Index

3-dB point 18

ACO see asymmetrically clipped optical (ACO) OFDM

additive link on-line Hawaii (ALOHA) system 227, 237–243

additive white Gaussian noise (AWGN) 137, 149–164, 199

aircraft wireless solutions 193–206
applications of OWCs 193, 196–205
bit-error-rate 199, 200–204
cabin interphones 205
delay spread 196, 199–200
illuminance distribution 197–199
intentional and spurious radiations 193
line-replaceable-units 205
navigation and communication systems 193–195
outage 200–204
passenger infotainment 205
powerline communications channel model 195, 205
reading light passenger service units 204
simulation configurations 196–197
wireless applications for commercial airplanes 204–205

ALOHA see additive link on-line Hawaii

ambient noise 182–190
angle-diversity receivers 169, 171–173
angle of arrival (AOA) 228, 232–233
angulation 232–233
AOA see angle of arrival
APD see avalanche photodiodes
ASRS see Aviation Safety Reporting System
asymmetrically clipped optical (ACO) OFDM 136–139
analytical bit-error-rate performance 153, 155–167
clipping and PAPR reduction 154–155, 158–167
electrical and optical performance metrics 154
frequency-domain equalization 152–161
precoding and PAPR reduction 140–149, 158–167
asynchronous indoor positioning system 237–260
basic framed slotted ALOHA 237–243
extended simulation and results 256–260
positioning algorithm 244–250
results and discussions 252–256
signal-to-noise ratio 250–252
system design and DC channel gain 243–244
avalanche photodiodes (APD) 95
average delay 30–31
Aviation Safety Reporting System (ASRS) 193
AWGN see additive white Gaussian noise
ball lenses 172–173
bandwidth
 aircraft wireless solutions 200
 bandwidth sharing 5
 indoor optical wireless channels 29–31, 74–75
 photodetectors 17, 18
Barry’s algorithm
 error analysis 58–60
 first reflection contribution 46–47
 impulse response analysis 55–58, 63–64, 96, 105
 modeling methods for indoor OWCs 39–40, 46–47, 55–60, 63–64
basic framed slotted ALOHA (BFSA) 227, 237–243
beam-splitters 208–212
BER see bit-error-rate
best linear unbiased estimator (BLUE) 249–250
BFSA see basic framed slotted ALOHA
bit-error-rate (BER)
 aircraft wireless solutions 199, 200–204
 ambient noise 182–190
 analytical results and comparisons 126–129
 concepts and definitions 12, 111
 distribution and outage 118–129
 impulse response analysis 67, 93–96, 109, 121–123
 multiple-input and multiple-output 111–113, 174–190
 narrow field-of-view 121–123
 optimal detection 113–115
 orthogonal frequency-division
 multiplexing 149, 152–153, 155–167
 outage 111–130, 174–190, 200–204
 simulation parameters 111–113
 simulation results 117–126
 wide field-of-view 123–126
BLUE see best linear unbiased estimator
Bluetooth 227
burst error 132
cabin interphones 205
CAGR see cumulative annual growth rate
calibration of indoor OWCs 105–107
carrier frequency 11–12
carrier frequency offset (CFO) 131, 135
CCDF see complementary cumulative distribution function
CDF see cumulative distribution function
CDMA see code-division-multiple-access
CDMMC see Combined Deterministic and MMC
Cellular Digital Packet Data (CDPD) 4
CF see crest factor
CFO see carrier frequency offset
CGH see computer-generated hologram
channel encoders/decoders 12–13
circular lateration 228–230, 234, 246–248
clipping noise 136–139, 154–155
code-division-multiple-access (CDMA) 237
Combined Deterministic and MMC (CDMMC) algorithm
 computational complexity 60–63
 error analysis 58–60
 first reflection contribution 46–47
 higher order reflections 47–54
 impact point of ray and surface 49, 53–54
 impulse response analysis 55–58, 63–64, 96
