10.1 Adsorption kinetics. Let us consider the Langmuir isotherm within reaction kinetics. The reaction is

\[
\text{[empty site]} + \text{[molecule in vapor phase]} \xleftrightarrow[k_a, k_d]{\frac{k_a}{k_d}} \text{[occupied site]}
\]

Let \(k_a \) and \(k_d \) be the rate constants of the forward and reverse reactions. The surface has \(N \) sites, and we define \(\theta \) as we did in Eq. (10.6).

(1) We denote the concentration of molecules in the vapor phase by \([M]\). The “concentrations” of the empty sites and occupied sites can be expressed as \(N(1-\theta) \) and \(N\theta \), respectively. Balance the forward and reverse rates.

(2) Express \(\theta \) with \(k_a \) and \(k_d \).

(3) Assume an ideal gas law for the vapor phase to express \(\theta \) as a function the pressure \(p \).

(4) How is \(k_d/k_a \) related to \(q \) defined by Eq. (10.9)?

\[
\begin{align*}
(1) & \quad k_a N \left(1 - \theta\right)[M] = k_d N\theta \\
(2) & \quad \theta = \frac{k_a [M]}{k_d + k_a [M]} = \frac{1}{1 + \frac{k_d}{k_a} \left(\frac{1}{M}\right)} \\
(3) & \quad p = [M]RT. \text{ Therefore,} \\
& \quad \theta = \frac{1}{1 + \frac{k_d RT}{k_a p}} = \frac{k_a p}{k_d RT + k_a p} \\
(4) & \quad \frac{k_d}{k_a} = \frac{q e^{-\beta e}}{RT} \\
& \quad \text{which is further rewritten to} \\
& \quad \frac{k_d}{k_a} = \frac{e^{-\beta e}}{N_A A_T^3}
\end{align*}
\]
10.2 Microcalorimetry. Section 10.2 considered a surface with N adsorption sites in contact with vapor-phase molecules of chemical potential μ. The surface lowers the energy per site by ε when it captures a molecule.

(1) Calculate the mean of the energy of the surface, $\langle E \rangle$.

(2) The chemical potential of a molecule in the vapor of pressure p is given by Eq. (6.40). Express $\langle E \rangle$ as a function of p and T.

(3) What is the high-temperature asymptote of $\langle E \rangle$?

(4) Draw a sketch for a plot of $\langle E \rangle/(N\varepsilon)$ as a function of T.

(5) Calculate the heat capacity C of the surface. Draw a sketch for a plot of C as a function of T.

\[
\langle E \rangle = -\varepsilon \langle n \rangle = -\frac{N\varepsilon}{1 + e^{-\beta(\mu + \varepsilon)}}
\]

\[
\langle E \rangle = \frac{-N\varepsilon}{1 + \frac{k_B T}{p} \left(\frac{2\pi m k_B T}{\hbar^2} \right)^{3/2} e^{-\beta \varepsilon}}
\]

(3) At high temperatures, $e^{-\beta \varepsilon} \approx 1$. Therefore,

\[
\langle E \rangle \approx \frac{-N\varepsilon}{1 + \frac{k_B T}{p} \left(\frac{2\pi m k_B T}{\hbar^2} \right)^{3/2} \approx -\frac{N\varepsilon p}{k_B T} \left(\frac{h^2}{2\pi mk_B T} \right)^{3/2}}
\]

(4)
10.3 Maximizing fluctuation. Show that the fluctuations in the surface coverage in the Langmuir isotherm maximizes when \(\theta = \frac{1}{2} \).

