Index

absolute age of wood, 103
absolute solar system chronology, 136
acapulcoites, 126, 129
Acasta gneisses, 206
accelerator mass spectrometry (AMS), 102, 104, 459–460
Acfer (CH3) chondrite, 150
achondrites, 126, 128, 138
primitive, 126
Shallowater aubrite, 132
acopulcite, 133
Acopulco acopulcite, 133
acoustical vibrations, 255
Adamello Massif, 292
Agassiz, Louis, 1, 326
Al, 106–108
ALHA78132 achondrite, 138
alkaline earth elements, 48
allanite ([Ca,Ce,Y,La]2(Al,Fe+)3(SiO4)3(OH)), 91
Allende (CV3), 126
CAIs, 127–128, 138
acid-dissolution residues of, 148
30Al, 106–108
30Al–26Mg, 134–136
importance as a heat source, 134
systems for two different meteorites, 135
alpha-counting, 86
alpha decay, 11
amoeboid olivine aggregates (AOAs), 125, 136
amphiboles, 287
Andean magmas, 295
Andrew Bain Fracture Zone, 187
Angla do Reis, 128
angrites, 126, 128
angular momentum, nuclear, 14
annealing of fission tracks, 115, 116
zircon (ZrSiO4), 118
anomalous W isotopic compositions, 138
anorthosites, 139
Antarctic Bottom Water (AABW), 233
Antarctic Circumpolar Current, 233
Antarctic Convergence and Antarctic Bottom Water (AABW), 338
Antarctic Intermediate Water (AAIW), 333
apatite (Ca5(PO4)3(OH)), 73
apparent isochrons, 45–47
complications affecting, 44–45
isochrons, 45–47
Ar39Ar dating, 39, 43–47
combinations affecting, 44–45
argon, 430–432
Arrhenius relation, 117
arsenides, 63
asphaltene, 64
assimilation and fractional crystallization (AFC), 291–292
assimilatory sulfate reduction, 273
asteroids, 239
Nerissa, 126
Robin, 126
manganese and silver isotopes in, 140
Vesta, 126, 129
Asiaka 881594, 128
Asymptotic Giant Branch stars (AGB), 147–148
atmospheric carbon, 102
atmospheric CO2, 356–358
atmospheric specific activity, 103
atomic masses, 4
atomic theory, 2–3
authigenic celadonite, 49
autotrophs, 265
baddeleyite (ZrO2), 73, 91
Banda arc magmas, 294
barrier energy, 259
basalts, 49, 139
basaltic achondrite, 128
oceanic island basalts (OIB), 163–164
Bastar craton of India, 209
batch melting, 193
38Be, 106–108, 146
constant production rate for, 1108
dating, 106–107
as a function of depth, 107
production of, 104
Becker, H., 2
Benioff zone, 295
Benson-Calvin cycle, 266, 323
benthic foraminifera, 106, 328, 333–335, 349–350, 352
benzene (C6H6), 102
beta decay, 13–14, 14, 16, 39, 176
neutrinos and, 176
Big Bang phenomenon, 16, 18
binding energies, 4
in liquid-drop model, 6–7
per nucleon, 4
biological fractionation of sulfur isotopes, 273–274
carbon and hydrogen isotopic composition of organic matter in sediments, 271–273
carbonates, 87, 89
ion isotopologues, 257
isotopic composition of, 257
carbon-12 atom, 4
carbon-burning phase, 22
carbon cycle
long-term, 351–359
short-term, 342–347
carbon-14 dating, 2, 89, 102–103
of groundwater, 108
moraines, 114
short half-life, 102
to waters less than 25,000 years old, 108
carbon isotope fractionation during photosynthesis, 265–269
carbon-12 atom, 4
carbon-burning phase, 22
carbon cycle, long-term, 351–359
short-term, 342–347
carbon-14 dating, 2, 89, 102–103
of groundwater, 108
moraines, 114
short half-life, 102
to waters less than 25,000 years old, 108
carbon isotope fractionation during photosynthesis, 265–269
of algae and autotrophic bacteria, 266, 268
fractionation occurring during carboxylation, 267
of marine algae and aquatic plants, 266
observed total fractionation vs expected fractionation, 266–267
stomatal conductance, 266
of terrestrial plants, 265–266
carbon isotopes, 265–269, 318–321
composition of mantle, 265–266 and earliest life, 323–325
ocean circulation, and climate, 332–334
carboxylation, 266
Ca-rich plagiooclase, 45
Cenozoic mountain-building, 237
Central Volcanic Zone (CVZ), 295
CERN's Large Hadron Collider, 101
Chadwick, James, 2
chalcopyrite, 61
Chandralekha mass, 25
characteristic penetration depth, 112
charcoal, 89
Chassigny, 126, 144
carbonaceous chondrites, 125, 138, 152
noble gases of, 146, 421–423
U/Pb ratio in, 168
carbon and hydrogen isotopic composition of organic matter in sediments, 271–273
carbonates, 87, 89
ion isotopologues, 257
isotopic composition of, 257
carbon-12 atom, 4
carbon-burning phase, 22
carbon cycle, long-term, 351–359
short-term, 342–347
carbon-14 dating, 2, 89, 102–103
of groundwater, 108
moraines, 114
short half-life, 102
to waters less than 25,000 years old, 108

carbon isotope fractionation during photosynthesis, 265–269
of algae and autotrophic bacteria, 266, 268
fractionation occurring during carboxylation, 267
of marine algae and aquatic plants, 266
observed total fractionation vs expected fractionation, 266–267
stomatal conductance, 266
of terrestrial plants, 265–266
carbon isotopes, 265–269, 318–321
composition of mantle, 284–286
and earliest life, 323–325
ocean circulation, and climate, 332–334
carboxylation, 266
Ca-rich plagiooclase, 45
Cenozoic mountain-building, 237
Central Volcanic Zone (CVZ), 295
CERN's Large Hadron Collider, 101
Chadwick, James, 2
chalcopyrite, 61
Chandralekha mass, 25
characteristic penetration depth, 112
charcoal, 89
Chassigny, 126, 144
carbonaceous chondrites, 125, 138, 207
