Contents

Preface xi
Abbreviations xiii

I INTRODUCTION
1 The Structural and Biochemical Hierarchy of a Cell and a Human
Cell structure 3
Tissues 8
The whole human 10
The biochemical hierarchy 13

II ESSENTIAL TOPICS IN DYNAMIC BIOCHEMISTRY
2 Energy: In the Body, Tissues and Biochemical Processes
Energy transformations in the whole body 18
Energy transformations in tissues and organs 26
Energy transformation in biochemical reactions and pathways 28
Adenosine triphosphate: its role in the cell 32

3 Enzymes: Activities, Properties, Regulation and Physiology
Nomenclature and classification 36
Basic facts 37
Mechanisms by which an enzyme enhances the rate of a reaction 38
Cofactors and prosthetic groups 40
Factors that change the activity of an enzyme 41
Allosteric inhibition 48
The physiological significance of \(K_m \) and \(V_{max} \) values 51
Enzymes as tools 54
Enzymes in diagnosis 58
Enzymes as therapeutic agents 59
Enzymes as targets for therapy 59
Kinetic structure of a biochemical pathway 61
Regulation of enzyme activity 63

4 Transport into the Body: The Gastrointestinal Tract, Digestion and Absorption
Gross structure of the gastrointestinal tract 70
Biochemistry of cooking and food preparation 73
Digestion and absorption 75
The gastrointestinal tract and disease 82

5 Transport into the Cell: Particles, Molecules and Ions
Structure of the plasma membrane 85
Diffusion through membranes 87
Active transport 89
Endocytosis and exocytosis 91
Physiological importance of some transport systems 93

III ESSENTIAL METABOLISM
6 Carbohydrate Metabolism
Glycolysis 98
The biochemical and physiological importance of anaerobic glycolysis 104
Regulation of the flux through glycolysis 107
Glycogen synthesis 108
Synthesis of Fructose and lactose 110
The pentose phosphate pathway 110
Gluconeogenesis: glucose formation from non-carbohydrate sources 112
Role of the liver in the regulation of the blood glucose concentration 117
Hormones and control of gluconeogenesis 123
Regulation of glycolysis and gluconeogenesis by ATP/ADP concentration ratio in the liver 124
Hypoglycaemia 125
Hyperglycaemia 126
CONTENTS

7 Fat Metabolism 127

Fats in nutrition 128
Fat fuels 128
Physiological importance of fat fuels 142
Limitations or drawbacks of fats as a fuel 145
Genetic defects in fatty acid oxidation 146
Pathological concentrations of fat fuels 146

8 Amino Acid and Protein Metabolism 149

Introduction 149
Sources of amino acids 151
Protein and amino acid requirements 155
Fate of amino acids 157
Central role of transdeamination 165
Amino acid metabolism in different tissues 167
Glutamine: an amino acid of central importance 172
Urea ‘salvage’ 177

9 Oxidation of Fuels and ATP Generation: Physiological and Clinical Importance 181

The Krebs cycle 181
The electron transfer chain 184
Oxidative phosphorylation 185
Coupling of electron transfer with oxidative phosphorylation 186
Transport into and out of mitochondria 190
‘Energy’ transport in the cytosol: the creatine/phosphocreatine shuttle 193
Regulation of fluxes 194
The physiological importance of mitochondrial ATP generation 200
The effect of ageing on ATP generation 206

10 Metabolism of Ammonia and Nucleic Acids 211

Roles of ammonia 211
Urea synthesis 212
Degradation of nucleic acids, nucleotides, nucleosides and bases: the generation of ammonia 217
Ammonia toxicity 219
Deficiencies of urea cycle enzymes 220

11 Synthesis of Fatty Acids, Triacylglycerol, Phospholipids and Fatty Messengers: The Roles of Polyunsaturated Fatty Acids 223

