Index

$readmem – system function 237
$readmemh – system function 237
$signed() – system function 178
$unsigned() – system function 178
@(event_expression) statement 220

Active low output signals 14, 64, 65
Address activated FSM control 291
Address activated FSM control state diagram 292
always block 199
Arithmetic right-shift (\rightarrow\rightarrow) 178
Arrays of reg’s 231
assign parallel statement 148
Asynchronous FSM 267
important note 280
Asynchronous FSM to relay circuit 296, 299
Asynchronous FSM using more than two event cells 305
Asynchronous Petri net structure 317
Asynchronous receiver block diagram 90, 94, 331, 359
Asynchronous receiver complete system simulation 358–365
Asynchronous receiver Protocol 89, 93
Asynchronous reset 54, 58, 221
Asynchronous serial receiver 88
Asynchronous serial receiver block diagram 90, 97, 359

Asynchronous serial receiver simulation 96, 365
Asynchronous serial receiver state diagram 91
Asynchronous serial receiver with parity 92
Asynchronous serial receiver with parity state diagram 95
Asynchronous serial transmitter 95
Asynchronous serial transmitter simulation 99
Asynchronous state diagrams without inputs along transitions 290
Asynchronous transmitter 95
Asynchronous transmitter state diagram 98

Base (number) 169
Basic logic gate symbols 337
begin..end block 199
Behavioural Asynchronous (event) FSM development 379
Bi-directional port 178
Binary counters using D type flip flops 355
Binary counters using D type flip flops - generic parallel inputs equation 353, 354
Binary counters using D type flip flops - with parallel inputs 353, 354
Binary counters using T type flip flops 347, 349
Binary counters using T type flip flops generic parallel inputs equation 352
Binary counters using T type flip flops with parallel inputs 353
Binary data serial transmitter 83
Binary sequence detector (4 bit) 136
Binary sequence detector (8 bit) programmable 138–143
Bit-range 151
Bit-selection 156
Bit-wise logical operators 178
Blocking Assignment 206
Boolean 170
Boolean algebra laws 337 and rules 339
associative law 340
auxiliary law 341, 346
auxiliary law Proof 341
communicative law 340
consensus theorem 342
De Morgans theorem 343
De Morgans theorem - converting AND-OR to NAND 345
De Morgans theorem - converting AND-OR to NOR 345
distributive law 340
exclusive NOR 338
exclusive OR 338
logical adjacency rule 345, 346
or rules 339
Buses 150
Byte wide binary code detector 139, 140
Byte wide binary code detector simulation 142, 143
Byte wide binary code detector state diagram 141

case..endcase statement 228
Case-equality 184, 216
casex statement 249
Class C type FSM 6
Clock circuit for use with FSM systems 355
Clocked FSM 2
Clocked watchdog timer FSM 100
Clocked watchdog timer FSM simulation 102
Clocked watchdog timer FSM state diagram 101
Clothes spinner 304
block diagram 304
equations 305
gate level simulations 309
simulation using equations 308
state diagram 305
test bench module 307
verilog module 306
Combinational Logic (using sequential block) 209
Comma separated event expression 203
Comments (Verilog) 150
Compilation 161
Compiler directive- timescale 159
Concatenation 180
Concatenation operator 184
Conditional operator (?:) 175
Continuous assignment 148
Controlling an Analogue to Digital Converter (ADC) 26, 33, 73, 111
Controlling a Digital to Analogue Converter (DAC) 76, 117
Counter design using don’t care states 355–357
D type flip flops 47–65
D type flip flop equations 47
0 to 1 transitions 49
1 to 0 transitions with leaving terms
Rule 1 49, 51
1 to 0 transitions without leaving terms 51
1 to 1 transitions Rule 2 50, 51
D type flip flop two way branches Rule 3 50–53
Data acquisition system FSM 110
Data acquisition system FSM simulation 113
Data acquisition system FSM state diagram 112
Dataflow style 148
Dealing with unused states 69
Default assignment 210
default branch (case) 228
Define compiler directive 242
Delayed sequential assignment (#) 201
Delta delay 149
Detecting binary sequences without memory 134
Dice game 79
Dice game simulation 82, 83
Dice game state diagram 81
Divide by 11 counter design 335, 362
Dynamic Memory Access (DMA) 127
Dynamic Memory Access (DMA) Block Diagram 128, 129
Dynamic Memory Access FSM simulation 132
Dynamic Memory Access FSM state diagram 130
endmodule 147
Equality operators (Verilog) 182
Event cell 269
Event cell characteristic equation tests 271
or event expression 202, 203
Override (a parameter default value) 229