The variance of \(n \) is calculated according to

\[
\langle \Delta n^2 \rangle = \frac{1}{\beta^2} \frac{\partial^2 \ln Z}{\partial \mu^2} = \frac{1}{\beta} \frac{\partial}{\partial \mu} \langle n \rangle
\]

With Eq. (10.5), the variance is calculated as

\[
\langle \Delta n^2 \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} \frac{N}{1 + e^{-\beta(\mu + \varepsilon)}} = \frac{Ne^{-\beta(\mu + \varepsilon)}}{[1 + e^{-\beta(\mu + \varepsilon)}]^2}
\]

Since

\[e^{-\beta(\mu + \varepsilon)} = \frac{N}{\langle n \rangle} - 1 \]

we obtain

\[
\langle \Delta n^2 \rangle = \frac{\langle n \rangle (N - \langle n \rangle)}{N}
\]

which maximizes when \(\langle n \rangle = \frac{1}{2} N \).
10.4 Maximizing entropy. This problem continues on what we learned in the Langmuir isotherm.

(1) Find the entropy S of the surface in the Langmuir adsorption model. Express $S/(Nk_B)$ as a function of $x = e^{\beta(\mu+\varepsilon)}$.

(2) Draw a sketch for a plot of $S/(Nk_B)$ as a function of x. Find when S maximizes.

(1) Since

$$\langle E \rangle = -e \langle n \rangle$$

the entropy is expressed as

$$S = k_B \left[\ln Z + \beta \left(\langle E \rangle - \mu \langle n \rangle \right) \right] = k_B \left[\ln Z - \beta \left(\varepsilon + \mu \right) \langle n \rangle \right]$$

With Eqs. (10.2) and (10.5), it is rewritten to

$$\frac{S}{Nk_B} = \ln \left(1 + e^{\beta(\mu+\varepsilon)} \right) - \frac{\beta(\mu+\varepsilon)}{1 + e^{-\beta(\mu+\varepsilon)}}$$

Therefore

$$\frac{S}{Nk_B} = f(x) = \ln (1 + x) - \frac{x \ln x}{1 + x}$$

(2)

$$f'(x) = -\frac{\ln x}{(1 + x)^2}$$

$f(x)$ increases with x when $x < 1$ and decreases with x when $x > 1$. $f(x)$ maximizes to $\ln 2$ when $x = 1$.

![Graph of S/(Nk_B) vs x = e^{\beta(\mu+\varepsilon)}]
10.5 BET adsorption. Section 10.3 used the result of the Langmuir isotherm in layer-by-layer adsorption to derive the BET isotherm. Here, we treat it directly in the grand canonical ensemble. Each of the \(N \) sites of the surface adsorbs molecules independently. We denote by \(i_j \) the number of molecules on the \(j \)th site (\(j = 1, \ldots, N \)). The energy \(\varepsilon(i_j) \) of the site follows the following table.

<table>
<thead>
<tr>
<th>(i_j)</th>
<th>Energy, (\varepsilon(i_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(-\varepsilon_1)</td>
</tr>
<tr>
<td>2</td>
<td>(-\varepsilon_1-\varepsilon_L)</td>
</tr>
<tr>
<td>3</td>
<td>(-\varepsilon_1-2\varepsilon_L)</td>
</tr>
<tr>
<td>4</td>
<td>(-\varepsilon_1-3\varepsilon_L)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

The surface is in contact with a reservoir of molecules of chemical potential \(\mu \) at temperature \(T \).

1. The state of the \(n \) sites on the surface is specified by \(i_1, i_2, \ldots, i_N \). Write the grand partition function \(Z \) for the system and calculate \(Z \).

2. Derive a formula to calculate the mean number of molecules adsorbed per site, \(\langle i \rangle \), and calculate it. Confirm that it is identical to the result we obtained in Section 10.3.

3. Derive a formula to calculate the mean number of liquefied molecules per site, \(\langle i_{L} \rangle \), and calculate it. Liquefied molecules are those in the second, third, \(\ldots \), layers.

