Index

Note: Page numbers in *italics* denote figures and tables, when outside page ranges.

ABA *see* abscisic acid

abiotic stress factors, vegetable oil yield and composition 81

abscisic acid (ABA)

see also phytohormones

biosynthesis 169–172

role 177

signaling 175

acid-base catalyzed process, biodiesel 59

acid-catalyzed methylation 68

acid-catalyzed transesterification, biodiesel 58–59

adaptation of roots and leaves, salinity stress 111–112

aflatoxins, peanut (*Arachis hypogea*) 8

AM fungi *see* arbuscular mycorrhizal (AM) fungi

American Standard for Testing Materials (ASTM) 63–65

Moringa peregrina 71–72

amino acids, soybean (*Glycine* spp.) 104

animal feeds, industrial uses of oilseeds 257

antioxidants, environmental stress factors 92–95

applications, oilseed crops 9–11

arbuscular mycorrhizal (AM) fungi 113, 186

olive (*Olea europaea*) 195

Aromatic Roasted Peanut Oil (ARPO) 8

ascorbic acid (AsA), biochemical responses to heavy metals 237

ASTM *see* American Standard for Testing Materials auxin

see also phytohormones

biosynthesis 166–167

role 176

signaling 172–173

bioactive compounds

oilseed crops 254–255

role in human nutrition 254–255

salinity stress 110–111

bioactive soybean components 105–106

bioavailability of minerals, plant growth-promoting rhizobacteria (PGPR) 190–191

biochar and composts, phytoremediation of heavy metal contaminated soils 229–230

biochemical responses to heavy metals 215–216, 237–238, 241–244

ascorbic acid (AsA) 237

carotenoids 238

chlorophyll 238

future prospects 242–244

phenolic compounds 238

proline 237

reactive oxygen species (ROS) 237, 239

total soluble protein content 238

biodegradable synthetic chelators, phytoremediation of heavy metal contaminated soils 213