 modeling methods for indoor OWCs 45–64
 perpendicular surfaces 50–52
 slanted surfaces 52–53
 summary of steps 54–55
communication cells 211–214
communications blocks 12–14
complementary cumulative distribution function (CCDF) curves 145–149
compound parabolic concentrator (CPC) 245–247
computer-generated hologram (CGH) elements
 concepts and definitions 207–208
 figure-of-merit gain 216–218
 intensity-weighted spot arrays 208–211
 multipoint diffusing configuration 212, 222
 receiver optical front-end 214–218
 signal effective area 215–216
 wave propagation through materials and metamaterials 218–222
CPC see compound parabolic concentrator
crest factor (CF) 142
cumulative annual growth rate (CAGR) 3
cumulative distribution function (CDF) curve 47–48, 145–149, 256–260
current–voltage (I–V) curves 141
dark current noise 18–21
DC see direct current
DCT see discrete cosine transform
delay spread
 aircraft wireless solutions 196, 199–200
 impulse response analysis 63, 97, 99–100
 line-of-sight links 75–81, 86–93, 97–108
 modeling methods for indoor OWCs 30–31
dense wavelength division multiplexing (DWDM) 15–16
detection area 22–24
DFT precoding 143, 145–146, 153, 156–158
DHT see discrete Hartley transform
dielectric total internal reflecting concentrator (DTIRC) 245–246
direct current-biased OFDM 136
direct current (DC) channel gain 243–244
directed line-of-sight links 27–31, 207–208
directed non-line-of-sight links 27–31, 207–208
direct response vector 43
discrete cosine transform (DCT) precoding 144–149, 153, 156–158
discrete Hartley transform (DHT) OFDM 136, 139
Doppler shift 135
DTIRC see dielectric total internal reflecting concentrator
DWDM see dense wavelength division multiplexing
EGC see equal gain combining
electromagnetic (EM) interference 193–194, 227
electromagnetic (EM) wave propagation 219–222
electronic scanning antennas 218–219
environment matrix 42
equal gain combining (EGC) 171, 185–190
error analysis 58–60
error probability 114
estimation accuracy 97, 99–108, 250
eye diagrams 95–96
fall time 18
fast Fourier transform (FFT) 134–138, 140–145, 150–152, 155
FDE see frequency-domain equalization
FDMA see frequency-division-multiple-access
FEC see forward-error correction
FFT see fast Fourier transform
field-effect transistors (FET) 94–95, 251
field-of-view (FOV)
 bit-error-rate 112, 117–126
 computer-generated hologram elements 211, 214–218
 impulse response analysis 68, 77–81, 86–89
 indoor positioning 233, 242–247
 line-of-sight links 68, 77–81
 modeling methods for indoor OWCs 28, 38, 40, 46
 multiple-input and multiple-output 171, 174
 multispot diffusing configuration 212–214, 222
 non-line-of-sight links 86–89
 receiver optical front-end 214–218
 wireless infrared links 207–208
 figure-of-merit gain 216–218
 fly-eye receivers 169, 171–173, 233
 forward-error correction (FEC) 109
 Fourier transform 134–138, 140–145, 150–152, 155
 FOV see field-of-view
 frequency-division-multiple-access (FDMA) 237
 frequency-domain equalization (FDE) 133–134, 149, 151–161
 frequency response 30–31
 Fresnel lenses 172–173
 furniture effects 89–93
generalized Lambertian radiation pattern 33, 37–38
global positioning system (GPS) 225–226, 228, 237
global system for mobile communications (GSM) 234
holographic optical elements (HOE)
 concepts and definitions 207–208
 figure-of-merit gain 216–218
 intensity-weighted spot arrays 208–211
 multispot diffusing configuration 212, 222
 receiver optical front-end 214–218
 signal effective area 215–216
 wave propagation through materials and metamaterials 218–222
holographic parabolic mirrors (HPM) 214–218
holographic spherical mirrors (HSM) 214–218
