Abnormalities, R-MAT generator detection, 65
Application domains, entity resolution, 317–318
Approximate substructure, variant substructure patterns, frequent substructures, 107–108
Apriori-based graph mining (AGM) approach and algorithm, 184
chemical graphs, 364–365
frequent substructures discovery, 100, 101–103, 102
frequent topological patterns, 149
graph grammar learning, 184
rooted tree mining, 385
Artificial data experiments, Subdue system/inductive logic programming (ILP) compared, 174–176
Attribute similarity, graph-based entity resolution, 326–327
Automorphism:
defined, 118
rooted tree mining, subtree generation, 385–386
Autonomous systems, Internet analysis, 50–55
Average cycle length (ACL), defined, 446
Average path length (APL), defined, 446
Bayesian kernel methods, vertex classification, 268–271. See also Kernel-based link analysis
Beamwise graph-based induction (B-GBI), chunkingless graph-based induction decision tree (CL-GBI), 206–207
Bias control, Laplacian kernels, regularized, 290–296
Biochemistry, graph grammar learning, 194–195
Bioinformatics applications (rooted tree mining), 405–408
phylogenetic trees, 407–408
RNA structure, 405–407
Bipartite cores, community effects, R-MAT generator, 69, 70
Bipartite graphs, R-MAT generator experiments, 86
Blocking, clustering, graph-based entity resolution, 330
Bootstrapping, clustering, graph-based entity resolution, 330–331
Border routers, autonomous systems, Internet analysis, 53
Brandes betweenness centrality (BR), defined, 445
Candidate generation, FSG algorithm, frequent topological patterns, 128–129
Canonical extension (rooted tree mining):
SLEUTH algorithm, 401
subtree generation, 388–389
Canonical labeling:
defined, 118
frequent topological patterns, 119–121
Cascade model, chemical graphs, 370–375
CASE system, chemical graphs, 356–358
Characteristic path length (CPL), defined, 447
Chemical graphs, 347–379
CASE system, 356–358
combinations, 366–375
cascade model, 370–375
inductive logic programming (ILP), 369–370
MultiCASE, 367–369
commentary, 375–377
linear fragments, 362–366
mining issues, 355–356
Chemical graphs, (continued)
molecular representation, 347–355
connection table, 350–351
SMILES and Markush structures, 354–355
stereochemistry, 352–353
structure and structure diagrams, 347–350
structure and substructure search, 353
quantitative estimation, 358–362
Child test, rooted tree mining, frequency computation, 395–396
Chomsky hierarchy, graph grammar learning, 192
Chunkingless graph-based induction (CL-GBI). See also Decision tree chunkingless graph-based induction (DT-CLGBI)
algorithm, 209–210
approach, 208–209
experimental evaluation, 211–214
feature construction by, 215–216
implementation issues, 210–211
unsolved problem, 211
Chunking problem, decision tree construction (CL-GBI), 207–208
Circumference, defined, 451
Class of grammars, graph grammar learning, 192–193
Clique, defined, 411
Cliqueishness, defined, 448–449
Closed frequent substructure, variant substructure patterns, frequent substructures, 107
Closeness centrality, defined, 446
CLUSMOL, chemical graphs, 362–363
Clustering:
defined, 3
graph-based entity resolution, 330–332
Clustering coefficient, community effects, R-MAT generator, 69, 70
Coherent substructure, variant substructure patterns, frequent substructures, 108
Collective entity resolution, graph-based, 320
Color code, rooted tree mining, subtree generation, 386
Community effects:
dense subgraph extraction, 416
R-MAT generator, 69–70
Compaction, topology-shape-metrics graph visualization, 46
Complex domains, graph grammar learning, 194–197
Complexity, Galois lattice, graph description, 237, 239–240
Compression, R-MAT generator detection, 66
Computational biology, graph visualization applications, 38
Concept lattice, formal concept analysis (FCA), 231–235
Connected graph, defined, 118
Connection strength measurement, dense subgraph extraction, connection subgraphs, 429–434
Connection subgraphs:
commentary, 438
dense subgraph extraction, 429–438
algorithms for, 434–435
connection strength measurement, 429–434
experiments, 437–438
optimization heuristics, 435–437
Connection table, molecular representation, 350–351
Constraints, graph matching, Terrorist Modus Operandi Detection System (TMODS), 458
Contrast substructure, variant substructure patterns, frequent substructures, 108
Core, defined, 236
Counterterrorism, graph grammar learning, 195–196. See also Terrorist Modus Operandi Detection System (TMODS)
Cousin test (rooted tree mining):
distinct occurrences counting, 398–399
frequency computation, 394–395, 396–397
CProlog, Subdue system/inductive logic programming (ILP) compared, 172
Crossing reduction, hierarchical graph visualization methods, 43
CSLOGS dataset experiments, rooted tree mining, 402
Cycle-based graph kernels:
empirical evaluation, 263–265
kernel methods, 257–262
Cycles removal, hierarchical graph visualization methods, 42–43