biodiesel 3, 9–10, 52–74

acid-base catalyzed process 59

acid-catalyzed transesterification 58–59

from canola (*Brassica napus*) 53–54, 67–69

castor bean oil 27–28

characterization 63–67

from conventional oils 67–69

defining 53

enzymatic catalysis 60

enzymatic catalyzed transesterification 60

heterogeneous catalyzed transesterification 59–60

homogeneous acid-catalyzed transesterification 58–59

homogeneous base-catalyzed transesterification 56–57

homogeneous catalysis 56–59

from insect oils 70, 72–73

from jatropha (*Jatropha curcas*) 69–70

from Marula (*Sclerocarya birrea*) 74
from melon bug (*Aspogopus vidiuats*) 70, 72–73
from *Moringa peregrina* 70–72
plant capacity 54
processing techniques and methods 54–63
production 54
prospects 54
in-situ transesterification 62–63
from sorghum bug (*Agonoscelis pubescens*) 70, 72–73
sources 53–54
standards 63–67
supercritical alcohol transesterification 61
transesterification using microwave irradiation 62
transesterification using ultrasonic irradiation 61–62
from unconventional oils 69–74
from waste vegetable oil (WVO) 68–69
biodiesel industry 11–13, 53
biodieselhol 68
biofuel 3
advantages 52–53
castor bean oil 27–28
usage statistics 52–53
biofuel industry 9–10, 11–13
biological nitrogen fixation (BNF) 103, 190–191
biomass production, Indian mustard (*Brassica juncea*) 265–280
biophysical parameters, Indian mustard (*Brassica juncea*) 264–280
leaf area index (LAI) 265–268, 270–279
radiation dynamics 273–276
soil temperature 276–280
thermal energy use efficiency 270–273
thermal indices 265–280
biotic stress factors, vegetable oil yield and composition 81
blackleg 1
BNF see biological nitrogen fixation
botanical description, castor bean (*Ricinus communis*) 20, 21
Brassica spp.
see also *canola* (*Brassica napus*); Indian mustard (*Brassica juncea*)
uses 6–7
Brassicaceae plants 207–218
see also *canola* (*Brassica napus*)
characteristics 207–208
hyperaccumulation potential of heavy metals 209–211
phylogenetic status 208
phytoremediation of heavy metal contaminated soils 209–211
broomrapes (*Orobanche* spp.) 123–147
biological control methods 138
biology 126–131
chemical control methods 137–138
cultural practices 134–136
distribution map 126, 128
family 125–126
germination simulator 130
host attachment 130–131
hosts 126, 127
integrated management 138–139
lifecycle 129, 136
physical control strategies 137
resistance 132–134, 136, 140–141
sunflower (*Helianthus annuus*) resistance to 144–147
sunflower vampire (*Orobanche cumana*) 131–134
vampirism effect 131
canola (*Brassica napus*) 1–2
see also *Brassica* spp.; *Brassicaceae* plants
biodiesel from 53–54, 67–69
classification 250
cultivation 2
esterification 68
lipid content 83–85
microbes, plant root associating 194, 196, 197
plant growth-promoting rhizobacteria (PGPR) 194, 196, 197
production 252–253
salinity stress 84–85
temperature stress 84
uses 4–5
water stress 84
yield 83–85
carbohydrates, soybean (*Glycine* spp.) 106
carotenoids
biochemical responses to heavy metals 238
oilseed crops 254–255
role in human nutrition 254–255
castor bean (*Ricinus communis*) 19–29
biodiesel 27–28
biofuel 27–28
botanical description 20, 21
classification 250, 252
cultivation 3, 19
drought tolerance 22–23
future prospects 28–29
 genetic resources 20–21
medicinal interest 27
oil compounds 20
oil fatty acids 25–27, 28
castor bean (Ricinus communis) (cont’d)
oil physicochemical characters 24–25
oil uses 27–28
production 19
salinity tolerance 22–23
seed analysis 29
seed diversity 22
seed toxicity 23–24
seed yield 23
uses 19–20
CAT activity
heavy metals 239
reactive oxygen species (ROS) 239
chelation
biodegradable synthetic chelators 213
EDDS (ethylenediaminedissuccinate) 213,
226–227
EDTA (ethylenediaminetetraacetic acid) 212–213,
226–227
metallothioneins (MTs) 214
natural vs. chemically enhanced 212–213
phytochelatins (PCs) 214
phytoremediation of heavy metal contaminated
soils 212–213, 215, 226–227
chemical composition, soybean (Glycine spp.) 103–107
chlorophyll, biochemical responses to heavy
metals 238
classification, oilseed crops 249–252
cobalt
hyperaccumulation 211
phytoremediation of contaminated soils 211
coconut (Cocos nucifera)
classification 250, 252
production 252–253
uses 4, 7
communication, plant-microbe 187–189
see also signaling
quorum sensing (QS) 188
signaling 188–189
constitutive resistance, broomrapes (Orobanche
spp.) 140
conventional oils, biodiesel from 67–69
copper, phytoremediation of contaminated
soils 212–213
cosmetics, industrial uses of oils
seeds 257
cotton (Gossypium hirsutum)
classification 250, 251
gossypol 9
