Appendix SELF-TEST Mathematical background

For each of questions 1-4, which of the mathematical statements is correct?

1.

- A. $\frac{1}{3} + \frac{1}{4} = \frac{1}{12}$
- B. $\frac{1}{3} + \frac{1}{4} = \frac{1}{7}$
- C. $\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$
- D. $\frac{1}{3} + \frac{1}{4} = \frac{5}{12}$

2.

- A. $\log(2) + \log(3) = \log(5)$
- B. $\log(8) = 3\log(2)$
- C. $\log(8) = 8\log(1)$
- D. $\log(2) + \log(3) = \log(8)$

3.

- A. $2^{10} + 4^{10} = 6^{10}$
- B. $2^{10} + 2^6 = 2^{16}$
- C. $3 \times 2^{10} = 2^{30}$
- D. $8 \times 2^{10} = 2^{13}$

4.

- A. $\sum_{n=4}^{n=8} n^2 = \sum_{n=1}^{n=8} n^2 - \sum_{n=3}^{n=8} n^2$
• B. $\sum_{n=4}^{n=8} n^2 = \sum_{n=1}^{n=8} n^2 - \sum_{n=1}^{n=3} n^2$

• C. $\sum_{n=1}^{n=8} n^2 = \frac{n(n+1)(2n+1)}{6}$

• D. $\sum_{n=1}^{n=8} n^2 = 64!$

5. In a class of 20 students, the teacher asks for two volunteers. How many different ways can the 2 volunteers be chosen?

• A. 2^{20}

• B. 20×19

• C. $20 \times 19 / 2$

• D. $20!$

6. The class of 20 students is having a games lesson. How many different ways can the class be divided into 2 teams of 10?

• A. $20!$

• B. $10! + 10!$

• C. $20! / (10! \times 10!)$

• D. $20! / (2 \times 10! \times 10!)$

7. The value of the definite integral $\int_{4}^{5} 2xdx$ is

• A. 9

• B. 5

• C. 2

• D. 1

A – this is $5^2 - 4^2$
8. Which of the functions $f(x)$ is a solution of the following differential equation?

$$\frac{df}{dx} = 2f - 1$$

- A. $f(x) = \frac{1}{2}(e^{2x} + 1)$
- B. $f(x) = \frac{1}{2}e^{2x} + 1$
- C. $f(x) = e^x + 1/2$
- D. $f(x) = e^x + 1/2$

A

9. A solution contains many RNA oligomers of length 6 bases. All 4 bases are present with equal frequency and are present in random orders in the oligomers. The proportion of oligomers containing exactly 2 guanines should be approximately:

- A. 0.2966
- B. 0.0625
- C. 0.0198
- D. 0.000244

A - $\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^4 \frac{6!}{4!2!} = 0.2966$

10. A DNA sequence of length 100 nucleotides is generated randomly such that each of the 4 bases A, C, G and T is chosen with equal frequency. The base at each position is chosen independently of the others. Let $P(n)$ be the probability that there are n Gs in the sequence. Which of the following statements is correct?

- A. $P(n)$ can be approximated by a Normal distribution with mean 20 and variance 75.
- B. $P(n)$ can be approximated by a Normal distribution with mean 25 and variance 18.75.
- C. $P(n)$ can be approximated by a Poisson distribution with mean 25 and variance 25.
• D. $P(n)$ is a bell-shaped curve with a peak at $n = 50$.

B - The mean is $100 \times \frac{1}{4} = 25$. The variance is $100 \times \frac{1}{4} \times \frac{3}{4} = 18.75$

11. A DNA sequence of length 100 is obtained from a real sequence database. The numbers of the 4 different bases are:
 A. 20; C. 27; G. 34; T. 19.

The 5% significance values in the χ^2 Table are:

<table>
<thead>
<tr>
<th>number of degrees of freedom</th>
<th>5% significance value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.84</td>
</tr>
<tr>
<td>2</td>
<td>5.99</td>
</tr>
<tr>
<td>3</td>
<td>7.82</td>
</tr>
<tr>
<td>4</td>
<td>9.49</td>
</tr>
</tbody>
</table>

• A. The χ^2 test shows that the content of G+C bases differs significantly from 50%.
• B. The χ^2 test shows that the content of G+C bases does not differ significantly from 50%.
• C. More information is needed to carry out a χ^2 test.
• D. A χ^2 test is not valid in this case.

A is correct.

The number of G+C = 61 and the number of A+T = 39. The expected numbers are 50.

$$\chi^2 = \frac{(61-50)^2}{50} + \frac{(39-50)^2}{50} = 4.84$$

There is one degree of freedom. 4.84 is greater than 3.84. Therefore the frequency differs significantly from 50% G+C at the 5% level.

12. A student answers a multiple choice exam paper with 12 questions on it. He guesses randomly from the 4 possible answers on each question. Which of the following is true?
 • A. The probability of guessing all 12 questions correctly is slightly greater than 3%.
 • B. The probability of getting exactly 3 correct answers is 0.0156.
• C. The probability of getting exactly 3 correct answers is 1.17×10^{-3}.

• D. The probability of guessing all answers wrong is greater than the probability of guessing all answers right.

A – wrong – The probability of guessing them all right is $(1/4)^{12} = 5.96 \times 10^{-8}$

B – wrong – The probability of guessing exactly three correct answers is

$$\left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right)^9 \frac{12!}{9!3!} = 0.258.$$

C – wrong

D – correct – If this were not true we would not set multiple choice questions.