Data mining:
defined, 2
field of, xiii, 2
graph representation, 1–2
graph visualization applications, 36–38
terminology in, 2–3
Decision tree chunkingless graph-based induction (DT-CLGBI), 203–226. See also Chunkingless graph-based induction (CL-GBI)
chunkingless graph-based induction (CL-GBI), 208–214
algorithm, 209–210
approach, 208–209
experimental evaluation, 211–214
implementation issues, 210–211
unsolved problem, 211
chunking problem, 207–208
classification, 217–218
experimental evaluation, 218–224
feature construction by CI-GBI, 215–216
graph-based induction (GBI), 205–207
beamwise graph-based induction (B-GBI), 206–207
principles, 205–206
graph-structured data, 214–215
overview, 203–205
working example, 216–217
Degree, defined, 450
Degree distribution:
defined, 68
R-MAT generator, 90–91
Dense subgraph:
defined, 411
occurrence of, 411–412
Dense subgraph extraction, 411–441
connection subgraphs, 429–438
algorithms for, 434–435
connection strength measurement, 429–434
experiments, 437–438
optimization heuristics, 435–437
densest subgraph location, 416–418
graph shingling, 421–428
algorithm details, 425–427
high-level description, 424–425
implementation, 427
shingling, 422–424
Web host graph, 427–428
massive graph algorithms, 412
overview, 411–414
preliminaries, 412–413
related work, 414–416
communities in social networks, 416
graph mining, 414
web-based community finding, 414–415
web graph searching, 415–416
trawling, 418–421
Dense substructure, variant substructure patterns,
frequent substructures, 109
Density, defined, 450
Descendant test (rooted tree mining):
distinct occurrences counting, 398
frequency computation, 393–394
Description lattice, formal concept analysis (FCA), 231–235
DFS code, frequent substructures discovery,
pattern growth approach, 106
Diameter, defined, 450
Diffusion kernels, relatedness measure,
kernel-based link analysis, 296–297
Directed graphs, R-MAT generator experiments, 85
Discovery of frequent substructures. See
Frequent substructures
Discriminative frequent substructure, variant substructure patterns, 108–109
Distinct occurrences counting, rooted tree mining, 397–399
Distributed genetic search algorithm, Terrorist Modus Operandi Detection System (TMODS), 462
DNA:
graph grammar learning, 188
Mutagenesis dataset, 6–8
Duplicate graph, frequent substructures
discovery, pattern growth approach, 104
Edge betweenness (stress), R-MAT generator, 71
Edit path, defined, 22–23
Effective diameter, defined, 69
Efficiency, entity resolution, 315
Efficient subgraph extension, vertical SiGraM algorithm, frequent topological patterns, 138–139
Electrical networks, connection strength measurement, dense subgraph extraction, connection subgraphs, 431–432
Embedded subtrees, rooted tree mining, frequency computation, 392–395
Embedding identification, horizontal SiGraM algorithm, frequent topological patterns, 133–134
Entity resolution, 311–344
commentary, 341–342
graph-based, 318–341
author resolution, 321–322
clustering, 330–332
experimental evaluation, 333–341
generally, 318–319
issues in, 319–321
problem formulation, 322–325
similarity measures, 325–329
overview, 311–314
related work, 314–318
application domains, 317–318
efficiency, 315
evaluation matrices, 318
graph-based approaches, 315–316
probabilistic inference, 316–317
probabilistic modeling, 315
string similarity, 314
Entity resolution, (continued)
theoretical bounds, 314
tools, 317
Equivalence class-based extension (rooted tree mining):
SLEUTH algorithm, 401
subtree generation, 389–391
Error-tolerant graph matching, graph matching methods, 22–24
Evaluation matrices, entity resolution, 318
Event detection, Terrorist Modus Operandi Detection System (TMODS), 463–464
Exact graph matching, graph matching methods, 19–21
Exponential family distributions, Bayesian kernel methods, vertex classification, 268–269
Extension lattice, formal concept analysis (FCA), 231–235
External-to-internal (E-to-I) ratio, defined, 449–450
Extrapolation, R-MAT generator detection, 66
FFSM, frequent topological patterns, 150
First-order logic (FOL), inductive logic programming (ILP) systems, 184
Flat domains, graph grammar learning, 193–194
Forced-directed methods, graph visualization techniques, 39–41
Formal concept analysis (FCA), 227–251
commentary, 249–250
concepts and notation, 228
extension lattice and description lattice give concept lattice, 231–235
Galois lattice, 230–231
graph description and Galois lattice, 235–240
complexity, 237, 239–240
homomorphism and product operator, 237
labeled graphs, 235–236
locally injective digraph, 238
graph mining, 240–249
experimentation, 247–249
generally, 240–241
irreducible elements, 243–245
irreducible elements and pattern mining, 246–247
language equivalence, 242–243
lattice properties, 241–242
overview, 227
Frequency computation:
horizontal SiGraM algorithm, frequent topological patterns, 135
rooted tree mining, 392–397
induced subtrees, 395–397
Frequency counting:
FSG algorithm, frequent topological patterns, 129–131
horizontal SiGraM algorithm, frequent topological patterns, 133
vertical SiGraM algorithm, frequent topological patterns, 139
Frequent graph, defined, 100–101
Frequent subgraph (FSG), graph grammar learning, 184. See also FSG algorithm
Frequent substructures, 99–115
apriori-based approach, 101–103
commentary, 112–113
concepts, 100–101
experiments, 109–112
overview, 99–100
pattern growth approach, 103–107
Subdue system and, 165–170
real dataset experiments, 168–170
synthetic dataset experiments, 167–168
variant substructure patterns, 107–109
approximate substructure, 107–108
closed frequent substructure, 107
coherent substructure, 108
dense substructure, 109
discriminative frequent substructure, 108–109
Frequent topological patterns, 117–158
canonical labeling, 119–121
datasets, 152–154
definitions, 118
FSG algorithm, 127–131
candidate generation, 128–129
canonical labeling, 128–131
generally, 127–128
Grew algorithm, 141–148
graph representation, 143–144
meta-strategies, 146–148
multiedge collapsing, 146
properties of, 141–142
single-edge collapsing, 144–145
maximum independent set, 121
notations, 119
overview, 117–118
problem definitions, 122–127
algorithms for, 126–127
possibilities in, 122–126
related work, 149–151
SiGraM algorithms, 131–141
generally, 131–132
horizontal, 132–135
INDEX