4. What is the fraction of empty sites, \(\theta_{\text{empty}} \)?

5. Use \(e^{-\beta \mu} = q/p \) to rewrite your answer in (4). What is the low-pressure asymptote of \(\theta_{\text{empty}} \)?

\[
Z = \sum_{i_1} \sum_{i_2} \cdots \sum_{i_N} \exp \left(\beta \mu \sum_{j=1}^{N} i_j - \beta \sum_{j=1}^{N} \varepsilon(i_j) \right)
\]
Since each site is independent, it is rewritten to

\[
Z = \left[\sum_i e^{\beta(\mu - \varepsilon(i))} \right]^N
\]

where

\[
\sum_i e^{\beta(\mu - \varepsilon(i))} = 1 + \exp(\beta(\mu + \varepsilon_1)) + \exp(\beta(2\mu + \varepsilon_1 + \varepsilon_L)) + \exp(\beta(3\mu + \varepsilon_1 + 2\varepsilon_L)) \\
+ \exp(\beta(4\mu + \varepsilon_1 + 3\varepsilon_L)) + \cdots = 1 + \frac{\exp(\beta(\mu + \varepsilon_1))}{1 - \exp(\beta(\mu + \varepsilon_L))} = 1 + \frac{\exp(\beta\varepsilon_1)}{e^{-\beta\mu} - \exp(\beta\varepsilon_L)}
\]

Therefore,

\[
\mathcal{Z} = \left[1 + \frac{\exp(\beta\varepsilon_1)}{e^{-\beta\mu} - \exp(\beta\varepsilon_L)} \right]^N
\]

(2)

\[
\ln Z = N \ln \left(1 + \frac{\exp(\beta\varepsilon_1)}{e^{-\beta\mu} - \exp(\beta\varepsilon_L)} \right)
\]

\[
\langle i \rangle = \frac{1}{N} \left\langle \sum_{j=1}^N i_j \right\rangle = \frac{1}{N} \frac{\partial \ln Z}{\partial \mu} = \frac{1}{N} \frac{\beta \exp(\beta\varepsilon_1) e^{-\beta\mu}}{\left[e^{-\beta\mu} - \exp(\beta\varepsilon_L) \right]^2} \\
\frac{1}{1 + \frac{\exp(\beta\varepsilon_1)}{e^{-\beta\mu} - \exp(\beta\varepsilon_L)}} \\
= \frac{1}{e^{-\beta\mu} - \exp(\beta\varepsilon_L)} \times \frac{\exp(\beta\varepsilon_1) e^{-\beta\mu}}{e^{-\beta\mu} - \exp(\beta\varepsilon_L) + \exp(\beta\varepsilon_1)}
\]

Since \(e^{\beta\mu} = q/p\), we find that this equation is identical to Eq. (10.24).

(3)
The number of molecules in the first layer is

\[
\langle i \rangle_L = \frac{1}{N} \left(\sum_{j=1, j \neq 2}^{N} (i_j - 1) \right) = \frac{1}{N \beta} \frac{\partial \ln Z}{\partial \varepsilon_L} = \frac{1}{N \beta} \frac{\beta \exp(\beta \varepsilon_i) \exp(\beta \varepsilon_L)}{\left[e^{-\beta \mu} - \exp(\beta \varepsilon_L) \right]^2 + \frac{\exp(\beta \varepsilon_i)}{e^{-\beta \mu} - \exp(\beta \varepsilon_L) + \exp(\beta \varepsilon_i)}}
\]

\[
= \frac{1}{e^{-\beta \mu} - \exp(\beta \varepsilon_L)} \times \frac{\exp(\beta \varepsilon_i) \exp(\beta \varepsilon_L)}{e^{-\beta \mu} - \exp(\beta \varepsilon_L) + \exp(\beta \varepsilon_i)}
\]

(4) The number of molecules in the first layer is

\[
\langle i \rangle - \langle i \rangle_L = \frac{\exp(\beta \varepsilon_i)}{e^{-\beta \mu} - \exp(\beta \varepsilon_L) + \exp(\beta \varepsilon_i)}
\]

Then,

\[
\theta_{\text{empty}} = 1 - \left(\langle i \rangle - \langle i \rangle_L \right) = \frac{e^{-\beta \mu} - \exp(\beta \varepsilon_L)}{e^{-\beta \mu} - \exp(\beta \varepsilon_L) + \exp(\beta \varepsilon_i)}
\]

(5)

\[
\theta_{\text{empty}} = \frac{q / p - \exp(\beta \varepsilon_L)}{q / p - \exp(\beta \varepsilon_L) + \exp(\beta \varepsilon_i)} = \frac{q - p \exp(\beta \varepsilon_i)}{q + p \left[\exp(\beta \varepsilon_i) - \exp(\beta \varepsilon_L) \right]}
\]

At low pressures,

\[
\theta_{\text{empty}} \approx 1 - \frac{p}{q} \exp(\beta \varepsilon_i)
\]

which is equivalent to the low-pressure asymptote of the Langmuir isotherm.