carbonaceous (C), 125
chondritic Hf/W ratio, 137
chondrules of, 125, 138, 207
Cl, 125
enstatite, 125
late accretionary veneer of, 140
Nd isotopic variations, 143
26Nd/144Nd ratio, 141
ordinary, 125
petrographic grade, 126
St. Marguerite, 128
Tatxuac, 131
W, 163
Zag, 132
chondritic uniform reservoir (CHUR), 53, 54, 211
model age of a system, 55
chronometer, 12
C3 & C4 hydrocarbons, 246
Cl chondrites, 125
Circumpolar Deep Water (CDW), 233
CI chondrites, 125
Circumpolar Deep Water (CDW), 233
36Cl, 106–108
ages of moraine boulders from Bloody Canyon, 114
36Cl/35Cl ratio, 109–110
dating of glacial deposits, 113–114
hydrologic flow parameters, 113
means of production, 109
Clayton, R., 152
Clayton's self-shielding hypothesis, 153
CI chondrites, 125
clinoxyroxene, 48, 194
closure depths, 119–120
closure temperatures for K-Ar, 129
U-Th-He system, 83
36Cl spallation reactions, 114
clumping of isotopes, 256–258
applications, 366–369
CM2 chondrites, 147
characteristics of presolar grains in, 149
CNO cycle, 21–22
12C–18O, 256
CO, isotopologues of, 257
CO2 concentrations, 1
coincidence counting, 102
Cold Bokkeveld chondrite, 138
collisional erosion hypothesis, 53, 144
concordia diagram, 78–79
Tera-Wasserburg, 76
concordant, 78
definition, 78
for Pb loss during a metamorphic event, 79
Pa-Th, 92
U-Pb, 92–93
of zircons, 80–82
constant activity model, 94
constant flux–constant sedimentation model, 94–95
constant flux model, 94
constant initial concentration model, 94
constant rate of supply model, 94
constant sedimentation model, 94
continental crust, 173
Acasta gneisses, 206
assimilation, effects of, 189
Cretaceous-Tertiary boundary, 238
crustal composition and evolution, 224–226
evolution of α and ε18O, 223
growth of, 212–215
Hadean crustal protoliths, 206
Hadean eon, 206–212
half-mass stratigraphic age, 226
HF in crustal rocks, 220
isotopic composition of, 217–223
marine sediments, 220
mass of, 174
mass ratio of continental crust to depleted mantle, 173
mechanisms of crustal growth, 205–206
Nd and Hf isotopic approaches to crustal evolution, 215–217
143Nd/144Nd, 224–225
143Nd/144Nd ratio, 173–174
143Nd/144Nd ratio of, 173–174
O=εH relationship, 216
187Os/188Os, 236, 238
187Os/188Os ratio, 221
Pb isotope ratios and Th/U ratio, 223
Pb isotope ratios and Th/U ratio, 223
Proterozoic crust, 216
rate of continent-to-mantle recycling, 226
relationships between Tef and ε18O, 224
rock formation, 215
sedimentary mass, 221
147Sm/144Nd ratio of, 174
147Sm/144Nd ratios, 224–225
subduction zones, 226–231
tectonic erosion of, 182
U/Pb ages of juvenile igneous rocks, 214
continental flood basalts, 191, 193
continental isotopic records, 336–337
continental volcanism, 206
conventional meteorite chronology, 128
13C/18O isotopeologue, 257
copper isotopes, 378–381
correlation of crustal evolution, 223
143Nd/144Nd ratio of, 174
143Nd/144Nd ratios, 224–225
ocean circulation in, 236
osmium isotopic composition of, 236
Pb isotope ratios in, 235
record of climate change in deep sea sediments, 327
temperature, 328
warming of, 336, 352
Zn in, 383
delta δ notation, 246–247, 256
densities of fission track, 115
induced, 116
spontaneous, 116–117
spontaneous vs induced, 117
detrital zircons, 214
crystallization age histogram of, 217
Jack Hills zircons, 210
deuterium burning, 20, 423
devonian sediments, 110
deVries events, 103
diabase chondrite, 138
diamonds, 148, 150
δ13C, 285, 288
diatomic molecule, 250–251
diatomic molecule, 250–251
383
INDEX

diatomic oscillator, 248
diet and isotopes, 316–318
differentiated meteorites, 125
diogenites, 126
dissimilatory sulfate reduction, 273
dissolved inorganic carbon (DIC), 268
dissolved load of rivers, 220
distribution coefficient, defined, 193
Dodson’s closure temperature equation, 119
d’Orbigny angrite, 128, 136
DUPAL anomaly, 187, 188
early-enriched reservoir (EER), 143
Earth chondritic Sm/Nd ratio of, 53
cosmic rays in the atmosphere, 101–102
formation and evolution of, 444–447
4He abundance in, 112, 424
εHf and εNd, 57
εW, 137
epsilon notation, 52–53, 59
[]

147Sm/144Nd ratio of, 52
solar wind, 103
Sr-Nd-Hf system, 163–166
U/Pb ratio of chondrites, 167
ɛNd vs age the giant impact, 141

182W/184W, 206
eclogite, 182
Efremovka CAI, 127
Einstein function, 255
electromagnetic spectra, 8
electron capture, 14–15
electroweak, 14
El Niño events, 233
EM I and EM II mantle reservoirs, 183–184
energetic collisions, 144
enstatite chondrite, 125
entropy and energy changes of a reaction, 249
EPICA (European Project for Ice Coring in Antarctica) project, 337
erupción, 23
epsilon εNd, 52–53, 59
equation of state, 249
example of fractionation factor calculated from partition functions, 252–254
of isotopes, 250
isotopologues and isotopic “clumping,” 256–258
rotational partition function, 250–252
translational partition function, 250
vibrational partition function, 251–252
equilibrium fractionations, 249–253
feeding zone of Earth accretion, 140
fibrous diamonds, 288
Fish Canyon Tuff, 117
fission decay, 15–16
fission tracks, 114–121, 132
activation energies, 117–118
analytical procedures, 115–117
annealing of, 115