hyberbolic lateration 230–232
IATA see International Air Transport Association
IFFT see inverse fast Fourier transform
IFHT see inverse fast Hartley transform
imaging optical concentrators 244–245
IM/DD see intensity modulation/direct detection
impulse response analysis
 bit-error-rate 67, 93–96, 109, 121–123
 comparison of different algorithms 55–58, 63–64, 96
 concepts and definitions 67
 furniture effects 89–93
 higher order reflections 96–108
indoor optical wireless channels 43–44, 46–58, 63–64, 67–109, 121–123
 magnitude response 74–75, 86–87
 non-directed line-of-sight links 70–82, 89–93, 95, 97–108
 non-directed non-line-of-sight links 82–93, 95, 107
 signal-to-noise ratio 81, 93–96, 107–109
indoor optical wireless channels
 additive white Gaussian noise 137, 149–164
 analytical bit-error-rate performance 149, 152–153, 155–167
 asymmetrically clipped optical OFDM 136–149, 152–164
 bandwidth 29–31, 74–75
 Barry’s algorithm 39–40, 46–47, 55–60, 63–64, 96, 105
 bit-error-rate 67, 93–96, 109, 111–130
 calibration 105–107
 carrier frequency offset 131, 135
 clipping and PAPR reduction 154–155, 158–167
 Combined Deterministic and MMC algorithm 45–64, 96
 comparison of different algorithms 55–58, 63–64, 96
 complementary cumulative distribution function curves 145–149
 computational complexity 60–63
 concepts and definitions 8
 delay spread 75–81, 86–93, 97, 99–108
 direct current-biased OFDM 136
 discrete Hartley transform OFDM 136, 139
 electrical and optical performance metrics 154
 error analysis 58–60
 estimation accuracy 97, 99–108
first reflection contribution 46–47
frequency-domain equalization 133–134, 149, 151–161
frequency response 30–31
furniture effects 89–93
higher order reflections 47–54, 96–108
impact point of ray and surface 49, 53–54
impulse response analysis 43–44, 46–58, 63–64, 67–109, 121–123
magnitude response 74–75, 86–87
modeling methods 27–65
modeling space and reflecting surfaces 32
modeling steps 31
Modified Monte Carlo algorithm and variations 44–45, 55–64, 96
multipath indoor channel 150–151, 155–158
multiple-input and multiple-output model 41–44, 111–113
optimal detection and BER outage analysis 113–117
orthogonal frequency-division multiplexing 131–168
outage 111, 113–129
PAM-DMT 137–141, 144–145, 148–166
path loss 81–82, 89
peak-to-average power ratio 131–132, 135, 140–149, 154–155, 158–164
perpendicular surfaces 50–52
power contributions 75–76, 86–87
precoding 140–150, 152–153
pulse broadening 29
radiation patterns 32–38
received power 37–64, 97, 99–100
slanted surfaces 52–53
indoor positioning 225–262
 angulation 232–233
asynchronous indoor positioning system 237–260
basic framed slotted ALOHA 227, 237–243
circular lateration 228–230, 234, 246–248
comparison of techniques 235–236
extended simulation and results 256–260
hyperbolic lateration 230–232
linear least squares estimation 233, 247–250
motivation 225–227
optical concentrators 244–247
positioning algorithms and solutions 228–236, 244–250
positioning errors 252–260
proximity 234–235
Index

results and discussions 252–256
scene analysis 234
signal-to-noise ratio 250–253
sunlight exposure 252–256
system design and DC channel gain 243–244
triangulation 228–233, 246–247
Infra-Red Data Association (IRDA) 7
infrared (IR) links 207, 211, 227
inGaAs photodiodes 17
intensity modulation/direct detection (IM/DD)
 bit-error-rate 111–112
 concepts and definitions 13
 impulse response analysis 93
 orthogonal frequency-division
 multiplexing 131, 136, 140
 photodetectors 14–15, 23–24
intensity-weighted spot arrays 208–211
interleaver blocks 12–13
International Air Transport Association (IATA) 193
