Contents

Editor Biographies xv
List of Contributors xvii
Foreword xxi
Preface xxv
About the Book xxix
Expert Commentary xxxi

1 Natural Food Sources for the Control of Glycemia and the Prevention of Diabetic Complications 1
Carlo Pesce, Carla Iacobini, and Stefano Menini

1.1 Introduction: Obesity, Metabolic Syndrome, and Type 2 Diabetes Epidemics: The Role of Nutrition 1

1.2 Phytochemicals of Nutraceutical Importance and Functional Foods of Plant Origin 3

1.2.1 Dietary Oils 3

1.2.2 Vegetables and Fruits 4

1.3 Nutraceuticals and Functional Foods of Animal Origin 8

1.3.1 The Case of Carnosine 8

1.4 Nutraceuticals of Both Plant and Animal Origin 9

1.5 Probiotics, Prebiotics, and Symbiotics 12

1.6 Conclusion 15

References 17

2 Anti-Aging Effects of Sulfur-Containing Amino Acids and Nutraceuticals 25
Geetika Garg, Abhishek Kumar Singh, Sandeep Singh, and Syed Ibrahim Rizvi

2.1 Aging and Nutrition 25

2.2 Natural Antioxidants 26

2.2.1 Sulfur-Containing Amino Acids and Their Role as Antioxidants 26

2.2.2 Anti-Aging Effects of L-Cysteine 27
Contents

2.3 N-Acetyl-L-Cysteine 28
2.3.1 Neuroprotective Effects of N-Acetyl-L-Cysteine 29
2.3.2 N-Acetyl-L-Cysteine in Combination with Other Antioxidants 29
2.4 Methionine 30
2.4.1 Methionine Restriction 30
2.5 Sulfur-Containing Nutraceuticals and Foods Rich in Sulfur-Containing Amino Acids 31
2.5.1 Whey Protein 32
2.5.2 Anti-Aging Effects of Whey Protein 32
2.6 Conclusion 33
Acknowledgments 33
Conflict of Interest 33
References 33

3 Garcinia Fruits: Their Potential to Combat Metabolic Syndrome 39
Oliver D. John, Lindsay Brown, and Sunil K. Panchal
3.1 Introduction 39
3.2 Overview of Compounds in Garcinia Species 40
3.2.1 Garcinia mangostana 44
3.2.1.1 Chemical Properties 45
3.2.1.2 Biological Activities of G. mangostana 45
3.2.1.3 Toxicity 49
3.2.2 Garcinia cambogia 50
3.2.2.1 Chemical Properties 50
3.2.2.2 Biological Activities 51
3.2.2.3 Toxicity 53
3.2.2.4 Future Research 53
3.2.3 Garcinia humilis 53
3.2.3.1 Chemical Properties 53
3.2.3.2 Biological Activities 54
3.2.4 Garcinia dulcis 55
3.2.4.1 Chemical Properties 55
3.2.4.2 Biological Properties 55
3.2.4.3 Potential Research 56
3.3 Limitations 63
3.4 Conclusion 64
References 64

4 Pro-Angiogenic and Anti-Angiogenic Effects of Small Molecules from Natural Products 81
Jingyi Ma and Xuelin Zhou
4.1 Biological Mechanisms of Angiogenesis 81
4.2 Pharmacological Models for Angiogenesis Study 82
Contents

4.3 Pro-Angiogenic Effects of Small Molecules from Natural Products
4.3.1 Natural Products as Sources for Screening Pro-Angiogenic Stimulators
4.3.2 Flavonoids
4.3.3 Saponins
4.3.4 Salvianolic Acids
4.3.5 Other Small Molecules
4.3.5.1 Ferulic Acid
4.3.5.2 Aloe vera–Derived Compounds
4.3.6 Summary
4.4 Anti-Angiogenic Effects of Small Molecules from Natural Products
4.4.1 Natural Products as Sources for Screening Angiogenic Inhibitors
4.4.2 Flavonoids
4.4.3 Diterpenoids
4.4.4 Polyphenol
4.4.5 Saponins
4.4.6 Alkaloids
4.4.7 Chalcone
4.4.8 Anthraquinone
4.4.9 Carotenoids
4.4.10 Other Small Molecules
4.4.10.1 Cucurbitacin B
4.4.10.2 Honokiol
4.4.10.3 Shikonin
4.4.10.4 Hyperforin
4.4.10.5 Glyceollins
4.4.10.6 Sulforaphane
4.4.11 Summary
4.5 Conclusion

