CONTENTS

Preface xv
Acknowledgments xxi
Abbreviations xxiii
Symbols xxv

1 Introduction 1

1.1 Tracking ID Technology, 1
 1.1.1 Barcoding, 1
 1.1.2 Radio-Frequency Identification, 3
 1.1.3 Chipless RFID, 4
 1.1.4 Chipless RFID Sensors, 4

1.2 Chipless RFID Sensor System, 6

1.3 Proposed Chipless RFID Sensor, 7

1.4 Chapter Overview, 7
 1.4.1 Chapter 1: Introduction, 7
 1.4.2 Chapter 2: Literature Review, 7
 1.4.3 Chapter 3: Passive Microwave Designs, 8
 1.4.4 Chapter 4: Smart Materials for Chipless RFID Sensors, 9
 1.4.5 Chapter 5: Characterization of Smart Materials, 9
 1.4.6 Chapter 6: Chipless RFID Sensor for Noninvasive PD Detection and Localization, 9
 1.4.7 Chapter 7: Chipless RFID Sensor for Real-Time Environment Monitoring, 10
1.4.8 Chapter 8: Chipless RFID Temperature Memory and Multiparameter Sensor, 10
1.4.9 Chapter 9: Nanofabrication Techniques for Chipless RFID Sensor, 10
1.4.10 Chapter 10: Chipless RFID Reader Architecture, 10
1.4.11 Chapter 11: Case Studies, 11
References, 11

2 Literature Review 13

2.1 Introduction, 13
2.2 Traditional RFID Sensors, 14
 2.2.1 Active RFID Sensors, 14
 2.2.2 Passive RFID Sensors, 15
 2.2.3 Low-Cost Chipless RFID Sensors, 16
2.3 Challenges and Limitations of Current Chipless RFID Sensors, 21
 2.3.1 Fully Printable, 21
 2.3.2 Smart Sensing Materials, 22
 2.3.3 Multiple Parameter Sensing, 22
 2.3.4 Chipless RFID Sensor Systems, 22
 2.3.5 Applications, 22
2.4 Motivation for a Novel Chipless RFID Sensor, 23
2.5 Proposed Chipless RFID Sensor, 23
 2.5.1 Noninvasive PD Detection and Localization, 23
 2.5.2 Real-Time Environment Monitoring, 24
 2.5.3 Nonvolatile Memory Sensor for Event Detection, 24
 2.5.4 Single-Node Multiparameter Chipless RFID Sensor, 24
2.6 Conclusion, 24
References, 25

3 Passive Microwave Design 29

3.1 Introduction, 29
3.2 Chapter Overview, 29
3.3 Theory, 31
 3.3.1 Passive Microwave Components, 31
 3.3.2 Integrated Chipless RFID Sensor, 39
3.4 Design, 40
 3.4.1 Tri-Step SIR, 40
 3.4.2 Semicircular Patch Antenna, 43
 3.4.3 Cascaded Multiresonator-Based Chipless RFID Sensor, 43
 3.4.4 Multislot Patch Resonator, 44
 3.4.5 ELC Resonator for RF Sensing, 48
 3.4.6 Backscatterer-Based Chipless RFID Tag Sensor, 49
3.5 Simulation and Measured Results, 54
 3.5.1 Tri-Step SIR, 54
CONTENTS

3.5.2 Semicircular Patch Antenna, 55
3.5.3 Cascaded Multiresonator-Based Chipless RFID Sensor, 56
3.5.4 Multislot Patch Resonator, 56
3.5.5 ELC Resonator, 62
3.5.6 Backscatterer-Based Chipless RFID Tag Sensor, 62
3.6 Conclusion, 65
References, 67

4 Smart Materials for Chipless RFID Sensors
4.1 Introduction, 69
4.2 Sensing Materials, 70
 4.2.1 Smart Materials, 71
 4.2.2 Classification of Smart Materials for RF Sensing, 72
4.3 Temperature Sensing Materials, 73
 4.3.1 Phenanthrene, 73
 4.3.2 Ionic Plastic Crystal, 73
 4.3.3 Nanostructured Metal Oxide, 76
4.4 Humidity Sensing Materials, 77
 4.4.1 Kapton, 77
 4.4.2 Polyvinyl Alcohol, 78
4.5 pH Sensing Materials, 78
4.6 Gas Sensing Materials, 79
4.7 Strain and Crack Sensing Materials, 80
4.8 Light Sensing Materials, 80
 4.8.1 SIR Loaded with CdS Photoresistor, 81
4.9 Other Potentials Smart Materials for RF Sensing, 82
 4.9.1 Graphene, 83
 4.9.2 Nanowires, 85
 4.9.3 Nanoparticles, 85
 4.9.4 Nanocomposites, 86
4.10 Discussion, 88
4.11 Conclusion, 93
References, 94

5 Characterization of Smart Materials
5.1 Introduction, 99
5.2 Characterization of Materials for Microwave Sensing, 101
5.3 X-Ray Diffraction, 101
5.4 Raman Scattering Spectroscopy, 102
5.5 Secondary Ion Mass Spectrometer, 103
5.6 Transmission Electron Microscopy, 104
5.7 Scanning Electron Microscope, 104
5.8 Atomic Force Microscopy, 105
5.9 Infrared Spectroscopy (Fourier Transform Infrared Reflection), 106
CONTENTS

5.10 Spectroscopic Ellipsometry, 106
 5.10.1 Basic Steps for a Model-Based Analysis, 111
 5.10.2 Layered Optical Model, 111
 5.10.3 Optical Model for Surface Roughness, 112
 5.10.4 Approximation of Surface Roughness As an Oxide Layer, 112
 5.10.5 Optical Model for Index Gradients, 112
 5.10.6 Procedure for an Ellipsometric Modeling, 113
 5.10.7 Regression, 113
 5.10.8 Dielectric Film, 114
 5.10.9 Mixed or Composite Materials, 114
 5.10.10 Accuracy and Precision of SE Experiments, 114