intersymbol interference (ISI)
 bit-error-rate 111, 115–117, 121–123, 126–127
 concepts and definitions 8, 12
 impulse response analysis 68, 75–77, 93–96
 indoor positioning 235
 modeling methods for indoor OWCs 29
 multiple-input and multiple-output 175, 184, 187–190
 orthogonal frequency-division
 multiplexing 131
inverse fast Fourier transform (IFFT) 134–138, 140–145, 150, 155
inverse fast Hartley transform (IFHT) 139
IR see infrared
IRDA see Infra-Red Data Association
ISI see intersymbol interference
junction photodiodes 16–17
Lambertian reflection pattern 34–36, 115–117, 211, 244, 247
LAN see local area network
L-ary pulse position modulation (L-PPM) 93
lasers
 communications blocks 12–14
 computer-generated hologram elements 211
 concepts and definitions 15–16
 indoor optical wireless channels 67–68, 97–107
LBS see location-based services
least squares estimation 233, 247–250
light-emitting diodes (LED)
 aircraft wireless solutions 193–196, 200–201
 applications 1–3
 bit-error-rate 112
 communications blocks 12–14
 concepts and definitions 16
 impulse response analysis 68
 indoor positioning 225–262
 modeling methods for indoor OWCs 28–29, 32
 multiple-input and multiple-output 169–170
 orthogonal frequency-division
 multiplexing 141–142, 154–155
 photodetectors 17
 spectrum scarcity 6–7
linear least squares (LLS) estimation 233, 247–250
line-of-sight (LOS) links
 bit-error-rate 115–117
 computer-generated hologram elements 222
 delay spread 75–81, 89–93, 97–108
 directed links 27–31, 207–208
 furniture effects 89–93
 impulse response analysis 68–82, 89–93, 95, 107
 indoor positioning 244–245
 magnitude response 74–75
 multiple-input and multiple-output 174–175
 non-directed links 27–31, 70–82, 89–93, 95, 107, 207–208
 orthogonal frequency-division
 multiplexing 151
 received power 37–39, 46–47
 wireless infrared links 207–208
line-replaceable-units (LRU) 205
LLS see linear least squares
local area network (LAN) applications 200, 227
location-based services (LBS) 225–226
long-term evolution (LTE) 131
LOS see line-of-sight
L-PPM see L-ary pulse position modulation
LRU see line-replaceable-units
LTE see long-term evolution
luminous flux 197–199
magnitude response 74–75, 86–87
M-ary pulse amplitude modulation (M-PAM) 93, 141, 144–145
Maxwell’s equations 219–220
metamaterials 218–222
MIMO see multiple-input and multiple-output
MMC see Modified Monte Carlo
mobile data 3, 234
Modified Monte Carlo (MMC) algorithm
 computational complexity 60–63
 error analysis 58–60
 impulse response analysis 55–58, 63–64, 96
 modeling methods for indoor OWCs 44–45, 55–64
 see also Combined Deterministic and MMC
algorithm
M-PAM see m-ary pulse amplitude modulation
MRC see maximal ratio combining
MSDC see multispot diffusing configuration
multicarrier modulation 13
multimedia services 3, 203–204
multipath phenomena
 aircraft wireless solutions 195
 bit-error-rate 111, 115–117, 121–122, 126–127
 impulse response analysis 75, 95–96
 modeling methods for indoor OWCs 29–31
 orthogonal frequency-division
 multiplexing 131, 150–151, 155–158
 propagation characteristics 20–22
multiple-input and multiple-output
 (MIMO) 169–191
 ambient noise 182–190
 angle-diversity receivers 169, 171–173
 bit-error-rate 111–113, 174–190
 concepts and definitions 8, 169
 configurations 169–171
 direct response vector 43
 environment matrix 42
 equal gain combining 171, 174–182, 185–190
 fly-eye receivers 169, 171–173
 indoor optical wireless channels 41–44, 111–113
 light-emitting diode arrays 169–170
 receiver profile 42–43
 selective combining 170
 simulation parameters 173–174
 simulation results and discussions 173–190