uses 9
Cr stress
maize (Zea mays) 198–199
microbe beneficial effects 198–199
crucifers see Brassicaceae plants
cultivation
canola (Brassica napus) 2
castor bean (Ricinus communis) 3, 19
jojoba (Simmondsia chinensis) 155–156
mustard 2–3
oilseed crops 2–3
safflower (Carthamus tinctorius) 3
sesame (Sesamum indicum) 3
soybean (Glycine spp.) 3
sunflower (Helianthus annuus) 139
cytokinins
see also phytohormones
biosynthesis 167–168
role 178
signaling 173
drought tolerance, castor bean (Ricinus communis)
22–23
ectomycorrhizal (ECM) fungi 186
EDDS (ethylenediaminedissuccinate) 213, 226–227
EDTA (ethylenediaminetetraacetic acid) 212–213,
226–227
endophytic fungi, salinity stress 113
energy sources 52
environmental effect
fatty acid composition 37–39
lipid concentration 36
environmental stress factors
abiotic stress factors 81
antioxidants 92–95
biotic stress factors 81
fatty acid composition 89–92
free fatty acids (FFA) 89
phenolic compounds 93–94
tocopherols 94–95
vegetable oil yield and composition 80–96
environmental sustainability 11
enzymatic catalysis, biodiesel 60
enzymatic catalyzed transesterification, biodiesel 60
ethylene
see also phytohormones
biosynthesis 168, 169
role 177
signaling 174
exogenous substances, salinity stress 114–115
fatty acid composition
environmental effect 37–39
environmental stress factors 89–92
insect oils 72, 73
mechanisms of change 91
melon bug (Aspogopus vidiuats) 72, 73
sorghum bug (*Agonoscelis pubescens*) 72, 73
variation 36–39
water stress 92
fatty acids
free fatty acids (FFA) 89
regulation 2
role in human nutrition 255
fertilizers
industrial uses of oilseeds 256
phytoremediation of heavy metal contaminated soils 227–228
FFA see free fatty acids
fibers, industrial uses of oilseeds 257–258
flax see linseed (*Linum usitatissimum*)
food industry 10
industrial uses of oilseeds 256
food safety and health concerns, heavy metals 216–218
fossil fuels 52
free fatty acids (FFA), environmental stress factors 89
fungi, endophytic, salinity stress 113
fungi, plant root associating 186
arbuscular mycorrhizal (AM) fungi 113, 186
ectomycorrhizal (ECM) fungi 186
future prospects
biochemical responses to heavy metals 242–244
castor bean (*Ricinus communis*) 28–29
hyperaccumulation potential of heavy metals in plants 218
Indian mustard (*Brassica juncea*) 280
industrial uses of oilseeds 258
jojoba (*Simmondsia chinensis*) 160–161
molecular responses to heavy metals 242–244
nutrient components 258
oilseed crops 11–13
phytohormones 180
phytoremediation of heavy metal contaminated soils 231
resistance 145–147
soybean (*Glycine* spp.) 116–117
GA see gibberellins
GE see genetic engineering
genetic diversity, soybean (*Glycine* spp.) 3
genetic engineering (GE), transgenic soybean (*Glycine* spp.) 115–116
genetic improvement, jojoba (*Simmondsia chinensis*) 159
genetic manipulation, hyperaccumulation potential of heavy metals in plants 213–215
genetic resources, castor bean (*Ricinus communis*) 20–21
germination
biochemical aspects, oil composition 45
oil reserves effects 39–46
performance models 40–41
seed composition impact 34–46
seed oil composition effect 43–45
gibberellins (GA)
see also phytohormones
biosynthesis 168–169, 170
role 177–178
salinity stress 114
signaling 173–174
glycophytes, salinity stress 107
gossypol 9
GPX activity
heavy metals 239
reactive oxygen species (ROS) 239
groundnut see peanut (*Arachis hypogea*)
growth response, salinity stress 111
halophytes, salinity stress 107
heavy metals
CAT activity 239
characteristics 209
effects 224
environmental contamination 236
essential/non-essential elements 240–241
food safety and health concerns 216–218
GPX activity 239
hyperaccumulation potential of plants 209–211, 213–215
Indian mustard (*Brassica juncea*) 210–212, 214, 215–216
metallothioneins (MTs) 214
molecular responses 241–244
oxylipin 239
physiological responses 215–216
phytochelatins (PCs) 214
phytoremediation of contaminated soils 209–213
pollution in the environment 209
safe disposal for hyperaccumulator *Brassiccas* 217–218
safflower (*Carthamus tinctorius*) 3
SOD activity 239
sources in agricultural soils 225
stress alleviation by organic and inorganic amendments 224–231
toxicity in oilseed crops 225–226
heterogeneous catalyzed transesterification, biodiesel 59–60
homogeneous acid-catalyzed transesterification, biodiesel 58–59
homogeneous base-catalyzed transesterification, biodiesel 56–57
homogeneous catalysis, biodiesel 56–59
hyperaccumulation potential of heavy metals in plants 209–211
future prospects 218
genetic manipulation 213–215
safe disposal for hyperaccumulator *Brassicas* 217–218