apatite fission track ages vs altitude for metamorphic rocks of the Higher Himalaya, 120
closure temperatures, 118–119
in context of K-Ar dating, 118
dating, basis for, 115
densities, 115
erasing procedures for dating, 116
induced track density, 116
interpreting ages of, 117–119
interpreting track length, 119–120
neutron-induced fission, 116

28Al–26Mg, 134–136
in Earth, 136
26He–182W, 136–140
identified in meteorites, 130
127I, 131–133
134I, 130
133Pd–137Ag, 133–134
244Pu, 131–133
short-lived radionuclides in the early Solar System, 131
146Sm/142Nd, 140–143
stable isotope of Mn, 130
228Xe, 129

182Hf–182W, 136–140
INDEX 469

in a polished and etched zircon, 115
problems of partial annealing, 119
relation between percentage of tracks annealed, temperature, and time, 118
of uranium atoms, 114–117
fixation, 270
fixed nitrogen, 270
fossil reef corals, 230
Th dating of, 89
FOZO, 185
fractional crystallization, 289
fractionation factors, 247, 253, 302
experimental determination of, 255
between quartz and water, 255
temperature dependencies of, 255, 263–264
topography and, 264
fractionation of isotopes, 247
mass-independent fractionation, 369–371
frequency factor, 259
FUN anomalies, 151
Galapagos Archipelago, 188–189
Galapagos Spreading Center (GSC), 290, 299
galea (PbS), 73, 308, 311
gamma decay, 12–13
gamma ray frequency, 12
garnets, 54, 194
garnet-bearing lithologies, 183
 garnet-mica schist from Snow Peak in northern Idaho, 60
garnet peridotite facies, 196
partition coefficient of Lu in, 51
Sm-Nd isochron of, 54
gas proportional counter, 102
Gas, Paul, 161
Genesis mission of NASA, 153
Geochron, 167, 170, 222
calculation of isochron, 37–39
isochron dating, 36
glacial cycles, 347–351
Global Meteoric Water Line, 265
global warming, 1, 342–347
glucamate dehydrogenase reaction, 270
glutamate dehydrogenase reaction, 270
gluten, 179
hot spots, 179
human evolution, 321
hydrocarbons, Re-Os dating of, 64–65
hydrogen and oxygen isotope ratios in hydrologic system, 262–265
delta 18O precipitation, 264
hydrogen burning, 19
hydrogen isotope fractionation, 262, 271–272
hydrogen isotopic composition of mantle, 286–287
hydrogenous sediments, 59
hydrologic cycle, 264
hydrothermal metamorphism, 298–300
hydrus minerals of xenoliths, 286
hydroxylamine hydrochloride, 236
IAB irons, 129
Ibiza, 128
icelandic basalts, 284
icelandic oceanic plateau, 206
Iceman and isotopes, 323
He/H ratio, 17, 20
helium, isotopes of erosion rates from cosmogenic 4He, 112–113
in Haleakala volcano, 113
4He, 110–111
upward mobility of, 110
in the Earth, 423–427
helium burning, 152
Hertzsprung–Russell diagram of relationship between luminosity and surface temperature, 19
Hess, Victor, 101
hetrotrophs, 265, 270
191Hf/197Hf ratio, 166
He isotope ratios in river water, 235
in Saharan dust, 235
in seawater, 234
192Hf–192W constraints, 136–140
HMU reservoir, 185
H2 molecule, 259
Holocene stratigraphy, 104
homogeneous solar nebula, 126
Hooke’s Law harmonic oscillator, 254
Hoozy sandstone, 110
horses (Family Equidae), 318–321
hot spots, 179
human evolution, 321
hydrocarbons, Re-Os dating of, 64–65
hydrogen and oxygen isotope ratios in hydrologic system, 262–265
delta 18O precipitation, 264
hydrogen burning, 19
hydrogen isotope fractionation, 262, 271–272
hydrogen isotopic composition of mantle, 286–287
hydrogenous sediments, 59
hydrologic cycle, 264
hydrothermal metamorphism, 298–300
hydrus minerals of xenoliths, 286
hydroxylamine hydrochloride, 236
IAB irons, 129
Ibiza, 128
icelandic basalts, 284
icelandic oceanic plateau, 206
Iceman and isotopes, 323
β-factors, 252–253
igneous rocks, 290
ilmenite, 289
increment method of estimating fractionation factors, 278
Indian Ocean circulation, 233
Indian Ocean MORB, 187
inherited Ar, 45
intermediate nuclides, 93
interplanetary dust particles (IDPs), 150
interstellar space, nucleosynthesis in, 27–28
inverse beta decay reaction, 176
inverse isochron plot, 46
iron isotopes, 371–375
iron meteorites, 63, 128
isobars, 3, 7, 14
isochron, calculation of, 37–39
error on the intercept, 38
correction for, 38
intercept, 38
mean squared weighted deviations (MSWD), 39
regression slope, 38
slope, 38
isochron dating, 36
isochrons
\[ ^{40} \text{Ar} / ^{39} \text{Ar} \], 45–47
dating, 36
equation, 36
isotones, 3, 8
isotope dilution analysis, 462–463
isotope geochemistry, 3, 8. see also noble gas isotope geochemistry; stable isotope geochemistry
applications of, 2
core-mantle boundary, 175
growth of, 1
isotopic fractionations, 33
isotopic homogenization of a system, 37
isotopic coulomb field, 9
production rates in terrestrial rocks, 112
role in transforming geology, 1
isotope ratio in molecular oxygen, 253
isotopic “clumping,” 256–258
isotopic composition of carbonates, 257
isotopic composition of continental crust, 217–223
Archean lower crustal terrains, 223
of lower crust, 221–223
\[ ^{144} \text{Nd} / ^{143} \text{Nd} \] ratios, 218
oresgeneal age–\( ^{207} \text{Pb} / ^{206} \text{Pb} \) isotopic composition relationship, 222
sediments and rivers, 218–221
\[ ^{87} \text{Sr} / ^{86} \text{Sr} \] ratios, 218, 220