Acknowledgment
Conflict of Interest
References

5 Nutraceuticals and Natural Product Derivatives in the Premises of Disease Prevention
Mohammad Fahad Ullah, Showket Hussain Bhat, and Faisel M. Abu-Duhier
5.1 Introduction: How Significant Is the Role of Natural Molecules in Disease Prevention?
5.2 Natural Products in Cancer Chemoprevention
5.3 Natural Products in the Management of Diabetes
5.4 Natural Products as Therapeutic Agents against Gout Disease
5.5 Herbal Derivatives in Prevention of Alzheimer’s Disease 124
5.6 Conclusion 127
Acknowledgments 127
References 127

6 Honey- and Propolis-Mediated Regulation of Protein Networks in Cancer Cells 137
Ammad Ahmad Farooqi, Mirna Azalea Romero, Aliye Aras, Muhammad Zahid Qureshi, and Lara Hanna Wakim
6.1 Introduction 137
6.2 Honey-Mediated Targeting of Signal Transducer and Activator of Transcription (STAT) Proteins 138
6.3 Reactive Oxygen Species (ROS) Production in Cancer Cells 138
6.4 Apoptosis 139
6.5 Regulation of DNA Damage 139
6.6 Combinatorial Strategies: It Takes Two to Tango 139
6.7 Bioactive Propolis Chemicals as Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) Sensitizers 141
6.8 Bioactive Chemicals of Propolis Target Different Proteins of Cell-Signaling Pathways 142
6.9 Conclusion 142
References 142

7 Antiproliferative Effects and Mechanism of Action of Phytosterols Derived from Bioactive Plant Extracts 145
Gabriel López-García, Amparo Alegría, Reyes Barberá, and Antonio Cilla
7.1 Introduction 145
7.2 Mechanisms of the Anticancer Actions of Phytosterols 146
7.3 Anticancer Effects of Phytosterols 147
7.3.1 Plant Extracts Containing Phytosterols 148
7.3.2 Isolated Phytosterols from Plant Extracts 155
7.4 Conclusions 161
Acknowledgments 162
References 162

8 Yerba Mate (Ilex paraguariensis A. St. Hil.): A Promising Adjuvant in the Treatment of Diabetes, Obesity, and Metabolic Syndrome 167
Vanessa Gesser Correa, Rúbia Carvalho Gomes Corrêa, Tatiane Francielli Vieira, Eloá Angélica Koehnlein, Adelar Bracht, and Rosane Marina Peralta
8.1 Introduction 167
8.2 Nutritional Composition of Ilex paraguariensis 169
8.3 Composition in Bioactive Compounds 170
8.4 Yerba Mate: Research Trends and Main Findings over 20 Years 171
8.5 Biological Activities of Yerba Mate Related to Diabetes, Obesity, and Metabolic Syndrome 172
8.5.1 In Vitro Studies 172
8.5.2 Animal Studies 174
8.5.3 Clinical Trials 176
8.6 Summarizing Conclusion and Perspectives 177
References 178

9 Role of Natural Antioxidants from Selected Plants Belonging to the Scrophulariaceae and Buddlejaceae Families in the Prevention and Treatment of Neurodegenerative Diseases 183
Cigdem Kahraman, Zeliha S. Akdemir, and I. Irem Tatli
9.1 Introduction 183
9.2 Natural Antioxidants from Verbascum Species (Mullein) for Their Therapeutic Activities against Neurodegenerative Diseases 188
9.3 Natural Antioxidants from Scrophularia Species (Figwort) for Their Therapeutic Activities against Neurodegenerative Diseases 200
9.4 Natural Antioxidants from Buddleja Species (Butterfly Bush) for Their Therapeutic Activities against Neurodegenerative Diseases 209
9.5 Secondary Metabolites and Their Therapeutic Activities against Neurodegenerative Diseases 221
9.6 Conclusions 225
Acknowledgments 226
References 226