10.6 Pressure dependence in the BET isotherm. Show that \(\langle n_{\text{ads}} \rangle \) increases when \(p \) increases (\(p < p^* \)) in Eq. (10.27).

\[
\frac{N_c}{\langle n_{\text{ads}} \rangle} = \frac{p^* - p}{p} + (c - 1) \frac{p^* - p}{p} = c - 2 + \frac{p^*}{p} - (c - 1) \frac{p}{p^*}
\]

\[
\frac{\partial}{\partial p} \frac{N_c}{\langle n_{\text{ads}} \rangle} = -\frac{p^*}{p^2} - (c - 1) \frac{1}{p^*} = -\frac{p^{*2} - p^2 + cp^2}{p^2 p^*}
\]
Since $c > 0$, the derivative is negative for $p < p^*$. $\langle n_{\text{ads}} \rangle$ increases with an increasing p.

10.7 Competitive adsorption. A surface of n sites is in contact with a mixture of gas A and B. Each site can adsorb up to one molecule, either A or B. When the site adsorbs molecule i ($i = A, B$), its energy is lowered by ε_i ($\varepsilon_i > 0$). The chemical potential of molecule i is μ_i. Let n_A and n_B be the numbers of sites that have A molecules and B molecules, respectively.

(1) What is the grand partition function?

(2) Find $\langle n_A \rangle$ and $\langle n_B \rangle$.

(3) As we did for the Langmuir isotherm of pure monatomic gas, we introduce q_i by $p_i/q_i = \exp(\beta \mu_i)$.

where p_i is the partial pressure of component i. Rewrite your answers in (2) using $y_A \equiv (p_A/q_A)\exp(\beta \varepsilon_A)$ and $y_B \equiv (p_B/q_B)\exp(\beta \varepsilon_B)$.

(1) The number W of ways to arrange n_A molecules of A and n_B molecules of B on the surface of n sites is given as

$$W = \frac{n!}{n_A!n_B!(n-n_A-n_B)!}$$

The grand partition function is

$$Z = \sum_{n_A=0}^{n} \sum_{n_B}^{n-n_A} \exp(\beta \mu_A n_A + \beta \mu_B n_B) \frac{n!}{n_A!n_B!(n-n_A-n_B)!} \exp(\beta n_A \varepsilon_A + \beta n_B \varepsilon_B)$$

With a multinomial theorem,

$$Z = \left[1 + \exp(\beta (\mu_A + \varepsilon_A)) + \exp(\beta (\mu_B + \varepsilon_B))\right]^n$$

(2)

$$\ln Z = n \ln \left(1 + \exp(\beta (\mu_A + \varepsilon_A)) + \exp(\beta (\mu_B + \varepsilon_B))\right)$$
10.8 Diatomic molecules. This problem considers adsorption of diatomic molecules of mass m onto a surface that consists of N adsorption sites. The molecules in the reservoir (single-molecule partition function is Z_{1F}) are in contact with the surface. The molecule occupies one of the sites when adsorbed, and the single-molecule partition function changes to Z_{1A}.

(1) First, we consider M molecules in the reservoir of volume V. The Z_{1F} is given as

$$Z_{1F} = V \left(\frac{2\pi m}{\beta h^2} \right)^{3/2} Z_{1Frv}$$

where Z_{1Frv} is the roto-vibrational part of Z_{1F}. What is the chemical potential μ?

(2) Now, we consider the system of adsorbed molecules. Express the grand partition function Z of the system using μ. What is the surface coverage θ?