interactions between, 139–141
vertical, 135–139

FSG algorithm. See also Frequent subgraph (FSG)
frequent topological patterns, 127–131, 149, 150
candidate generation, 128–129
frequency counting, 129–131
generally, 127–128
rooted tree mining, 385

Galois lattice:
extension lattice and description lattice give concept lattice, 231–235
formal concept analysis (FCA), 230–231
graph description, 235–240
complexity, 237, 239–240
homomorphism and product operator, 237
labeled graphs, 235–236
locally injective digraph, 238
properties of, graph mining, 241–242

GASTON:
frequent topological patterns, 149
rooted tree mining, 385
Gaussian processes, multiclass transduction,
kernel methods, vertex classification,
271–272

Generalized linear preference (PLP), R-MAT

generator experiments, 84
Genetic search algorithm, Terrorist Modus
Operandi Detection System (TMODS),
461–462
Geographical models, graph generators, 73

Girth, defined, 450

Global efficiency (GE), defined, 447

Global resolution, local resolution and,
graph-based entity resolution, 320

Grammar learning. See Graph grammar learning

Graph, defined, 2, 18–19

Graph-based algorithms, Subdue system
compared, 165

Graph-based data mining. See Mining graph data

Graph-based entity resolution, 318–341. See also
entity resolution

Graph-based induction (GBI):
chemical graphs, 363–364
decision tree construction (CL-GBI), 205–207
beamwise (B-GBI), 206–207
principles, 205–206

frequent topological patterns, 149

Graph classification (kernel methods), 254–265
commentary, 279
cycle-based graph kernels, 257–262
empirical evaluation, 263–265
generally, 254–255
walk-based graph kernels, 255–257