ICP OES see inductively coupled plasma optical emission spectrometry

Indian mustard (*Brassica juncea*)
264–280
see also mustard
biomass production 265–280
biophysical parameters 264–280
future prospects 280
heavy metals 210–212, 214, 215–216
leaf area index (LAI) 265–268, 270–279
radiation dynamics 273–276
soil temperature 276–280
thermal energy use efficiency 270–273
thermal indices 265–280
weather susceptibility 264–265
induced resistance, broomrapes (*Orobanche* spp.) 140–141

inductively coupled plasma optical emission spectrometry (ICP OES), coconut (*Cocos nucifera*) 7

industrial uses of oilseeds 256–258
animal feeds 257
cosmetics 257
energy sources 256
fertilizers 256
fibers 257–258
food industry 256
future prospects 258
jojoba oil 157–158
medical uses 257
other products 257–258
plastics 257–258
soybean (*Glycine* spp.) 102–103
insect oils
biodiesel from 70, 72–73
fatty acid composition 73
in-situ transesterification, biodiesel 62–63
iron bioavailability 190
isoflavones, soybean (*Glycine* spp.) 105–106

Jojoba (*Simmondsia chinensis*) 152–161
barriers to progress 160
botanical description 153–154
characteristics 152
cultivation 155–156
distribution 153
economic uses 157–158
future prospects 160–161
genetic improvement 159
harvesting 155–156
international status 159–160
market 159–160
national status 160
origin 153
production 160
reproduction 154–155
sex determination 159

Jojoba meal 157

Jojoba oil
industrial uses 157–158
medical uses 157
physico-chemical properties 156–157
research 158

LAI see leaf area index

lead (Pb)
hyperaccumulation 209–211
jatropha (*Jatropha curcas*) 241–242
phytoremediation of contaminated soils 209–211
leaf area index (LAI), Indian mustard (*Brassica juncea*) 265–268, 270–279
liming materials, phytoremediation of heavy metal contaminated soils 228–229

Linseed (*Linum usitatissimum*)
classification 250, 251
production 252–253

lipid concentration effect, water absorption 41–43
lipid content 82–89
canola (*Brassica napus*) 83–85
olive (*Olea europaea*) 87–89
palm (*Elaeis guineensis*) 86–87
soybean (*Glycine* spp.) 82–83
sunflower (*Helianthus annuus*) 85–86
lipid variation 34–46
fatty acid composition 36–39
lipid concentration 35–36
sources of variation 35–39