(3) We can express Z_{1Frv} as $Z_{1Frv} = (T/\Theta)Z_{1Fv}$, where Z_{1Fv} is the vibrational part of Z_{1F}. Likewise, we can write Z_{1A} as $Z_{1A} = Z_{1Av}e^{\epsilon}$, where Z_{1Av} is the vibrational part of Z_{1A}, and adsorption lowers the energy by ϵ. We assume, for simplicity, that the adsorbed molecule retains the same vibrational degree of freedom as the molecule in free space. Use these relationships to express θ.

(1) The partition function of the system is
Let \(n \) be the number of adsorbed molecules.

\[
Z = \frac{Z_{1F}^M}{M!} = \frac{V^M}{M!} \left(\frac{2\pi m}{\beta h^2} \right)^{3M/2} Z_{1Fr}^M
\]

\[
F = -Mk_B T \left(-\ln M + 1 + \ln V + \frac{3}{2} \ln \frac{2\pi m}{\beta h^2} + \ln Z_{1Fr} \right)
\]

\[
\mu = -k_B T \left(-\ln M + \ln V + \frac{3}{2} \ln \frac{2\pi m}{\beta h^2} + \ln Z_{1Fr} \right)
\]

\[
e^{-\beta\mu} = \frac{V}{M} \left(\frac{2\pi m}{\beta h^2} \right)^{3/2} Z_{1Fr} = \frac{k_B T}{p} \left(\frac{2\pi m}{\beta h^2} \right)^{3/2} Z_{1Fr}
\]

(2) Let \(n \) be the number of adsorbed molecules.

\[
Z = \sum_{n=0}^{N} e^{\beta\mu n} \left(\frac{N}{n} \right) Z_{1A}^n = \left(1 + e^{\beta\mu} Z_{1A} \right)^N
\]

\[
\ln Z = N \ln \left(1 + e^{\beta\mu} Z_{1A} \right)
\]

\[
\theta = \frac{\langle n \rangle}{N} = \frac{1}{N} \frac{\partial \ln Z}{\partial \mu} = \frac{e^{\beta\mu} Z_{1A}}{1 + e^{\beta\mu} Z_{1A}} = \frac{1}{1 + e^{-\beta\mu} / Z_{1A}}
\]

(3)

\[
\theta = \frac{1}{1 + \frac{1}{\beta p} \left(\frac{2\pi m}{\beta h^2} \right)^{3/2} \frac{T}{\Theta_r} e^{-\beta\epsilon}}
\]

10.9 Adsorption of two particles. Consider a system that has \(N \) adsorption sites. Each site can adsorb one particle or more. The site acquires energy \(\epsilon \) each time it adsorbs a particle. The particles are indistinguishable.

(1) Two particles are on the \(N \) sites. If they do not interact, what is the partition function of the system?

(2) If the two particles interact and the interaction \(\Phi \) exists for the two particles sharing a site, what is the partition function of the system? Also calculate the mean energy.
The two particles are either on the same site or on different sites. If they share a site, there are N possibilities. If they do not, and the number of ways to arrange two indistinguishable particles in N sites is $\frac{1}{2}N(N-1)$. Their sum is $\frac{1}{2}N(N+1)$. The energy of the system is $2\beta\epsilon$, regardless of whether they share a site or not. Therefore,

$$Z = \frac{N(N+1)}{2}e^{-2\beta\epsilon}$$

(2)

$$Z = Ne^{-\beta(2\epsilon+\Phi)} + \frac{N(N-1)}{2}e^{-2\beta\epsilon}$$

$$\ln Z = \ln N - 2\beta\epsilon + \ln\left(\frac{N-1}{2} + e^{-\beta\Phi}\right)$$

$$\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta} = 2\epsilon + \frac{\Phi e^{-\beta\Phi}}{N-1} + e^{-\beta\Phi} = 2\epsilon + \frac{\Phi}{1 + \frac{N-1}{2}e^{\beta\Phi}}$$