10 Recent Trends in Drug Discovery against Alzheimer’s Disease: Use of Natural Products and Nutraceuticals from Botanicals 237
Sudatta Maity, Samapika Nandy, Anuradha Mukherjee, and Abhijit Dey
10.1 Introduction 237
10.2 Symptoms 237
10.3 Etiopathogenesis 238
10.4 Conventional Therapy 239
10.5 Complementary and Alternative Therapies (CATs) for AD 239
10.6 Research Methodology 240
10.7 Neuroprotective Biomolecules: Possible Roles against AD Pathogenesis 241
10.7.1 1-o-acetyllycorine 241
10.7.2 α-iso-cubebenol 245
10.7.3 α-onocerin 245
10.7.4 Acteoside 256
10.7.5 Apigenin 256
10.7.6 β-Asarone 256
10.7.7 Baicalein and Baicalin 256
10.7.8 Bellidin, Bellidifolin, Bellidin 8-O-β-Glucopyranoside and Bellidifolin 8-O-β-Glucopyranoside 256
10.7.9 Catalpol 257
10.7.10 Cryptotanshinone 257
10.7.11 Curcuminoids 257
10.7.12 Cynatroside B 258
10.7.13 Galantamine 258
10.7.14 Genistein 258
10.7.15 Huperzine A 258
10.7.16 Icariin 259
10.7.17 Isorhynchophylline 259
10.7.18 Luteolin 259
10.7.19 Melatonin 259
10.7.20 Naringenin 260
10.7.21 Piceatannol 260
10.7.22 p-coumaric Acid 260
10.7.23 Piperine 260
10.7.24 Quercetin 261
10.7.25 Salidroside 261
10.7.26 Silibinin 261
10.7.27 Stepharanine, Cyclanoline, and N-Methyl Stepholidine 262
10.7.28 Triptchlorolide (T4) 262
10.7.29 Triptexanthoside C 262
10.7.30 Ursolic Acid 262
10.7.31 Xanthoceraside 262
10.7.32 Xylocoside G 263
10.7.33 Zeatin 263
10.7.34 z-Ligustilide 263
10.8 Conclusion 263
Abbreviations 264
References 266

11 Therapeutic Potential of Metalloherbal Nanoceuticals: Current Status and Future Perspectives 279
Shazia Usmani, Muhammad Arif, and Syed Misbah Hasan
11.1 Historical Background of Indian Herbal Medicine 279
11.2 Concept of Herbalism 280
11.3 Positive Correlation between Phytopharmacology and Phytochemistry: Need of the Hour 280
11.4 Validation of Herbal Therapeutics: An Indispensable Boon for Ayurveda 281
11.4.1 Reverse Pharmacology–Based Validation of Herbal Drugs [14] 281
11.4.2 Amplifying Approaches for Validation of Traditional Medicine 282
11.4.3 Scientific Integration of Traditional Herbals in Clinical Practice 282
11.4.4 Bhasmas: The Metal-Based Ayurvedic Medicine 283
11.4.4.1 Preparation of Bhasmas 283
11.4.5 Steps Involved in the Preparation of Bhasmas 284
11.4.5.1 Characterization of Bhasma 285
11.5 Metals Commonly Employed for Preparation of Bhasmas 286
11.5.1 Swarna (Gold) 286
11.5.2 Parada (Mercury) 287
11.5.2.1 Tamra (Copper) 287
11.5.2.2 Lauha (Iron) 288
11.5.2.3 Rajata (Silver) 288
11.5.2.4 Yashada (Zinc) 289
11.5.2.5 Naga (Lead) 289
11.5.2.6 Vanga (Tin) 290
11.6 Toxicity Aspect: An Issue of Concern in the Use of Herbomineral Formulations 290
11.6.1 Conflictive Opposition by Western Medicine Philosophy 291
11.6.2 Conclusive Statements Supported by Varied Research Works 292
11.6.3 Future Prospects in Light of Knowledge within Ayurvedic Texts and Its Application as Nanomedicine 298