5.11 UV–Visible Spectrophotometers, 115

5.12 Electrical Conductivity Measurement, 115

5.13 Microwave Characterization (Scattering Parameters—Complex
 Permittivity, Dielectric Loss, and Reflection Loss) for Sensing
 Materials, 117
 5.13.1 Basic Microwave-Material Interaction Aspects, 118
 5.13.2 Methods of Measurement of Dielectric Properties, 119

5.14 Discussion on Characterization of Smart Materials, 120

5.15 Conclusion, 121

References, 123

6 Chipless RFID Sensor for Noninvasive PD Detection and
 Localization

6.1 Introduction, 125
 6.1.1 Radiometric PD Detection, 127

6.2 Theory, 128
 6.2.1 Proposed PD Sensor, 128
 6.2.2 PD Sensor System Overview, 129
 6.2.3 Simultaneous PD Detection, 130

6.3 PD Localization Using Cascaded Multiresonator-Based Sensor, 133
 6.3.1 PD Sensor, 133
 6.3.2 Experimentation with PD Signal, 133
 6.3.3 Data Encoding in PD Signal, 134

6.4 Simultaneous PD Detection, 138
 6.4.1 Time–Frequency Analysis, 138
 6.4.2 Effect of Time and Frequency Resolution, 138
 6.4.3 Simultaneous PD Detection Incorporating Time Delay, 141

6.5 Conclusion, 143

References, 145

7 Chipless RFID Sensor for Real-Time Environment Monitoring

7.1 Introduction, 149
7.2 Phase 1. Humidity Sensing Polymer Characterization and Sensitivity Analysis, 149
 7.2.1 Theory of Dielectric Sensor, 149
 7.2.2 Characterization of Humidity Sensing Polymers, 151
 7.2.3 Sensitivity Curve and Comparative Study, 156
7.3 Phase 2. Chipless RFID Humidity Sensor, 161
 7.3.1 Backscatterer-Based Chipless RFID Humidity Sensor, 161
 7.3.2 Experimentation and Results, 162
 7.3.3 Calibration Curve for Humidity Sensor, 163
 7.3.4 Hysteresis Analysis, 165
7.4 Conclusion, 168
References, 169

8 Chipless RFID Temperature Memory and Multiparameter Sensor 171
 8.1 Introduction, 171
 8.2 Phase 1: Chipless RFID Memory Sensor, 173
 8.2.1 Theory, 173
 8.2.2 Design of Memory Sensor with ELC Resonator, 174
 8.2.3 Experimentation for Chipless RFID Memory Sensor, 175
 8.3 Phase 2: Chipless RFID Multiparameter Sensor, 178
 8.3.1 Theory, 178
 8.3.2 Design, 179
 8.3.3 Experimentation for Multiple Parameter Sensing, 180
 8.3.4 Practical Challenges of Multiparameter Chipless Sensors, 183
 8.4 Conclusion, 183
References, 184

9 Nanofabrication Techniques for Chipless RFID Sensors 187
 9.1 Chapter Overview, 187
 9.2 Fabrication Techniques, 188
 9.2.1 Introduction, 188
 9.2.2 Classification of Fabrication Techniques, 188
 9.3 Electrodeposition, 189
 9.4 Physical Vapor Deposition, 189
 9.4.1 Thermal Evaporation, 190
 9.4.2 Sputtering, 190
 9.4.3 Molecular Beam Epitaxy, 191
 9.5 Wet Chemical Synthesis, 192
 9.6 Plasma Processing, 193
 9.7 Etching, 194
 9.8 Laser Processing, 195
 9.9 Lithography, 196
 9.9.1 Photolithography, 196
 9.9.2 Electron beam lithography, 198
9.9.3 Ion beam lithography, 200
9.9.4 Nanoimprint lithography (NIL)/Hot Embossing, 201
9.9.5 Thermal Nanoimprint Lithography, 201
9.9.6 UV-Based Nanoimprint Lithography, 202
9.9.7 Reverse Contact UVNIL–RUVNIL, 203
9.10 Surface or Bulk Micromachining, 203
9.11 Printing Techniques, 204
 9.11.1 Screen Printing, 205
 9.11.2 Inkjet Printing, 207
 9.11.3 Laser Printing, 209
9.12 Discussion on Nanofabrication Techniques, 209
9.13 Chipless RFID Sensors on Flexible Substrates, 213
9.14 Conclusion, 213
 References, 215

10 Chipless RFID Reader Architecture
 10.1 Introduction, 217
 10.2 Reader Architecture, 217
 10.2.1 RF Module, 218
 10.2.2 Digital Module, 219
 10.3 Operational Flowchart of a Chipless RFID Reader, 221
 10.3.1 Reader Calibration, 221
 10.3.2 Real-Time Sensor Data Decoding, 223
 10.3.3 Tag ID Decoding, 223
 10.4 Conclusion, 223
 References, 224

11 Case Studies
 11.1 Introduction, 225
 11.2 Food Safety, 226
 11.3 Health, 229
 11.4 Emergency Services, 232
 11.5 Smart Home, 234
 11.6 Agricultural Industry, 234
 11.7 Infrastructure Condition Monitoring, 236
 11.8 Transportation and Logistics, 236
 11.9 Authentication and Security, 236
 11.9.1 Solution, 237
 11.10 Power Industry, 238
 11.11 Conclusion and Original Contributions, 239
 References, 241

Index