isotopic composition of melt, 289
isotopic disequilibrium, 194
isotopic heterogeneity, 151
isotopic fractionations, 152–260, 272
of O isotopes, 259
kaminite, 63, 65, 207
krypton, 432–433
Kurz, M. D., 112
LaPlace operator, 5
large Magellanic Cloud, 27
large slow-shear wave velocity (LLSVPs), 171–172
laser-ablation inductively coupled mass spectrometry (LA-ICP-MS), 82
Law of Constant Proportions, 2
lawsonite (\[ \text{CaAl}_2\text{Si}_2\text{O}_7(\text{OH})_2\cdot\text{H}_2\text{O} \]), 61
legumes, 270
Lewis Cliff 86010 angrite, 128, 136
liquid-drop model, 6–7, 15
liquid scintillation counting, 102
lithium isotopes, 384–385, 390–393
lithophile, 61
lodranites, 126, 129
low shear wave velocities provinces (LLSVPs), 145
Lu, 151
Lu–Hf system, 37, 56–61, 170
advantages of, 57, 58
analytical problems with, 57
calibration experiment on, 57
comparison with U–Pb
isochrons of Proterozoic dolerites, 57
decay rate of a nuclide, 57
Hf in felsic crystalline rocks, 59
e\( \text{Hf} \) value, 57, 59
ionic radii, 56
ionization efficiency, 57
isochron for a garnet-mica schist from northern Idaho, 60
isochron plot, 57–58
isotopic analysis of Hf, 57
internal isochron age, 58
\[ ^{176} \text{Lu} / ^{176} \text{Hf} \] ratio in chondrites, 58
odd-odd nuclei, 56
range of Lu/Hf ratios in common rocks and minerals, 58–59
similarity between Sm–Nd system and, 59
systematics of chondrite meteorites, 58
“terrestrial” decay constant of Söderlund and Scherer, 57
mafic protolith, 211
garage numbers, 7–8
magnetically, 289
main sequence stars, 126
manganese nodules, 107
magnetite, 289
carbon isotopic composition of, 284–286
chemistry, geographic variations in, 187–189
contamination of, 282
fluxes between reservoirs, 444
fractionated Hf/W ratios, 207
He in, 425–427
hydrogen isotopic composition of, 286–287
mass-dependent fractionation, 261
sulfur isotope fractionations, 262
mass-independent O fractionation, 261
sulfur isotope fractionations, 262
mass-independent O fractionation, 152–153
massive stars, 22
mass spectrometry
accelerator, 459–460
analytical strategies, 460–463
detector, 458–459
ion source, 455–456
mass analyzer, 456–458
mass spectrometer, 454–455
sample extraction and preparation, 454
Masuda–Coryell plots, 52
Mayer–Jensen coupling, 10
mean squared weighted deviations (MSWD), 39
Mediterranean Intermediate Water (MIW), 237
Mediterranean Outflow water (MOW), 237
melting and melt extraction, models of, 194
Spiegelman and Elliot model of melt transport, 194–198
melts crystallizing non-silicates, 290
metabasalts, 206
metal-silicate fractionation, 138
metamict, 80
metasediments, 206
meteoric geothermal systems, 301
Meteoric Water Line, 265
methanogens, 272
mixing time, 232
Mo/Fe oxides, 88
molecular clocks, 32
molecular masses, ratio of, 253
molybdenum isotopes, 375–378
monazite, 73
Moon, formation of, 139
giant impact from, 206
homogeneous isotopic composition of lunar materials, 139
exotic components in, 151
eposure ages of, 154
graphite interstellar grains in, 150
HED, 126
iron, 128
I-Xe ages of, 133
Martian, 144
measurements of, 73
16N/128Nd ratio, 141
neon alphabet soup and "pre-solar" noble gases in, 146–148
oxygen isotope variations in, 151–152
Pd/Au ratio in iron, 133
primitive, 125
SNC, 126
stardust and isotopic anomalies in, 146–151
thermal metamorphism in, 126
U-Pb ages of chondritic and achondritic, 127
variation of 134Xe/132Xe and 136Xe/132Xe in, 132
methanogens, 272
40–39 method, 43
 Mg isotopic compositions, 150
MgO-rich lavas, 63
mica, 48
carbon isotopic composition of mantle, 285
measurements of 15N ATM in, 287–288
oxygen isotopic composition of mantle, 283–284
Milankovitch parameters, 1, 330
mineral exploration, oxygen isotopes and, 304–305
Mississippi Valley type deposits, 311
Mississippi Valley type deposits, 311
mixing time, 232
Mo/Fe oxides, 88
molecular clocks, 32
molecular masses, ratio of, 253
molybdenum isotopes, 375–378
monazite, 73
Moon, formation of, 139
giant impact from, 206
homogeneous isotopic composition of lunar materials, 139

INDEX

Moon, formation of (continued)
minimum age of, 140
\(^{142}\text{Nd}/^{144}\text{Nd} \) ratios, 144
moraines, 114
in Bloody Canyon of Mono Basin, 114
Multi-collector secondary ionization mass spectrometers (MC-SIMS), 81
muons, 102, 112
Murchison chondrite, 138
Murray chondrite, 138
Nachites, 126
Nanton (IAB-IICD) iron meteorite, 167
Nd isotope system, 50, 164–165, 173–174
Nd isotope ratios, 237
Nd model age, 56
\(^{142}\text{Nd}/^{144}\text{Nd} \) anomalies, 209–210
\(^{142}\text{Nd}/^{144}\text{Nd} \) ratio, 53, 165, 207–208
chondrites, 141
Earth, 141
meteorites, 141
Moon, 144
\(^{141}\text{Nd}/^{144}\text{Nd} \) ratio of continental crust, 173–174
of the Earth, 52, 54
vs time plot, 56
Neanderthal bone collagen, 322
Ne burning, 22
neon, 427–430
alphabet soup in meteorites, 146–148
Ne-(E)(H), 147
Ne-(E)(U), 147
neutral current reaction, 176
neutrons, 14, 151
neutrons, 3
capture, 24, 26
excess number, 6–7
neutron-induced fusion, 116
neutron-neutron pairing energy, 11
neutron-poor isotopes, 151
neutron-rich e process material, 151
NGRIP, 338