maize (*Zea mays*)
Cr stress 198–199
microbes, plant root associating 195–199
plant growth-promoting rhizobacteria (PGPR) 195–199
Marula (*Sclerocarya birrea*), biodiesel from 74
MBO see melon bug (*Aspogopus viduats*)
medical uses
 industrial uses of oilsides 257
 jojoba oil 157
melon bug (*Aspogopus viduats*)
 biodiesel from 70, 72–73
 fatty acid composition 72, 73
metallothioneins (MTs), heavy metals
 stress 214
metals, heavy see heavy metals
microbes, plant root associating 184–199
 see also plant growth-promoting rhizobacteria (PGPR)
arbuscular mycorrhizal (AM) fungi
 113, 186
Bacillus spp. 185
beneficial effects 192–199
biological nitrogen fixation (BNF) 190–191
Bradyrhizobia spp. 186
canola (*Brassica napus*) 194, 196, 197
 communication, plant-microbe 187–189
Cr stress 198–199
diversity 185–186
diversity role 187
crology 185–186
ectomycorrhizal (ECM) fungi 186
iron bioavailability 190
jatropha (*Jatropha curcas*) 196
maize (*Zea mays*) 195–199
mitigating stress-induced adverse effects on oilseed
crops 188–189
olive (*Olea europaea*) 194, 197
peanut (*Arachis hypogea*) 192, 196
phosphate-solubilizing bacteria (PSB) 190
phosphorus bioavailability 190
plant growth-promoting rhizobacteria (PGPR) 113–114, 185, 189–199
 plant health role 187
 plant nutrition role 187
Pseudomonas spp. 186
Rhizobia spp. 186
role 187
sesame (*Sesamum indicum*) 196, 197
soil role 187
soybean (*Glycine spp.*) 193–194, 196, 197
sunflower (*Helianthus annuus*) 192–193, 196
types providing plant benefits 184
zinc bioavailability 190
micronutrients, salinity stress 110–111
microwave irradiation, transesterification using 62
minerals, soybean (*Glycine spp.*) 107
molecular responses to heavy metals 240, 241–244
 future prospects 242–244
Moringa peregrina
 American Standard for Testing Materials (ASTM) 71–72
 biodiesel from 70–72
MTs see metallothioneins
mustard
 see also Brassicaceae plants; Indian mustard (*Brassica juncea*)
classification 250, 251
 cultivation 2–3
 production 252–253
nitric oxide (NO), salinity stress 114–115
nitrogen fixation
 biological nitrogen fixation (BNF) 103, 190–191
soybean (*Glycine spp.*) 103
NO see nitric oxide
nutrient components
 bioactive compounds 254–255
carotenoids 254–255
fatty acids 255
 future prospects 258
oilseed crops 253–255
 proteins 254
 role in human nutrition 253–255
soybean (*Glycine spp.*) 103–104
oil reserves effects on germination 39–46
 germination performance 40–41
 oil composition effect 43–45
 water absorption 41–43
oilseed rape see canola (*Brassica napus*)
oils, soybean (*Glycine spp.*) 105
olive (*Olea europaea*)
 arbuscular mycorrhizal (AM) fungi 195
 classification 250, 251
 lipid content 87–89
 microbes, plant root associating 194
 plant growth-promoting rhizobacteria (PGPR) 194
 salinity stress 88–89
 temperature stress 87
Verticillium wilt of olive (VWO) 195
water stress 88
yield 87–89
organic amendments, phytoremediation of heavy metal contaminated soils 229–231
oxylipin
 heavy metals 239
reactive oxygen species (ROS) 239
palm (*Elaeis guineensis*)
- classification 250, 252
- lipid content 86–87
- methylation 58
- yield 80–81, 82, 86–87
parasitic plants 123–125
 see also broomrapes
PCs see phytochelatins
peanut (*Arachis hypogea*)
- aflatoxins 8
- Aromatic Roasted Peanut Oil (ARPO) 8
- classification 250
- microbes, plant root associating 192, 196
- peanut skins 7–8
- plant growth–promoting rhizobacteria (PGPR) 192, 196