 source profile 41–42
 spatial diversity 170–171, 175, 190
 switch combining 171
 system model 169–170
 total response 43–44
multispot diffusing configuration (MSDC)
 communication cells 211–214
 concepts and definitions 8, 28–30, 207–208
 field-of-view 212–214, 222
 impulse response analysis 97–107
Nash equilibrium 4
NEP see noise equivalent power
NLOS see non-line-of-sight
noise currents 18–21
noise equivalent power (NEP) 19–21
noise variance 94
non-directed non-line-of-sight links 27–31, 82–93, 107, 207–208
non-imaging optical concentrators 244–247
non-line-of-sight (NLOS) links
 Barry’s algorithm 39–40, 46–47, 55–60, 63–64
 Combined Deterministic and MMC
 algorithm 45–64
 delay spread 86–93
 directed links 27–31, 207–208
 furniture effects 89–93
 impulse response analysis 68–69, 82–93, 95, 107
 magnitude response 86–87
 Modified Monte Carlo algorithm and variations 44–45, 55–64
 multiple-input and multiple-output
 model 41–44
 non-directed links 27–31, 82–93, 107, 207–208
 received power 39–64
 wireless infrared links 207–208
OFDM see orthogonal frequency-division
 multiplexing
 off-axis imaging 172–173
 on–off keying (OOK) 93, 112–113, 199, 246, 251
 optical concentrators 244–247
 optical receivers see photodetectors
 optical side bands 6
 optical transmitters
 communication cells 211–214
 concepts and definitions 15–16
 impulse response analysis 67–109
 indoor positioning 225–262
 modeling methods for indoor OWCs 27–31, 37–64
multispot diffusing configuration 207–208, 211–214, 222
non-line-of-sight links 27–31, 39–64, 82–89
propagation characteristics 20–21
see also lasers; light-emitting diodes
optimal detection 113–115
orthogonal frequency-division multiplexing (OFDM)
additive white Gaussian noise 137, 149–164
application in indoor OW systems 136–139
asymmetrically clipped optical (ACO) OFDM 136–149, 152–164
basic system 132
bit-error-rate 149, 152–153, 155–167
carrier frequency offset 131, 135
clipping and PAPR reduction 154–155, 158–167
complementary cumulative distribution function curves 145–149
concepts and definitions 8, 13, 131–132
direct current-biased OFDM 136
discrete Hartley transform OFDM 136, 139
discrete time implementation 134
drawbacks 134–135
electrical and optical performance metrics 154
frequency-domain equalization 133–134, 149, 151–161
indoor optical wireless channels 131–168
multipath indoor channel 150–151, 155–158
PAM-DMT 137–141, 144–145, 148–166
peak-to-average power ratio 131–132, 135, 140–149, 154–155, 158–164
precoding 140–150, 152–153
serial and parallel transmission 132–134, 141
simulation results and discussions 144–149, 155–167
system operation 132–134
outage
aircraft wireless solutions 200–204
indoor optical wireless channels 111, 113–129
multiple-input and multiple-output 174–190
PAM-DMT see pulse amplitude modulation – discrete multitone
PAPR see peak-to-average power ratio
parallel transmission 132–134, 141
Pareto optimality 5
particle–wave interaction 220–221
passenger infotainment 205
path loss 81–82, 89
pdf see probability density function
peak-to-average power ratio (PAPR) 8, 131–132, 135, 140–149, 154–155, 158–167
personal electronic devices (PED) 193, 203–204
Phong’s model 36–37
photodetectors
bandwidth 17, 18
computer-generated hologram elements 207–212, 214–222
concepts and definitions 16–17
figure-of-merit gain 216–218
impulse response analysis 67–109
indoor positioning 227–237, 241–252, 256–259
intensity modulation/direct detection 14–15, 23–24
intensity-weighted spot arrays 208–211
key parameters of photodiodes 17–18
modeling methods for indoor OWCs 27–31, 37–64
noise currents 18–21
non-line-of-sight links 27–31, 39–64, 82–89