NH\(_2\) amine groups, 270
nitrogen isotope fractionation in biological processes, 269–271
equilibrium isotope fractionations, 269–270
forms of injected nitrogen, 269
in marine blue-green algae, 270
nitrogen isotopic composition of mantle, 287–288
\(^{14}N(n, p)^{14}\text{C} \) reaction, 102
\(^{13}N\text{O}^{14}N\text{O} \), 256
noble gas isotope geochemistry abundances of noble gases, 420
argon, 430–432
He, Ar, and Ne budgets, 439–444
helium, 423–427
implications in evolution of Earth, 437–447
krypton, 432–433
neon, 427–430
in Solar System, 420–423
Xenon, 433–437
Nogoya chondrite, 138
non-chondritic Sm/Nd, 54
non-conventional stable isotope ratios, 366
non-linear polyatomic molecules, partition function of, 231
non-magmatic iron, 126, 129
North Atlantic Deep Water (NADW), 233, 234, 236, 333, 351
ocean circulation, 236
outflow pattern, 237
unradiogenic nature of, 234, 236
Northern Hemisphere Regression Line, 187
Northern Hemisphere terrestrial biosphere, 346–347
Northern Volcanic Zone (NVZ), 295
Norwegian-Greenland Sea, 237
nuclear binding force, 4
nuclear decay, 12
nuclear forces, 3–6
nuclear magnetic resonance (NMR), 10
nuclear magmatons, 9
nuclear mass, 3
nuclear physics
atomic masses and binding energies, 4
collective model, 11–12
definitions and units, 3
eyearly development of atomic and nuclear theory, 2–3
liquid-drop model, 6–7
nucleons, nuclei, and nuclear forces, 3–6
shell model of the nucleus, 7–11
nuclear spin, 8–9, 9
nuclear theory, 2–3
nucleosynthesis, 16–28
cosmological, 17–18
definition, 16
explosive, 17, 25–27
in interstellar space, 27–28
observations, 16
stellar, 17–25
nucleus, angular momentum and magnetic moment of, 8
nuclides
\(^{19}\text{Be}, ^{30}\text{Al}, \) and \(^{36}\text{Cl}, 106–108
cosmogenic, 101–114
cosmogenic and bomb-produced radionuclides in hydrology, 108–110
cosmogenic production of, 139
decay series, 85
even-even, 12
half-lives of daughter, 84
from hydrogen, helium, and carbon burning in main sequence, 21
in-situ produced cosmogenic nuclides, 110–114
intermediate, 93
odd-even, 9, 10, 24
\(s\) process, 142
U decay series, 193
Nuevo Laredo achondrite, 128
Nuuvaguitqatq Belt, 208
Nuuvaguitqatq supracrustal belt, 208–209
NWA2364 CAI, 127
NWA 5697 chondrite, 128
Ocean Drilling Project (ODP), 300
ocean crust, 205
accretion of, 205–206
balancing depleted mantle and, 172–179
hydrothermal metamorphism of, 298–300
mass ratio of continental crust to depleted mantle, 173
partial melting, effect of, 182
oceanic island basalt (OIB), 163–164, 186, 284
Eu anomalies, 184
Haucui, 180
Kerguelen, 180
INDEX 473

noble gas isotope ratios, 238–239
Pb isotope systematics of, 169
Society, 180
St. Helena, 180
oceanic lithospheric enrichment, 182–183
oceanographic circulation and geochemical cycling, 232–233
oceanography, 104, 231–233
16O, 232–233
ordinary chondrite, 125
Orgueil (CI1) chondrite, 136, 138
neon isotopic compositions in, 147
O isotopes in, 283
ontong Java oceanic plateau, 191, 206
18O molecule, 259
open system nature of oceans, 50
ordinary chondrite, 125
Ordovician (CH), chondrite, 136, 138
neon isotopic compositions in, 147
SiC grains in, 147
orthopyroxene, 194
O isotopes composition, 194
Os isotope composition, 182
deep ocean water, 232
ratios, 61–63, 64
osmium, 61, 236
187Os/188Os continental weathering products, 238
in seawater, 238
Os-Nd isotope systematics, 191, 193
188Os/186Os ratio, 65
180Os/188Os ratios, 61–63, 191
oxygen isotopic compositions in K-feldspar and Na-feldspar, 278
carbonate-water, 327
during crystallization, 289–290
at high temperature, 277–280
water rock, 298–303
at low temperatures, 278–280
mass-independent fractionation, 369–370
by plants, 271
oxygen isotope heterogeneity in eclogites, 286
oxygen isotopes in hydrothermal systems, 298–305
metamorphism of oceanic crust, 298–300
meteoric geothermal systems, 301
δ34O, 300–301
oxygen isotopes and mineral exploration, 304–305
ridge crest hydrothermal activity, 298–300
Skaergaard intrusion, 303–304
water-rock reaction, theory, 301–303
oxygen isotopes in magmatic processes, 288–298
calculated Sr concentrations, 292
combined fractional crystallization and assimilation, 291
combining radiogenic and oxygen isotopes, 291–292
during crystallization of feldspars, 289–291
crystallization of quartz and silicates, 289
sediment subduction vs assimilation, 292–296
silica tetrahedra and Si – O bonds, 288–289
solid/liquid partition coefficient, 292
stable isotopes as indicators of crust-to-mantle recycling, 296–298
variation in δ18O of a magma, 291
oxygen isotope variations and nebular processes, 151–154
oxygen isotopic compositions of mantle, 283–284
MORB, 283–284
olivine and clinopyroxene, 283
total range of values observed, 283
Pacific Ocean MORB, 187
twinning effects, 10–11
paleo-atmospheric CO2, 354–356
paleoecology, 104
paleoclimatology, stable isotopes in, 326–328
record of climate change in deep sea sediments, 327
paleoecologists and isotopes, 321–323
Paleolithic cave paintings and engravings, 89
paleoceanography, radiogenic isotopes in, 236–240
paleosols, 341
Appalachian-Ouachita-Marathon Orogeny, 312