References 298

12 Green Tea Polyphenols: A Putative Mechanism for Cytotoxic Action against Cancer Cells 305
Mohd Farhan, Uzma Shamim, and S.M. Hadi
12.1 Dietary Constituents and Their Role in Prevention of Cancer 305
12.2 Cancer Chemoprevention by Dietary Polyphenols 306
12.3 Polyphenolic Compounds and Their Chemical Classification 308
12.4 Dietary Sources of Plant-Derived Polyphenolic Compounds 311
12.5 Metabolism of Polyphenolic Compounds in Humans 314
12.6 Polyphenols and Their Therapeutic Potential 316
12.6.1 Anticancer Properties 316
12.6.2 Prospective Anticancer Mechanisms of Plant-Derived Dietary Polyphenols 318
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6.2.1</td>
<td>Antioxidant Action</td>
<td>319</td>
</tr>
<tr>
<td>12.6.2.2</td>
<td>Pro-Oxidant Action</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>321</td>
</tr>
<tr>
<td>13</td>
<td>Nature's Armamentarium against Malaria: Antimalarials and Their</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Semisynthetic Derivatives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fyaz M.D. Ismail</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>13.2</td>
<td>Synthetic Drugs Allow Mass Prophylaxis of Malarial Infections</td>
<td>336</td>
</tr>
<tr>
<td>13.3</td>
<td>The Cooperative World War II Wartime Program</td>
<td>338</td>
</tr>
<tr>
<td>13.4</td>
<td>The Post-Chloroquine Era: A Return to Finding Drugs from Nature</td>
<td>340</td>
</tr>
<tr>
<td>13.5</td>
<td>Compounds from Plant Sources</td>
<td>340</td>
</tr>
<tr>
<td>13.5.1</td>
<td>South America</td>
<td>342</td>
</tr>
<tr>
<td>13.5.1.1</td>
<td>Quassinoids</td>
<td>342</td>
</tr>
<tr>
<td>13.5.1.2</td>
<td>Amazonia Plants</td>
<td>344</td>
</tr>
<tr>
<td>13.5.1.3</td>
<td>Plants Deserving Further Investigation</td>
<td>345</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Promising Antimalarials Native to Africa</td>
<td>347</td>
</tr>
<tr>
<td>13.5.2.1</td>
<td>Burkina Faso</td>
<td>347</td>
</tr>
<tr>
<td>13.5.2.2</td>
<td>Congo</td>
<td>347</td>
</tr>
<tr>
<td>13.5.2.3</td>
<td>Ethiopia</td>
<td>349</td>
</tr>
<tr>
<td>13.5.2.4</td>
<td>Kenya</td>
<td>350</td>
</tr>
<tr>
<td>13.5.2.5</td>
<td>Madagascar</td>
<td>351</td>
</tr>
<tr>
<td>13.5.3</td>
<td>North America and Europe</td>
<td>351</td>
</tr>
<tr>
<td>13.5.3.1</td>
<td>Helanin</td>
<td>352</td>
</tr>
<tr>
<td>13.5.4</td>
<td>India and East Asia</td>
<td>353</td>
</tr>
<tr>
<td>13.5.4.1</td>
<td>China</td>
<td>354</td>
</tr>
<tr>
<td>13.5.4.2</td>
<td>Japan and Korea</td>
<td>359</td>
</tr>
<tr>
<td>13.5.5</td>
<td>Australia</td>
<td>359</td>
</tr>
<tr>
<td>13.6</td>
<td>The Future</td>
<td>361</td>
</tr>
<tr>
<td>13.7</td>
<td>Conclusion</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>363</td>
</tr>
<tr>
<td>14</td>
<td>Nutraceutical-Based Pharmacological Intervention in the Management</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>of Liver Diseases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aaliya Shah and Syed Mudassar</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Liver: A Multifunctional Organ</td>
<td>375</td>
</tr>
<tr>
<td>14.2</td>
<td>Biomarkers of Hepatic Injury</td>
<td>377</td>
</tr>
<tr>
<td>14.3</td>
<td>Nutraceutical Intervention in the Management of Liver Diseases</td>
<td>377</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Vitamins</td>
<td>378</td>
</tr>
</tbody>
</table>