propagation characteristics 20–24
receiver optical front-end 214–218
signal effective area 215–216
wave propagation through materials and metamaterials 218–222
photons 2, 221–222
photopic function 197
PLC see powerline communications
point source radiation 33
powerline communications (PLC) channel model 195, 205
PPM see pulse position modulation
preamplifiers 94–95
precoding-based OFDM systems
additive white Gaussian noise 149–164
analytical bit-error-rate performance 152–153, 155–167
complementary cumulative distribution function curves 145–149
multipath indoor channel 150–151, 155–158
peak-to-average power ratio 140–149, 158–167
precoding schemes 143–144
simulation results and discussions 144–149, 155–167
system model 140–142
probability density function (pdf) 44
propagation characteristics 20–24
detection area of photodiodes 22–24
multipath phenomena 20–22
rotation sensitivity 23
pulse amplitude modulation – discrete multitone (PAM-DMT) 137–141, 144–145, 148–166
pulse broadening 29
pulse position modulation (PPM) 93
quantum efficiency 17
quantum shot noise 18–21
quasi-diffuse links see multispot diffusing configuration
radiant power 197–199
radiation patterns
generalized Lambertian radiation pattern 33, 37–38
indoor optical wireless channels 32–38
Lambertian reflection pattern 34–36, 115–117, 211, 244, 247
Phong’s model 36–37
point sources 33
reflections 34–37
radio frequency identification (RFID) 227, 234
radio frequency (RF)
carrier frequency 11–12
communications blocks 12–13
indoor positioning 225, 227–236
intentional and spurious radiations 193
orthogonal frequency-division multiplexing 131, 136
propagation characteristics 20–21, 23
signal effective area 215–216
signal-to-noise ratio (SNR)
aircraft wireless solutions 198–199, 203
computer-generated hologram elements 216–218
impulse response analysis 81, 93–96, 107–109, 123
indoor positioning 250–253
multiple-input and multiple-output 170, 187–188
orthogonal frequency-division multiplexing 135, 139, 141
SIMO see single-input multiple-output
simulated annealing 209–210
single-input multiple-output (SIMO) 41
SNR see signal-to-noise ratio
solid-state lighting 2–3
source encoders/decoders 12–13
source profile 41–42, 197
space exploration 1
spatial diversity 170–171, 175, 190
SSC see switch combining
steerable antennas 219
subcarrier spacing 133
sunlight exposure 252–256
switch combining (SSC) 171
symbol error rate (SER) 153
TDMA see time-division-multiple-access
TDOA see time difference of arrival
terahertz (THz) regime 11
thermal noise 251–252
time difference of arrival (TDOA) 228, 230–232
time-division-multiple-access (TDMA) 237
time of arrival (TOA) 228–230
TOA see time of arrival
total impulse response 78–79
tragedy of the commons 5
transmitter blocks 13–14
triangulation 228–233
 angulation 232–233
 circular lateration 228–230, 234, 246–248
 hyperbolic lateration 230–232
ultra-wide band (UWB) 4–5, 227, 230–232
unmanned aerial systems 218–219
UWB see ultra-wide band
visible light communications (VLC)
 aircraft wireless solutions 196, 200–201
 applications 2, 8–9
 bit-error-rate 113–129
 concepts and definitions 8
 indoor positioning 225–262
 orthogonal frequency-division multiplexing 131
 spectrum scarcity 6–7
 wireless infrared links 207
 Visual Networking Index (VNI) 3
 wave propagation 218–222
 white light-emitting diodes (WLED) 2–3, 6, 207, 234
 Wi-Fi bands 1
 wireless infrared (IR) links 207, 211, 227
 wireless local area network (WLAN) 227
 WLED see white light-emitting diodes
 Zadoff–Chu sequence precoding 143, 145, 147–148, 152–153, 155
 zero-forcing (ZF) equalization 149, 152–161
 Zigbee wireless networks 235