Lachlan Fold Belt, 216
parent-daughter ratio, Rα/τ, 36, 166, 170
HI isotope compositions, 210
in mantle, 164
in radiogenic isotope ratios, 190
radiogenic isotope ratio vs, 227
Spiegelman and Elliot model of melt transport, 195
subduction zone processing effects, 185
of Th-Pb system, 77
time-integrated, 175, 178
partition function, 249–254
235Pa–231U dating, 91–93
dependence of [235Pa/231U] ratio on age, 92
Pauli Exclusion Principle, 8
Pb, geochemical behavior of, 73
206Pb dating, 93–95
measured on sediment samples from Tehuantepec Gulf, Mexico, 95
Pb isotope ratios, 33
in Archean and post-Archean granulite, 222
in deep Pacific water, 235
evolution of, 183
in lower crustal xenoliths, 222
in marine sediment, 220
in modern marine sediments, 219
in rivers, 236
silicate Earth, 212
Pb isotope system, 166–172
crust, 221
Earth, Pb-Pb age of, 168
first-order, 170
of lower crust, 221
magma flux of mantle plumes, 171
Pb isotope systematics of oceanic island basalts (OIB), 169
ratios, 167
Pb-Pb age, 74–77
Pb-Pb isochron, 75
207Pb/206Pb ratio, 183–184, 187, 218
137Pb, 133–134
half-life of, 133
137Pb–137Ag, 133–134
INDEX

Pee Dee Bellemite carbonate (PDB), 247
pelitic sediments, 294
peralkaline lava, 91, 93
per-mil fractionation, 260
PHEM, 186
phenocrysts, 294
phlogopite (Mg-rich mica), 191
phosphates, 128
phosphoenol pyruvate (PEP), 267
phosphoenolpyruvate carboxylation, 268
3-phosphoglyceric acid, 266
photodisintegrates, 22
photo-dissociation (photolysis), 152, 262, 370
photophosphorylation, 266
pion, 3, 5–6, 102
plagioclase, 48, 240
Planck’s constant, 5, 250
planetesimals, 138
planktonic foraminifera, 106
platinoid metal deposits, 62
platinum group metals (PGM), 62
Pleistocene climate change, 89, 326–332, 336–340
Pole-to-equator gradient in solar radiative energy, 232
polygenetic hypothesis, 17
210Po–210Pb dating, 95–96
polonium-lead disequilibrium, 96
porphyrins, 64
porphyry copper deposits, 310
potential function \( V(r) \), 5
pp process, 20
p-process, 26–27
pre-solar noble gases in meteorites, 146–148
pre-solar grains, isotopic composition of, 148–150
primitive achondrites, 126, 129
primitive mantle, 173, 179, 186, 282
primitive meteorites, 125
protactinium, 91
Proterozoic crust, 216
protogalaxies, 20
proton-proton pairing energy, 11
199Pt, 180Os decay, 65
244Pu, 15, 131–133, 419, 432–437
pyrochlore (Na₃Ca₁₂Nb₂O₈(OH,F)), 91
quantum mechanics, 248
quantum translational energy of a particle, 250
quartzites, 82
quartz-mineral fractionation, 278
quaternary carbon isotope record, 347–351
quaternary glaciations, 329–332
quaternary \( ^{18}O \) record, 327–329
208Ra dating, 93
radioactive decay, 12–16
alpha decay, 13
basic equation of, 12, 84
beta decay, 13–14
electron capture, 14–15
gamma decay, 12–13
of nuclide in a rock, 113–114
spontaneous fission, 113–114
radioactive disequilibrium, 193, 194
U-series disequilibria, 193, 194
radioactive equilibrium, 84
before melting, 194
radioactive isotope geochemistry
chemistry and geochronology, 48–49
disadvantage of, 49
in the Earth, 49
Hurley estimate, 213
isotopic composition of daughter, 48
range in parent/daughter ratio, 47
recombination era, 18
red giant, 20
red giant phase, 21
red giant/supernova injection hypothesis, 146
reduced partition function, 252
refractory calcium-aluminum inclusions, 125
Re-Os geochronology, 48, 64–65
short-dating of diamonds, 64–65
dating of hydrocarbons, 64–65
differences in compatibility, 63
230Th whole rock isochron, 93
Rayleigh condensation, 260
Rayleigh distillation, 259, 263, 284, 287, 289
\(^{87}\)Rb decay constant, 37
Ra/Sr fractionations, 162
\(^{87}\)Rb/Sr ratio, time-integrated and time-averaged, 162–163
Rh-Sr system, 170
chemistry and geochronology, 48–49
deviations from closed system behavior, 47–48
disadvantage of, 49
in the Earth, 49
Hurley estimate, 213
isotopic composition of daughter, 48
range in parent/daughter ratio, 47
ratio of parent to daughter, 47
Rh/Sr dating, 49
resetting during metamorphism, 213
Sr isotope chronostatigraphy, 49–50
210Pb, 129, 434–435
short-lived, 129, 145–146
short-lived, origin of, 145–146
Raoul’s law, 262
rare earths
concentrations in the CI carbonaceous chondrite Orgueil, 52
inner electron shells, 50
ionic radii, 51
mafic minerals, 51
normalizing process of, 52
Periodic Table, 51
relative concentrations of, 51
valence state of, 51
228Ra–230Th whole rock isochron, 93
recombination era, 18
red giant, 20
red giant phase, 21
red giant/supernova injection hypothesis, 146
reduced partition function, 252
refractory calcium-aluminum inclusions, 125
Re-Os geochronology, 48, 64–65
dating of diamonds, 64–65
dating of hydrocarbons, 64–65
differences in compatibility, 63
190Pt - 186Os decay, 65
Re-Os ratios, 191
Re-Os system, see also Re-Os geochronology
decay system, 61 – 63
metal-silicate partition coefficients, 62
Os isotope ratios, 61 – 63
Re/Os ratio of the mantle, 62
reservoir effects, 103
reservoir rock, 64
residence time, 108, 232, 239
Reunion mantle plume, 192
ribulose bisphosphate carboxylase oxygenase (RUBISCO), 266 – 267
ridge crest hydrothermal activity, 298 – 300