Graph databases, 3–10
Internet Movie Database (IMDb), 3–6
Mutagenesis dataset, 6–8
World Wide Web, 8–10

Graph drawing. See Graph visualization

Graph edit distance, defined, 23–24

Graph generators:
generally, 71–72
geographical models, 73
optimization-based models, 78
preferential attachment models, 72–73
random graph models, 72
taxonomy of, summary table, 74–77

Graph grammar learning, 183–201
class of grammars, 192–193
empirical evaluation, 193–198
commentary, 197–199
complex domains, 194–197
flat domains, 193–194
graph grammars, 185–186
heuristics, 186–192
generally, 186–187
recursion, 188–189
relationships, 191–192
rules, 187–188
variables, 190–191
overview, 183–184
research summary, 184–185

Graph grammars, graph grammar learning,
185–186

Graph isomorphism, defined, 19–20

Graph matching, 17–34
commentary, 31–32
experimental evaluation, 28–31
learning edit costs, 24–28
learning probabilistic edit costs, 25–26
self-organizing edit costs, 27–28
methods, 18–24
error-tolerant graph matching, 22–24
exact graph matching, 19–21
overview, 17–18

Terrorist Modus Operandi Detection System
(TMODS), 455–459
constraints, 458
hierarchical patterns, 457–458
multiple choices and abstractions, 456–457
ontologies, 458–459

Terrorist Modus Operandi Detection System
(TMODS), inexact matching, 455–456

Graph mining:
chemical graphs, 355–356
dense subgraph extraction, 414
INDEX

Graph mining: (continued)
formal concept analysis (FCA), 240–249
experimentation, 247–249
generally, 240–241
irreducible elements, 243–245
irreducible elements and pattern mining, 246–247
language equivalence, 242–243
lattice properties, 241–242
Graph partitions, community effects, R-MAT
generator, 69, 70
Graph representation, data mining, 1–2
Graph shingling (dense subgraph extraction), 421–428
algorithm details, 425
example, 425–427
high-level description, 424–425
implementation, 427
shingling, 422–424
Web host graph, 427–428
Graph subisomorphism, defined, 20
Graph transactions, graph grammar learning, 184
Graph visualization, 35–63
commentary, 55–57
data mining applications, 36–38
defined, 3, 35
examples, 48–55
Internet analysis, 50–55
web searching, 48–50
overview, 35–36
techniques, 38–48
forced-directed methods, 39–41
generally, 38–39
hierarchical methods, 41–44
topology-shape-metrics method, 44–48
Greedy algorithm (GMIS):
chemical graphs, 363–364
frequent topological patterns, maximum
independent set, 121
Grow algorithm, 141–148
graph representation, 143–144
meta-strategies, 146–148
multiedge collapsing, 146
properties of, 141–142
single-edge collapsing, 144–145
Group detection, social network analysis (SNA), 452
GSpan:
 frequent substructures discovery, pattern
growth approach, 104
frequent topological patterns, 149–150
Hierarchical methods:
graph grammar learning, 192–193
Graph matching, Terrorist Modus Operandi
Detection System (TMODS), 457–458
graph visualization techniques, 41–44
HITS:
evaluation, 304
kernel-based link analysis, 285–289
Homeland security, graph visualization
applications, 37. See also Terrorist Modus
Operandi Detection System (TMODS)
Homogeneity, defined, 449
Homomorphism, product operator and, Galois
lattice, graph description, 237
Hop-plot, defined, 69
Horizontal coordinate assignment, hierarchical
graph visualization methods, 43–44
Horizontal SiGraM algorithm:
frequent topological patterns, 132–135
problem formulations, 139–141
Induced subgraph, defined, 118
Induced subtrees, rooted tree mining, frequency
computation, 395–397
Inductive logic programming (ILP):
chemical graphs, 369–370
decision tree construction (CL-GBI), 204
graph grammar learning, 184, 194, 199
Subdue system compared, 170–179
artificial data experiments, 174–176
CProgol, 172
generally, 170–172
Mutagenesis dataset experiments, 172–174,
176–179
Inexact matching, graph matching, Terrorist
Modus Operandi Detection System
(TMODS), 455–456
Information systems, graph visualization
applications, 37
Integration, defined, 451
Internet analysis, graph visualization example,
50–55. See also World Wide Web
Internet computing, graph visualization
applications, 36
Internet Movie Database (IMDb), described, 3–6
Irreducible elements:
 graph mining, formal concept analysis (FCA),
243–245
pattern mining and, graph mining, formal
concept analysis (FCA), 246–247
Isomorphic graph, defined, 118
Kandinsky drawing convention,
topology-shape-metrics graph visualization, 48
Katz Status Index, kernel-based link analysis, 300
INDEX