Parallel statements (Verilog) 147

Parameter 214
Parameter to set size 226
Parity detector 92
Parity for error detection 92
Petri nets 313
Petri net arc’s 313
Petri net asynchronous receiver 329–335
Petri net asynchronous receiver petri net diagram 332
Petri net asynchronous receiver example Details of sequence 335
Petri net asynchronous receiver example simulation 334
Petri net based asynchronous serial receiver 329–336
Petri net circuits 316, 319
Petri net comparison with state diagram 314
Petri net diagram fork 319, 321
Petri net diagram join 319
Petri net disabling arcs 325, 326
Petri net enabling arcs 325
Petri net equations 314, 315
Petri net full cycle of design 316
Petri net outputs 316, 319, 322, 328, 333
Petri net parallel controllers 319–323
Petri net placeholder equations 314
Petri net placeholders 313
Petri net serial controllers 318
Petri net shared resource example 327
Petri net shared resource example simulation 329
Petri net synchronisation between parallel nets 324–327
Petri net Tokens 313, 320
Petri net transition equations 314, 315
Petri net transition equations with disabling arcs 326
Petri net transition equations with enabling arcs 325
Petri net transitions 313
Posedge event qualifier 217
Positional association 154
Primary and secondary signal gate tolerances 301
Primary inputs 8
Primary outputs 8
Primitive Gates 170
Propagation delays 170, 343
Race conditions in event FSM’s 299
Race conditions in event FSM’s - between primary and secondary variables 299, 300
Race conditions in event FSM’s - between primary inputs 299, 300
Race conditions in event FSM’s - between secondary state variables 299, 300
Race conditions in event FSM’s - gate delay tolerance 301
Raise-to-the-power operator (**) 217
Reduction NOR 175

Reg 147, 151
Register types (Verilog) 164
Relational operators (Verilog) 181
Repeat loop 201
Replication operator 184
RTL (Register Transfer Level) 145
Rules (Module Port connectivity) 154

Samples per waveform 78
Sampling frequency 78
Scalability (using parameters) 226
Secondary state variables 11
Secondary state variables non unit distance coding 11
Secondary state variables unit distance coding 12
Sequential block 198
Sequential equation for relay implementation 297
Sequential equations 271, 272
Sequential equations dropped terms 276
Sequential equations for PLD implementation 272, 276
Sequential equations logical adjacency reduction 274, 346
Sequential equations NAND form 271, 272
Sequential equations NOR form 271, 272
Sequential equations short cut rule 275
Sequential statements (Verilog) 198
Serial Asynchronous protocol 89, 93
Serial transmitter 95
Serial transmitter simulation 99
Serial transmitter state diagram 98
Shared memory 114
Shared memory FSM Block Diagram 114
Shared memory FSM state diagram 115
Shift operators (Verilog) 175
Shift register(s) 357
Shift register eleven bit design 360, 361
Shift register empty detection 96, 362
Shift register equations 88, 357
Shift register four bit with parallel inputs 358
Shift registers with parallel loading input equations 357
Signal delay in logic gates 343, 344

\texttt{signed} qualifier (Verilog) 165
Simple binary up counter 349
Simple binary up counter simulation 352
Simulation cycles 149
Slings 10
State assignment (Verilog) 241
State maps for counter design 348, 355, 356

\texttt{supply0, supply1} nets 163
Synchronous FSM 2
Synchronous counter design 347–352
Synchronous reset 54, 8
System task - $stop 160
SystemC 146
SystemVerilog 146

T type equations 41–46
T type flip flops 40
Tank water level control final state diagram solution 295
Tank water level control first state diagram solution 294
Tank water level control system 293
Test-fixture 155
Test-module 155, 372

Timescale compiler directive 159, 170
Timing waveforms 162
Traditional FSM design 67
\texttt{tri} 164
Twisted ring counter design 356
Two way branches Caution in using 309
Two way branches in state diagrams Rule 3 50–53
Two’s complement 175

Unconnected port 154
Unsigned 176
Unused states (Verilog FSM) 244

Verilog - Extreme Simulator 367, 375, 376
Verilog - simulators Tutorial 367
Verilog-2001 - simulators 161
Verilog-HDL 145, 367
VHDL 146

Wait state generator for microprocessor 301
Waveform generator 76
Waveform generator state diagram 77
Waveform synthesiser 116
Waveform synthesiser state diagram 118
Waveform synthesiser control via a C program 120
Wildcard event expression 203

\texttt{wire} 147