- production 252–253
- uses 4, 7–8
PGPR/PGPB see plant growth–promoting rhizobacteria
PGRs see plant growth regulators
pharmaceutical industry 10
phenolic compounds
- biochemical responses to heavy metals 238
- environmental stress factors 93–94
- salinity stress 94
- water stress 93–94
phosphate-solubilizing bacteria (PSB) 190
phosphorus bioavailability 190
physiological responses to heavy metals 215–216
phytochelatins (PCs), heavy metals stress 214
phytohormones 165–180
 see also abscisic acid; auxin; cytokinins; ethylene; gibberellins; salicylic acid
biosynthesis 166–172
characteristics 166
future prospects 180
hormones interaction 180
mode of action 178
phytoremediation of heavy metal contaminated soils 230
plant protection 179–180
role 176–178
signaling 172–176
silique (pods) development 179
phytoremediation of heavy metal contaminated soils 209–213
biochar and composts 229–230
chelation 212–213, 226–227
fertilizers 227–228
future prospects 231
inorganic amendments 226–229
liming materials 228–229
natural vs. chemically enhanced 212–213
organic amendments 229–231
phytohormones 230
plant growth regulators (PGRs) 230
salicylic acid (SA) 230
silicon containing amendments 229
stress alleviation by organic and inorganic amendments 224–231
sulfur-containing amendments 228
plant growth regulators (PGRs), phytoremediation of heavy metal contaminated soils 230
plant growth-promoting rhizobacteria (PGPR) 185, 189–199
 see also microbes, plant root associating
bioavailability of minerals 190–191
canola (*Brassica napus*) 194, 196, 197
jatropha (*Jatropha curcas*) 196
maize (*Zea mays*) 195–199
olive (*Olea europaea*) 194
pathogens, controlling 190
peanut (*Arachis hypogea*) 192, 196
salinity stress 113–114, 189
sesame (*Sesamum indicum*) 196, 197
soybean (*Glycine* spp.) 193–194, 196, 197
sunflower (*Helianthus annuus*) 192–193, 196
plant-microbe communication, rhizospheric environments 187–189
plastics, industrial uses of oilseeds 257–258
PMF see pulsed magnetic field
pods (silique) development, phytohormones 179
processing techniques and methods
biodiesel 54–63
oilseed crops 253, 254
production
biodiesel 54
canola (*Brassica napus*) 252–253
caster bean (*Ricinus communis*) 19
coconut (*Cocos nucifera*) 252–253
jojoba (*Simmondsia chinensis*) 160
linseed (*Linum usitatissimum*) 252–253
mustard 252–253
oilseed crops 252–253
peanut (*Arachis hypogea*) 252–253
safflower (*Carthamus tinctorius*) 252–253
sesame (*Sesamum indicum*) 252–253
soybean (*Glycine* spp.) 252–253
sunflower (*Helianthus annuus*) 139–140
proline, biochemical responses to heavy metals 237
proteins
- oilseed crops 254
- role in human nutrition 254
- soybean (*Glycine* spp.) 104
- total soluble protein content, biochemical responses to heavy metals 238
PSB see phosphate-solubilizing bacteria
pulsed magnetic field (PMF), salinity stress 113
quorum sensing (QS), plant-microbe communication 188
rapeseed see canola (Brassica napus)
reactive oxygen species (ROS), biochemical responses to heavy metals 237, 239
resistance
broomrapes (Orobanche spp.) 132–134, 136, 140–141
constitutive resistance 140
future prospects 145–147
induced resistance 140–141
sunflower (Helianthus annuus) 141–147
sunflower vampire (Orobanche cumana) 132–134, 136
rhizospheric environments, plant-microbe communication 187–189
rice (Oryza sativa), uses 8–9
ricin 23–24
ricinoleic acid 25–28
ROS see reactive oxygen species