Roberts Victor Mine (South Africa) kimberlite, 190, 296
rotational motion of molecules, 248
rotational partition function, 250 – 252
r-process, 25 – 26
nuclides, 151
RuBP photosynthesis, 267
Samarophite, 300
Schrodinger Equation, 8
for a three-dimensional harmonic oscillator, 9
sea water, 234
of Baffin Bay region, 234
carbon isotope ratios in, 268 – 269
Hf isotope ratios in, 234
in ice ages, 104 – 106
isotopic equilibrium, 87
isotopic variations in, 232
of Labrador Sea, 234
mean εNd of, 233
Nd isotopic composition of, 233
Os isotopic composition of seawater, 238
oxygen isotope exchange, 289
Pb isotope ratios in, 235 – 236
residence time of Os in, 232
Sr in, 50, 220
87Sr/86Sr ratio, 50
sulfate, 310
234U/238U ratio, 86 – 88
sedimentary rocks, 49
sedimentation rate, 106 – 107
sodium chromate, 325
Shallowater aubrite, 132
absolute age of, 133
shell model of the nucleus, 7 – 11
capture cross section, 11
even-odd effect, 7 – 9
magic numbers, 7 – 8
pairing effects, 10 – 11
Shergottites, 126, 144
shielding effect, 27
short-lived radionuclides, 129
origin of, 145 – 146
SHRIMP, 83
Si, presolar grains, 148 – 149
Mo isotope anomalies in, 150
siderophile elements, 61
Si isotopic compositions, 149
siderophile abundances in, 207
U/Pb ratio in, 168
Silicate-Metal fractionation, 137
silicon burning, see e-process silicon isotopes, 401 – 405
Skaergaard intrusion, 303 – 304
146Sm/142Nd, 140 – 145
Sm-Nd chronometer, 54
Sm-Nd geochronology, 48
147Sm/144Nd ratio, 165
of Earth, 52, 54, 175
146Sm/144Nd ratios
in crustal growth, 224 – 225
Sm-Nd system, 50 – 56, 191
crystallization of a terrestrial magma ocean, 53
epsilonNd of, 52 – 53, 59
ionic radius, 51
isochron based on six garnet fractions, 55
model ages and crustal residence times, 55 – 56
partition coefficient of Lu in garnet, 51
relative concentrations of rare earths, 51
similarity between Lu-Hf system and, 59
146Sm/144Nd ratio of the Earth, 52
SN 1987A, 27
SNC meteorites, 126, 138
Society OIB, 180
Solar System, 16 – 17, 53, 83, 125, 126, 135, 206
26Al/27Al ratios, 136
formation of iron cores within small planetary bodies, 133 – 134
generation of the solar wind, 153
176Hf/177Hf of, 58
models of planetary accretion, 167
Moon, formation of, 139
noble gas isotopes, 420 – 423
16O-rich nature of Sun, 153
short-lived radionuclides in the early, 131, 145 – 146
solar wind, 103
stars, 19
Sun, 19
South African kimberlites, 117
Southern Volcanic Zone (SVZ), 295
South Pacific Isotope and Thermal (SOPITA) anomaly, 188
Southwest Indian Ridge (SWIR), 187
spallation reactions, 101, 106, 146
of 40Ar, 109
35Cl, 114
cosmic ray-induced, 111
specific activity, 102
atmospheric, 103
of 16O, 103
spelaeothems, 340 – 341
spelaeothems, 89
spalhelite–galena sulfur isotope temperatures, 281
sphere (CaTiSiO4), 48, 73, 118
Spiegelman and Elliot model of melt transport, 194 – 198
conservation equation for each parent-daughter pair, 195
de compression melting beneath mid-ocean ridges and oceanic islands, 195
effective velocity of element, 196
melting rate, 195
partition coefficients for Th and U, 197
porosity and depth, relationship, 195–196
relative effective velocities, 197
spin-orbit interaction, 10
spontaneous fission, 15–16
spontaneous fission tracks, 116–117
Sr in seawater, 50
Sr-Nd-Hf system, 163–166, 180
Sr-Nd-Pb isotopic compositions, 185
Sr partition coefficient, 48
87Sr/86Sr, 49, 161–163, 295
stable chlorine, 109–110
stable cosmogenic nuclides, 111
stable nuclei, 3
stable isotopes in paleoclimatology, 326–342
stable isotopes and ores, 305–312
sulfur isotopes and ores, 305–312
theory of mass dependent isotopic fractionations, 247–260
sulfur isotope composition of mantle, 288
sulfur isotopic composition of allanite crystals, 91
suscept, 103
thermochemical, 332
Th Ørsted, 209
Thera, 140
three-dimensional harmonic oscillator, Schrödinger Equation for, 9
three-dimensional translational partition function, 250
Tera-Wasserburg diagram, 76
tertiary marine δ18O record, 334–336
terrestrial magnetic field, 103
thermochronology, 83, 115
thermal metamorphism in meteorites, 126
thermogenic methane, 272
thermal ionization mass spectrometry (TIMS), 81–82, 465
thermohaline, 332
Thoolen’s flow, 209
Thórson, J. J., 2
three-dimensional harmonic oscillator, Schrödinger Equation for, 9
three-dimensional translational partition function, 250
230Th/238U dating, 88–91
of allanite crystals, 91
applications, 89
of magmatic processes, 288–298
in paleontological, archeological, and the environment, 312–326
stable isotopes as indicators of crust-to-mantle recycling, 296–298
stable isotopes in paleoclimatology, 326–342
sulfur isotopes and ores, 305–312
theory of mass dependent isotopic fractionations, 247–260
stable nuclei, 3
standard mean ocean water (SMOW), 247
stellar nucleosynthesis, 17–25
astronomical background, 18–20
s-process, 23
hydrogen, helium, and carbon burning in main sequence, 20–23
s-process, 23–25
stoichiometric coefficient, 249
stratigraphic sulfate sulfides, 310
strong forces, 3
subcontinental lithosphere, 189–193
assimilation of continental crust, effects of, 189