Kernel-based link analysis, 283–310
- classification, 284–286
- importance, 285–286
- relatedness, 285
- commentary, 308
- evaluation, 299–308
- approximation, 307–308
- example, 300–304
- Neumann kernels, 304
- parameter sensitivity estimation, 307
- regularized Laplacian and diffusion kernels, 305–306
- overview, 283–284
- practical issues, 297–299
- computational issues, 298–299
- parameter tuning, 297–298
- relatedness measure, 290–297
- diffusion kernels, 296–297
- limitations, 290–291
- regularized, 290–296
- related work, 299–300
- unified framework, 286–289

Kernel methods, 253–282
- commentary, 279–280
- graph classification, 254–265
- cycle-based graph kernels, 257–262
- empirical evaluation, 263–265
- generally, 254–255
- walk-based graph kernels, 255–257
- overview, 253–254
- vertex classification, 266–278
- Bayesian kernel methods, 268–271
- empirical evaluation, 277–278
- generally, 266–268
- multiclass transduction, 271–276
- string kernels, 276–277

Knowledge discovery, defined, 3

Labeled graph:
- defined, 118
- formal concept analysis, 228

Language equivalence, graph mining, formal concept analysis (FCA), 242–243

Laplacian kernels:
- evaluation, 305–306
- relatedness measure, 290–297
- limitations, 290–291
- regularized, 290–296

Lattice, defined, 228. See also specific lattices
Lattice properties, formal concept analysis (FCA), graph mining, 241–242
Layer assignment, hierarchical graph visualization methods, 43
Learning edit costs (graph matching), 24–28

learning probabilistic edit costs, 25–26
self-organizing edit costs, 27–28
Learning probabilistic edit costs, graph matching, 25–26
Linear fragments, chemical graphs, 362–366
Link analysis. See Kernel-based link analysis
Locally injective digraph, Galois lattice, graph description, 238
Local resolution, global resolution and, graph-based entity resolution, 320
Low diameter, graph generators, 73

Markush structures, SMILES and, molecular representation, 354–355

Maximum common subgraph (MCS), defined, 20–21
Maximum common subgraph (MCS) distance, defined, 21
Maximum independent set, frequent topological patterns, 121
Memory requirements reduction, frequency counting, FSG algorithm, 130–131

Merging Matches algorithm, Terrorist Modus Operandi Detection System (TMODS), 459–461
Meta-strategies, Grew algorithm, 146–148
Metrics, defined, 447–448

Min-cut plots:
- NetMine, 79–80, 86
- R-MAT generator experiments, 83

Minimum description length (MDL):
- graph grammar learning, 188
- rooted tree mining, 385
- variant substructure patterns, discriminative frequent substructure, 108

Mining graph data, defined, 2
Modified Laplacian kernels, evaluation, 306
Molecular representation, 347–355
- connection table, 350–351
- SMILES and Markush structures, 354–355
- stereochemistry, 352–353
- structure and structure diagrams, 347–350
- structure and substructure search, 353

Molfea, chemical graphs, 364
MultiCASE, chemical graphs, 367–369
Multiclass transduction, kernel methods, vertex classification, 271–276
Multidige collapsing, Grew algorithm, 146

Multiple choices, graph matching, Terrorist Modus Operandi Detection System (TMODS), 456–457