safflower (Carthamus tinctorius)
classification 250, 252
cultivation 3
heavy metals 3
production 252–253
salicylic acid (SA)
see also phytohormones
biosynthesis 169, 171
phytoremediation of heavy metal contaminated soils 230
role 177
salinity stress 114–115
signaling 175–176

salinity stress
adaptation of roots and leaves 111–112
bioactive compounds 110–111
canola (Brassica napus) 84–85
coping mechanisms 108–110
endophytic fungi 113
exogenous substances 114–115
fungi, endophytic 113
gibberellins (GA) 114
glycophytes 107
growth response 108, 111
halophytes 107
micronutrients 110–111
nitric oxide (NO) 114–115
olive (Olea europaea) 88–89
phenolic compounds 94
plant growth-promoting bacteria (PGPB) 113–114
plant growth-promoting rhizobacteria (PGPR) 113–114, 189
plant response 108–110
pulsed magnetic field (PMF) 113
salicylic acid (SA) 114–115
soybean (Glycine spp.) 83, 110–115
sunflower (Helianthus annuus) 86
symbiotic nitrogen-fixing bacteria 114
tocopherols 95
salinity tolerance, castor bean (Ricinus communis) 19
SA see salicylic acid
SBO see sorghum bug (Agonoscelis pubescens)
seed analysis, castor bean (Ricinus communis) 19
seed diversity, castor bean (Ricinus communis) 19
seed toxicity, castor bean (Ricinus communis) 23–24
seed yield, castor bean (Ricinus communis) 23–24
selenium
hyperaccumulation 211
phytoremediation of contaminated soils 211
sesame (Sesamum indicum)
classification 250, 251
cultivation 3
microbes, plant root associating 196, 197
plant growth-promoting rhizobacteria (PGPR) 196, 197
production 252–253
signaling
see also communication, plant-microbe
phytohormones 172–176
plant-microbe communication 188–189
significance of oilseed crops 240
silicon containing amendments, phytoremediation of heavy metal contaminated soils 229
siquile (pods) development, phytohormones 179
SNVD see sunflower necrosis virus disease
SOD activity
heavy metals 239
reactive oxygen species (ROS) 239
soil temperature
biophysical parameters 276–280
Indian mustard (Brassica juncea) 276–280
sorghum bug (Agonoscelis pubescens)
biodiesel from 70, 72–73
fatty acid composition 72, 73
soybean (Glycine spp.) 102–117
adaptation of roots and leaves, salinity stress 111–112
amino acids 104
bioactive compounds, salinity stress 110–111
bioactive soybean components 105–106
carbohydrates 106
soybean (Glycine spp.) (cont’d)
chemical composition 103–107
classification 249–250
cultivation 3
dermothetic fungi, salinity stress 113
exogenous substances, salinity stress 114–115
fermentation 3
fungi, endophytic, salinity stress 113
future prospects 116–117
genetic diversity 3
 genetic engineering (GE) 115–116
growth response, salinity stress 111
importance 102
industrial uses 102–103
isoflavones 105–106
lipid content 82–83
microbes, plant root associating 113–114, 193–194, 196, 197
micronutrients, salinity stress 110–111
minerals 107
nitrogen fixation 103
nutrient components 103–104
oils 105
plant growth-promoting rhizobacteria
(PGPR) 113–114, 193–194, 196, 197
production 252–253
proteins 104
pulsed magnetic field (PMF), salinity stress 113
salicylic acid (SA), salinity stress 114–115
salinity stress 83, 110–115
symbiotic nitrogen-fixing bacteria, salinity stress 114
temperature stress 82–83
transgenic 115–116
uses 4, 5
vitamins 107
water stress 83
wild vs. cultivated, salinity stress 112
yield 82–83
standards
American Standard for Testing Materials (ASTM) 63–65
biodiesel 63–67
sulfur as fertilizer 1
sulfur-containing amendments, phytoremediation of heavy metal contaminated soils 228
sunflower (Helianthus annuus)
classification 250
diseases 141–143
history of cultivation 139
lipid content 85–86
microbes, plant root associating 192–193, 196
plant growth-promoting rhizobacteria
(PGPR) 192–193, 196
production 139–140
resistance 141–147
resistance to broomrapes (Orobanche spp.) 144–147
resistance to pathogens 141–143
salinity stress 86
sunflower necrosis virus disease (SNVD) 193
temperature stress 85–86
uses 4, 5–6, 139–140
water stress 86
yield 85–86
sunflower necrosis virus disease (SNVD) 193
sunflower vampire (Orobanche cumana) 131–134
distribution 134, 135
identification 131–134
races 132–134
resistance 132–134, 136
supercritical alcohol transesterification, biodiesel 61
symbiotic nitrogen-fixing bacteria, salinity stress 114
temperature stress
canola (Brassica napus) 84
fatty acid composition 90–91
olive (Olea europaea) 87
soybean (Glycine spp.) 82–83
sunflower (Helianthus annuus) 85–86
tocopherols 94
thallium, mustard cultivation 2
thermal energy use efficiency
biophysical parameters 270–273
Indian mustard (Brassica juncea) 270–273
thermal indices, biophysical parameters, Indian mustard (Brassica juncea) 265–280
tocopherols
environmental stress factors 94–95
salinity stress 95
temperature stress 94
water stress 95
total soluble protein content, biochemical responses to heavy metals 238
transesterification
in-situ 62–63
using microwave irradiation, biodiesel 62
using ultrasonic irradiation, biodiesel 61–62
transesterification reaction, biodiesel 55–56
transgenic oilseed crops 1–2
transgenic soybean (Glycine spp.), role in agriculture 115–116
triglycerides transesterification 55–56
ultrasonic irradiation, transesterification using 61–62
unconventional oils, biodiesel from 69–74
uses of oilseeds, industrial see industrial uses of oilseeds
vampire weeds 123–125
see also broomrapes
vegetable oil yield and composition, environmental stress factors 80–96
Verticillium wilt of olive (VWO) 195
vitamins, soybean (Glycine spp.) 107
VWO see Verticillium wilt of olive
waste vegetable oil (WVO), biodiesel from 68–69
water absorption, seed lipid concentration effect 41–43
water extraction, soil 1
water stress
 canola (Brassica napus) 84
 fatty acid composition 92
 olive (Olea europaea) 88
 phenolic compounds 93–94
 soybean (Glycine spp.) 83
sunflower (Helianthus annuus) 86
tocopherols 95
weather susceptibility, oilseed crops 264–265
WVO see waste vegetable oil
yield 82–89
 abiotic stress factors, vegetable oil yield and composition 81
 biotic stress factors, vegetable oil yield and composition 81
 canola (Brassica napus) 83–85
 castor bean (Ricinus communis), seed yield 23
 environmental stress factors, vegetable oil yield and composition 80–96
 olive (Olea europaea) 87–89
 palm (Elaeis guineensis) 80–81, 82, 86–87
 soybean (Glycine spp.) 82–83
 sunflower (Helianthus annuus) 85–86
 vegetable oil yield and composition, environmental stress factors 80–96
zinc
 bioavailability 190
 hyperaccumulation 209–211
 phytoremediation of contaminated soils 209–211