isotopic heterogeneity of, 190
partial melts, 191
xenoliths, 189–190
subduction erosion, 217
process of, 183
subduction-related basalts, 284
subduction-related volcanism, 206
subduction zone magnetism, 214
subduction zones, 226–231
Nd, Hf, Os, and Pb in modern ocean, 233–236
oceanographic circulation and geochemical cycling, 232–233
Gees effect, 103
sulfur isotope fractionation, 280
mass-independent fractionation, 370–371
sulfur isotopes, 274
sulfur isotopes and ores, 305–312
hydrothermal systems, sulfur isotope fractionations in, 307–309
isotopic composition of sulfide ores, 309–312
magmatic processes, sulfur isotope fractionations in, 306–307
reservoirs on Earth, 305
in ridge crest hydrothermal systems, 310
solubility of H2S in silicate melts, 306
sulfur isotope composition of mantle, 288
sunspot cycle, 103
supernova debris, injection of, 150–151
supernova explosion, 25
surface circulation of ocean, 232–233
surface tension, 15
suspended load, 220
Tardree rhyolite of Ireland, 117
Taylor Series expansion, 35
Teller–Redlich spectroscopic theorem, 252
temperature-dependent equilibrium isotope fractionations, 248
Tera-Wasserburg diagram, 76
terrigenous sediments, 59
terrestrial magnetic field, 103
theory of mass dependent isotopic fractionations, 247–260
equilibrium isotope fractionations, 247–258
equilibrium isotope fractionations, 247–258
Theo’s flow, 209
Thera, 140
thermal ionization mass spectrometry (TIMS), 81–82, 465
thermal metamorphism in meteorites, 126
thermochronology, 83, 115
thermogenic methane, 272
thermal ionization mass spectrometry (TIMS), 81–82
thermal metamorphism in meteorites, 126
thermochronology, 83, 115
thermogenic methane, 272
thermohaline, 332
Thomson, J. J., 2
INDEX

208Th–232U mineral isochron, 93
208Th/232U ratio, 193
in melting, 197
212Th/232U ratio, 35, 77
time-integrated Rb/Sr ratio, 162–163
time-integrated Th/U ratio, 170, 178
titanite, 73, see sphene
Toba volcano, 91
Toluca metal, 138
tooth enamel, isotopic composition of, 323
total U-Pb isochrons, 76–77
of lunar samples, 76
half-lives and decay constants, 86
in a closed system, 84
carbonates, case of, 87
time-integrated Th/U ratio, 194–198
in melting, 197
tale, 73, see sphene
U-decay series dating, 83–96
parent decay, 84
210Pb–238U dating, 91–93
238U-Pb dating, 93–95
208Po–210Pb dating, 95–96
228Ra dating, 93
rate of marbles dropping into a hopper, demonstration, 86
supported and unsupported abundances, 87
230Th–234U dating, 88–91
234U–206Pb dating, 86–88
U-doped glass standard, 117
U–enrichment of oceanic crust, 185
U half-lives, re-evaluation of, 74
underplating of continents, 206
unstable cosmogenic nuclide, 188
rate of change of abundance, 154
U-Pb concordia diagram, 92–93
U-Pb isotopes, 93
U-Pb concordia diagrams, 92–93
U-Pb concordia diagram, 92–93
U-Pb correlation, 92–93
U–Th–Pb system, 35, 72
U–Th–He system, 83
U-Th-Pb system, 35, 72
chemistry of U, Th, and Pb, 72–73
uranium-bearing minerals, 73
templers, 126
U-series isotopes and melt generation, 193–198
U-Th-He system, 83
U-Th-Pb system, 35, 72
measured by U, Th, and Pb, 72–73
U-Th-Pb system, 35, 72
chemistry of U, Th, and Pb, 72–73
U-Th-Pb system, 35, 72
measurements of meteorites, 73
parameters of, 74
uranium decay constant, 73–74
234U/238U ratio constant, 73–74
234U/238U ratio, 197
238U/232Th ratio, 197
206Pb/238U ratio, 35
in CAIs, 127
Vetreny komatiites, 207
vibrational equilibrium constant, 257
vibrational frequencies of oxygen molecule, 254–255
vibrational partition function, 251–252, 254
vibration motion, 248
volcanogenic massive sulfides, 310
Vostok and EPICA Antarctic ice cores, 337–338
water, isotopic composition of, 257
water masses, properties of, 233
water-rock reaction, theory, 301–303
water-rock ratios for Skærgaard, 303
wavelengths, 5
weathering feedback, 357–358
white dwarfs, 20
winonaites, 126
W isotopic composition, 138, 140
wood, absolute age of, 103
W boson particles, 14
W ratio, 137–138
Xe-HL, 148
xenoliths, 65, 163, 189, 296
Xe-S, isotopic composition of, 139
X-winds, 146, 153
Zero Point Energy (ZPE), 248, 249, 259
zeta method, 116–117
zinc isotopes, 381–384
zircon (ZrSiO4), 59–60, 73, 91, 206, 213
annulose, 118
Archean crust, 214
bearing quartzites, 82
cordierite diagram of, 80–82
crystallization age of, 208
crystallization ages, 80
dating, 77–83, 82, 86
detrital, 208, 210, 212, 214, 216–217
distribution of zircon crystalization ages, 214
effect, 59
from Finnish tonalite, 81
geochemistry, 76
Hadean crust from, 210–212
Hf in, 235
ion probe ages of, 83
isotopic composition of, 81
Jack Hills, 83, 210
Lu/Hf ratios, 210–212, 216, 220
in mafic rocks, 208
zircon (ZrSiO$_4$) (continued)
mechanical and chemical stability of, 82
metamict regions of, 81
metamorphism ages, 80
multiple episodes of open system behavior, 81
Pb gain in, 80
Pb loss during a metamorphic event, 78–79, 81
radiation damage to crystal lattice, 80
range of 4100–4260Ma, 82
resistance characteristics of, 77
in river water, 235
step-wise dissolution of, 81
thermal ionization analysis of, 81
zoning in, 83
Zn-rich deposits, sulfur isotopes in, 311
zone of weathering, 75