Synthesis of long-chain fatty acids 223
Unsaturated fatty acids 229
Essential fatty acids 233
Phospholipids 239
Fatty messenger molecules 243
Fatty acids in neurological and behavioural disorders 251

12 Hormones: From Action in the Cell to Function in the Body 253

Endocrine hormones: traditional and novel 253
The action, effects and functions of a hormone 256
Action of hormones 257
The biochemical and physiological effects of a hormone 258
Pheromones 264
Kinetic principles that apply to hormone action 266

IV ESSENTIAL PROCESSES OF LIFE 273

13 Physical Activity: In Non-Athletes, Athletes and Patients 275

The mechanical basis of movement by skeletal muscle 275
Structure of muscle 276
Proteins involved in muscle action 279
Mechanism of contraction: the cross-bridge cycle 282
Regulation of contraction 282
Fuels for muscle 286
Fuels for various athletic events and games 291
Fatigue 294
Fatigue in patients 299
Physical training 300
Development of muscle 301
Health benefits of physical activity 303
Health hazards of physical activity 303
Skeletal muscle diseases 305

14 Mental Activity and Mental Illness 307

Mental activity 307
Cells in the brain 308
Electrical communication 310
Chemical communication 311
Fuels and energy metabolism in the brain 319
Mental illnesses: biochemical causes 320
Recreational drugs 325

15 Nutrition: Biochemistry, Physiology and Pathology 331

Basic information required for discussion of some biochemical aspects of nutrition 331
Vitamins 332
Minerals 345
A healthy diet 350
Nutrition for specific activities or conditions 351
Overnutrition 355
Malnutrition 356
Functional foods and nutraceuticals 358
Nutrition for patients with genetic disorders 359
Vegetarian diets 359
Eating disorders 360
16 Starvation: Metabolic Changes, Survival and Death
Mechanisms for the regulation of the blood glucose concentration
Metabolic responses to starvation
Sequence of metabolic changes from intermediate starvation to death
Progressive decrease in protein degradation in starvation

17 Defence Against Pathogens: Barriers, Enzymes and the Immune System
When the physical barrier is breached
The immune system
Adaptive immunity
Cytokines
Mechanisms for killing pathogens
Killing of intracellular bacteria and large parasites in the extracellular fluid
Allergy
Fuels and generation of ATP in immune cells: consequences for a patient
Essential fatty acids and proliferation
The lymph nodes
Tolerance
Chronic inflammation and autoimmunity
Immunosuppressive agents
Conditions that reduce the effectiveness of the immune system
Factors that increase the effectiveness of the immune system
Return of the ‘old’ infectious diseases
New infectious diseases
Defence in the intestine

18 Survival after Trauma: Metabolic Changes and Response of the Immune System
Physiological and metabolic responses the ebb & flow phases
Nutrition
Mobilisation of triacylglycerol and protein in trauma
Metabolic changes in trauma and in starvation
Fever
Summary of the effects of trauma on the immune system and the whole body

19 Sexual Reproduction
Male reproductive system
Female reproductive system
The menstrual cycle
Ovulation
Chemical communication in male and female reproduction
Coitus and the sexual response in the male and female
Fertilisation
Pregnancy
Parturition
Contraception
The menopause
Sexually transmitted diseases

20 Growth and Death of Cells and Humans: The Cell Cycle, Apoptosis and Necrosis
Introduction to cell proliferation
The cell cycle
Death

V SERIOUS DISEASES
21 Cancer: Genes, Cachexia and Death
Basic information
Oncogenes and proto-oncogenes
Proteins expressed by oncogenes
Processes by which proto-oncogenes can be activated or converted to oncogenes
Tumour suppressor genes
Telomeres and telomerase in tumour cells
Metastasis
Metabolic changes in cancer patients
Overview of cancer
Cancer-causing agents or conditions
Chemotherapy
Radiotherapy

22 Atherosclerosis, Hypertension and Heart Attack
Atherosclerosis
Hypertension
Heart attack (myocardial infarction)

Index