Mutagenesis dataset:
- described, 6–8

Subdue system/inductive logic programming (ILP) compared, 172–174, 176–179
Multitype entity resolution, graph-based, 319–320
NetMine system, 79–82
components of, 66
min-cut plots, 79–80
properties, 80–82
Neumann kernels:
evaluation, 304
unified framework, 287–289
Ontologies, graph matching, Terrorist Modus Operandi Detection System (TMODS), 458–459
Optimization, multiclass transduction, kernel methods, vertex classification, 275–276
Optimization-based models, graph generators, 78
Optimization heuristics, dense subgraph extraction, connection subgraphs, 435–437
Order, defined, 228
Orthogonal drawing:
graph visualization, 36
topology-shape-metrics graph visualization, 44–46
Orthogonalization, topology-shape-metrics graph visualization, 46
Parameter sensitivity estimation, kernel-based link analysis, 307
Parameter tuning, kernel-based link analysis, 297–298
Parametric optimization problem, multiclass transduction, kernel methods, vertex classification, 272–273
Parent identification generation, vertical SIGraM algorithm, 137
Partial order, defined, 228
Pattern growth approach, frequent substructures discovery, 103–107
Pattern mining, irreducible elements and, graph mining, formal concept analysis (FCA), 246–247
Peering session, autonomous systems, Internet analysis, 53
Performance evaluation, rooted tree mining, 402–405
Phylogenetic trees, rooted tree mining, bioinformatics applications, 407–408
Planarization, topology-shape-metrics graph visualization, 46
Polyline drawing, graph visualization, 36
Power law(s), R-MAT generator, 68–69
Power law degree distributions, graph generators, 72
Preferential attachment models, graph generators, 72–73
Preorder, defined, 228
Probabilistic inference, entity resolution, 316–317
Probabilistic modeling, entity resolution, 315
Procedural method, graph generators, 73
Product operator, homomorphism and, Galois lattice, graph description, 237
Quantitative estimation, chemical graphs, 358–362
Radiality, defined, 451
Radius, defined, 451
Random graph models, graph generators, 72
Randomized scheme, Grew algorithm, 146–148
Random walks, connection strength measurement, dense subgraph extraction, connection subgraphs, 430–431
Readability, graph visualization, 36
Real dataset experiments, Subdue system/frequent substructure approaches compared, 168–170
Realism, R-MAT generator detection, 66
Real-world graph comparisons, R-MAT generator experiments, 83–86
Relatedness measure (kernel-based link analysis), 290–297
diffusion kernels, 296–297
limitations, 290–291
regularized, 290–296
Resilience:
graph generators, 73
R-MAT generator, 71
R-MAT generator, 65–95
commentary, 86–89
community effects, 69–70
degree distribution, 90–91
degree betweenness (stress), 71
experiments, 82–86
min-cut plots, 83
real-world graph comparisons, 83–86
graph generators, 71–78
generally, 71–72
taxonomy of, summary table, 74–77
NetMine, 79–82
min-cut plots, 79–80
properties, 80–82
overview, 65–67
power laws, 68–69
relational learning, 78
resilience, 71
singular vector value, 71
small diameters, 69
terminology, 65
RNA structure, rooted tree mining, bioinformatics applications, 405–407
Rooted tree mining, 381–410
bioinformatics applications, 405–408
phylogenetic trees, 407–408
RNA structure, 405–407
terminology, 409
described, 382–384
distinct occurrences counting, 397–399
experimental results, 401–405
CSLOGS dataset experiments, 402
performance evaluation, 402–405
synthetic dataset experiments, 401–402
synthetic datasets, 401–402
frequency computation, 392–397
embedded subtrees, 392–395
induced subtrees, 395–397
overview, 381–382
related work, 384–385
SLEUTH algorithm, 399–401
subtree generation, 385–392
canonical extension, 388–389
commentary, 391–392
equivalence class-based extension, 389–391
Scree plot, defined, 68
Self-organizing edit costs, graph matching, 27–28
Self-organizing map (SOM), graph matching, 27–28
Shingling, graph shingling, dense subgraph extraction, 422–424
SiGrA M algorithm, 131–141
generally, 131–132
horizontal, 132–135
interactions between, 139–141
vertical, 135–139
Similarity measures, graph-based entity resolution, 325–329
Simulation studies, R-MAT generator detection, 66
Single-edge collapsing, Grew algorithm, 144–145
Singular vector value, R-MAT generator, 71
SLEUTH algorithm, 382, 384, 391, 392, 397, 399–405, 409. See also Rooted tree mining
Small diameters, R-MAT generator, 69
SMILES, Markush structures and, molecular representation, 354–355
Social network(s):
community effects, dense subgraph extraction, 416
connection strength measurement, dense subgraph extraction, connection subgraphs, 429–434
Social network analysis (SNA), 443–468
