491–2, 531, 533–5, 538, 539, 544–5, 560, 566, 576, 577
 Scottish Vowel Length Rule, 710–11
 epenthesis, 565
 excitation patterns, 462–4
 F1 x F2 plane, 83–5, 717–20
 formants, 83–91, 330, 331
 f, 533, 534, 578
 modeling of, 89–91, 92–5, 462–4
 sociophonetic variation, 717–20
 synthetic speech, 88, 89, 462–4
 front vowels, 84, 85–6
 and language change, 717–20
 lenition, 638–9
 modeling of, 361, 378–9, 432, 436–9, 442, 614–15, 656–7, 685–7, 689–90, 697
 nasalization, 115, 116–18, 442
 open vowels, 87
 perception of, 84–91, 345, 469, 470–1
 phonological contrasts, 404, 405
 reduction, 91–5, 330–2, 534, 559–60, 638–9
 redundancy, 92
 rounded/unrounded distinction, 86–7
 sociophonetic variation, 706, 717–20, 726
 strengthening, 538
 stressed vs. unstressed, 533–5
 tense/lax distinction, 87–9, 90, 539
 undershoot, 91–5, 330–2, 578–9
 vowel-like sounds, 83

Wa (Mon-Khmer language), 403
Waddington, C. H., 183
Wagner, P., 566
Wakumoto, M., 31
Wallenberg syndrome, 219
Walsh, B., 269, 270, 275, 276–8
Ward, I. C., 609–10
Warlpiri (Australian language), 114–15, 535, 536
Warner, N., 554
Warren, R. M., 492–3
Wassink, A. B., 715
Watkins, A. J., 470–1
Watson, E. H., 169
Watt, D., 708
waveform coding, 784–5 see also speech synthesis
 Wayland, R., 405
 Weber, C., 257, 258
 Weber-Fox, C., 286
 Weber’s law, 526
 Wells, J. C., 705
 Wenk, B. J., 558
 Wennerstrom, A., 575
 Wernicke’s area, 205
 Westbury, J. R., 340
 whispering, 146–7
 whispery voice, 178, 393, 396f–9f, 400–1, 404
whistling, 61–2
White, L., 548, 566–7
white matter, 220–1, 255
Wildgruber, D., 235, 239
Wilke, M., 283
Williams, A., 710, 711
Williams, B., 555
Willis, Robert, 656–7
Wilson, E. M., 262–3
Wilson disease, 232
window model (coarticulation), 333–5
Wioland, F., 558
Wise, R. J. S., 229
women, voice quality, 57, 60, 178–80, 181, 414–15f see also organic variation:
 gender differences
 Wong, W.-Y. P., 633, 634
 Wood, J., 257, 258–9
 Woodland, P. C., 820
word-level phenomena, prosody see
 prosody: word-level phenomena
 Wrench, A. A., 730, 731
Wright, J., 91
Wright, S., 345, 730
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu (Chinese)</td>
<td>404, 407, 414, 636–7, 638–9</td>
</tr>
<tr>
<td>Wuxi (Chinese dialect)</td>
<td>637 see also Chinese (Mandarin/Putonghua)</td>
</tr>
<tr>
<td>X-JToBI tagging</td>
<td>617–18, 620</td>
</tr>
<tr>
<td>X-rays</td>
<td>10–13, 27–8</td>
</tr>
<tr>
<td>!Xóõ (Khoisan language)</td>
<td>404, 435</td>
</tr>
<tr>
<td>Xu, Y.</td>
<td>616, 618–19, 625</td>
</tr>
<tr>
<td>Yanushevskaya, I.</td>
<td>412–13</td>
</tr>
<tr>
<td>Yi (Sino-Tibetan language)</td>
<td>403</td>
</tr>
<tr>
<td>Yoshioka, H.</td>
<td>145</td>
</tr>
<tr>
<td>Yost, W. A.</td>
<td>467, 468</td>
</tr>
<tr>
<td>Young, S. J.</td>
<td>816, 821</td>
</tr>
<tr>
<td>Zee, E.</td>
<td>636, 637, 638–9</td>
</tr>
<tr>
<td>Zelaznik, H. N.</td>
<td>269, 271–3, 275, 282</td>
</tr>
<tr>
<td>Zhang, C.</td>
<td>59–60</td>
</tr>
<tr>
<td>Zhao, W.</td>
<td>72</td>
</tr>
<tr>
<td>Zhenhai dialect (Wu Chinese)</td>
<td>404, 407, 414 see also Chinese (Mandarin/Putonghua)</td>
</tr>
<tr>
<td>Zi (morpheme-syllable)</td>
<td>615–16, 633, 636–7</td>
</tr>
<tr>
<td>Ziegler, W.</td>
<td>226, 231</td>
</tr>
<tr>
<td>Zwirner, Eberhard</td>
<td>660</td>
</tr>
</tbody>
</table>