Best Friends Group Detection algorithm, 452
terminology, 466–467
defined, 443–444
experiments, 465–466
group detection, 452
metrics, 444–451
average cycle length (ACL), 446
average path length (APL), 446
brandes betweenness centrality (BR), 445
characteristic path length (CPL), 447
circumference, 451
cliqueishness, 448–449
closeness centrality, 446
clustering coefficient (CC), 447–448
degree, 450
density, 450
diameter, 450
External-to-internal (E-to-I) ratio, 449–450
girth, 450
global efficiency (GE), 447
homogeneity, 449
radiality and integration, 451
radius, 451
overview, 443
problems in, 444
Terrorist Modus Operandi Detection System (TMODS), 452–464
generally, 452–455
genetic search algorithm, 461
Merging Matches algorithm, 459–461
social network analysis capability, 462–463
standard graph matching extension, 455–459
constraints, 458
hierarchical patterns, 457–458
inexact matching, 455–456
multiple choices and abstractions, 456–457
ontologies, 458–459
Social sciences, graph visualization applications, 36–37
Software engineering, graph visualization applications, 37
Stereocchemistry, molecular representation, 352–353
Straight-line drawing, graph visualization, 36
Stress plot, R-MAT generator, 71
String kernels, vertex classification, 276–277
String similarity, entity resolution, 314
Structure-activity relationship (SAR), Mutagenesis dataset, 6–8
Subdue system, 159–181
approaches, 160–165
Subgraph clustering, 162
substructure discovery, 160–162
supervised learning, 162–165
chemical graphs, 363–364
commentary, 179
frequent substructure approaches compared, 165–170
real dataset experiments, 168–170
synthetic dataset experiments, 167–168
frequent topological patterns, 149, 150–151
graph-based algorithms compared, 165
graph grammar learning, 194, 197
inductive logic programming (ILP) compared, 170–179
artificial data experiments, 174–176
CProgol, 172
generally, 170–172
Mutagenesis dataset experiments, 172–174, 176–179
overview, 159–160
Subgraph, defined, 19. See also Connection subgraphs
Subgraph clustering, Subdue system, 162
Subgraph extension, efficient, vertical SiGraM algorithm, frequent topological patterns, 138–139
Subgraph isomorphism, defined, 118
Substructure discovery, Subdue system, 160–162
Subtree generation (rooted tree mining), 385–392
canonical extension, 388–389
commentary, 391–392
equivalence class-based extension, 389–391
Supervised learning:
kernel methods, 253–254
Subdue system, 162–165
SV-list joins, rooted tree mining, distinct occurrences counting, 398–399
Synthetic dataset experiments:
rooted tree mining, 401–402
Subdue system/frequent substructure approaches compared, 167–168
Terrorist Modus Operandi Detection System (TMODS), 452–464
algorithms, 459–462
distributed genetic search algorithm, 462
event detection, 463–464
generally, 452–455
geneic search algorithm, 461
Merging Matches algorithm, 459–461
social network analysis capability, 462–463
standard graph matching extension, 455–459
constraints, 458
hierarchical patterns, 457–458
inexact matching, 455–456
multiple choices and abstractions, 456–457
ontologies, 458–459
Theoretical bounds, entity resolution, 314
Topological frequent patterns. See Frequent topological patterns
Topology-shape-metrics method, graph visualization techniques, 44–48
Transaction identifier (TID) lists, frequency counting, FSG algorithm, 130–131
Transductive inference, multiclass transduction, kernel methods, vertex classification, 273–275
Trawling, dense subgraph extraction, 418–421
Tree mining. See Rooted tree mining
Undirected graphs, R-MAT generator experiments, 86
Unsupervised learning, defined, 3
Variant substructure patterns (frequent substructures), 107–109
approximate substructure, 107–108
closed frequent substructure, 107
coherent substructure, 108
contrast substructure, 108
dense substructure, 109
discriminative frequent substructure, 108–109
Vertex classification:
commentary, 279–280
kernel methods, 266–278
Bayesian kernel methods, 268–271
generally, 266–268
multiclass transduction, 271–276
string kernels, 276–277
Vertical SiGraM algorithm:
frequent topological patterns, 135–139
problem formulations, 139–141
Voltage algorithms, connection strength measurement, dense subgraph extraction, 432
Walk-based graph kernels:
 empirical evaluation, 263–265
 graph classification, 255–257
Waxman model, graph generators, 73
Web-based community finding, dense subgraph
 extraction, 414–415
Web graph searching, dense subgraph extraction,
 415–416

Web searching:
 graph visualization applications, 37
 graph visualization example, 48–50
World Wide Web, graph databases, 8–10. See
 also Dense subgraph extraction; Internet
 analysis

XML data, rooted tree mining, 384