Contents

Introduction xix

Part I Arduino Engineering Basics 1

Chapter 1 Getting Up and Blinking with the Arduino 3
- Exploring the Arduino Ecosystem 4
 - Arduino Functionality 4
 - Atmel Microcontroller 6
 - Programming Interfaces 6
 - General I/O and ADCs 7
 - Power Supplies 7
- Arduino Boards 8
- Creating Your First Program 13
 - Downloading and Installing the Arduino IDE 13
 - Running the IDE and Connecting to the Arduino 14
 - Breaking Down Your First Program 16
- Summary 18

Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation 19
- Digital Outputs 20
 - Wiring Up an LED and Using Breadboards 20
 - Working with Breadboards 21
 - Wiring LEDs 22
 - Programming Digital Outputs 24
 - Using For Loops 25
- Pulse-Width Modulation with analogWrite() 27
- Reading Digital Inputs 29
 - Reading Digital Inputs with Pulldown Resistors 29
 - Working with “Bouncy” Buttons 32
- Building a Controllable RGB LED Nightlight 35
- Summary 39
Contents

Chapter 3 Reading Analog Sensors 41
- Understanding Analog and Digital Signals 42
 - Comparing Analog and Digital Signals 43
 - Converting an Analog Signal to a Digital One 44
- Reading Analog Sensors with the Arduino: analogRead() 45
 - Reading a Potentiometer 45
 - Using Analog Sensors 50
 - Working with Analog Sensors to Sense Temperature 52
- Using Variable Resistors to Make Your Own Analog Sensors 54
 - Using Resistive Voltage Dividers 55
 - Using Analog Inputs to Control Analog Outputs 56
- Summary 59

Part II Controlling Your Environment 61

Chapter 4 Using Transistors and Driving Motors 63
- Driving DC Motors 65
 - Handling High-Current Inductive Loads 65
 - Using Transistors as Switches 66
 - Using Protection Diodes 67
 - Using a Secondary Power Source 68
 - Wiring the Motor 68
 - Controlling Motor Speed with PWM 70
 - Using an H-Bridge to Control DC Motor Direction 72
 - Building an H-bridge Circuit 73
 - Operating an H-bridge Circuit 76
- Driving Servo Motors 80
 - Understanding the Difference Between Continuous Rotation and Standard Servos 80
 - Understanding Servo Control 80
 - Controlling a Servo 85
- Building a Sweeping Distance Sensor 86
- Summary 90

Chapter 5 Making Sounds 91
- Understanding How Speakers Work 92
 - The Properties of Sound 92
 - How a Speaker Produces Sound 94
- Using tone() to Make Sounds 95
 - Including a Definition File 95
 - Wiring the Speaker 96
 - Making Sound Sequences 99
 - Using Arrays 99
 - Making Note and Duration Arrays 100
 - Completing the Program 101
 - Understanding the Limitations of the tone() Function 102
- Building a Micro Piano 102
- Summary 105
Chapter 6 USB and Serial Communication
Understanding the Arduino's Serial Communication Capabilities
- Arduino Boards with an Internal or External FTDI USB-to-Serial Converter
- Arduino Boards with a Secondary USB-Capable ATmega MCU Emulating a Serial Converter
- Arduino Boards with a Single USB-Capable MCU
- Arduino Boards with USB-Host Capabilities
- Listening to the Arduino
 - Using print Statements
 - Using Special Characters
 - Changing Data Type Representations
- Talking to the Arduino
 - Reading Information from a Computer or Other Serial Device
 - Telling the Arduino to Echo Incoming Data
 - Understanding the Differences Between Chars and Ints
 - Sending Single Characters to Control an LED
 - Sending Lists of Values to Control an RGB LED
- Talking to a Desktop App
 - Talking to Processing
 - Installing Processing
 - Controlling a Processing Sketch from Your Arduino
 - Sending Data from Processing to Your Arduino
- Learning Special Tricks with the Arduino Leonardo (and Other 32U4-Based Arduinos)
 - Emulating a Keyboard
 - Typing Data into the Computer
 - Commanding Your Computer to Do Your Bidding
 - Emulating a Mouse
- Summary

Chapter 7 Shift Registers
Understanding Shift Registers
- Sending Parallel and Serial Data
- Working with the 74HC595 Shift Register
 - Understanding the Shift Register Pin Functions
 - Understanding How the Shift Register Works
- Shifting Serial Data from the Arduino
- Converting Between Binary and Decimal Formats
- Controlling Light Animations with a Shift Register
 - Building a “Light Rider”
 - Responding to Inputs with an LED Bar Graph
- Summary
Part III Communication Interfaces 161

Chapter 8 The I²C Bus 163
History of the I²C Bus 164
I²C Hardware Design 164
 Communication Scheme and ID Numbers 165
 Hardware Requirements and Pull-Up Resistors 167
Communicating with an I²C Temperature Probe 167
 Setting Up the Hardware 168
 Referencing the Datasheet 169
 Writing the Software 171
Combining Shift Registers, Serial Communication, and I²C Communications 173
 Building the Hardware for a Temperature Monitoring System 173
 Modifying the Embedded Program 174
 Writing the Processing Sketch 177
Summary 180

Chapter 9 The SPI Bus 181
Overview of the SPI Bus 182
SPI Hardware and Communication Design 183
 Hardware Configuration 184
 Communication Scheme 184
Comparing SPI to I²C 185
Communicating with an SPI Digital Potentiometer 185
 Gathering Information from the Datasheet 186
 Setting Up the Hardware 189
 Writing the Software 190
Creating an Audiovisual Display Using SPI Digital Potentiometers 193
 Setting Up the Hardware 194
 Modifying the Software 195
Summary 197

Chapter 10 Interfacing with Liquid Crystal Displays 199
Setting Up the LCD 200
Using the LiquidCrystal Library to Write to the LCD 203
 Adding Text to the Display 204
 Creating Special Characters and Animations 206
Building a Personal Thermostat 209
 Setting Up the Hardware 210
 Displaying Data on the LCD 211
 Adjusting the Set Point with a Button 213
 Adding an Audible Warning and a Fan 214
 Bringing It All Together: The Complete Program 215
 Taking This Project to the Next Level 219
Summary 219
Chapter 11 Wireless Communication with XBee Radios

Understanding XBee Wireless Communication

XBee Radios

The XBee Radio Shield and Serial Connections

3.3V Regulator

Logic Level Shifting

Associate LED and RSSI LED

UART Selection Jumper or Switch

Hardware vs. Software Serial UART Connection Option

Configuring Your XBees

Configuring via a Shield or a USB Adapter

Programming Option 1: Using the Uno as a Programmer (Not Recommended)

Programming Option 2: Using the SparkFun USB Explorer (Recommended)

Choosing Your XBee Settings and Connecting Your XBee to Your Host Computer

Configuring Your XBee with X-CTU

Configuring Your XBee with a Serial Terminal

Talking with Your Computer Wirelessly

Powering Your Remote Arduino

USB with a Computer or a 5V Wall Adapter

Batteries

Wall Power Adapters

Revisiting the Serial Examples: Controlling Processing with a Potentiometer

Revisiting the Serial Examples: Controlling an RGB LED

Talking with Another Arduino: Building a Wireless Doorbell

System Design

Transmitter Hardware

Receiver Hardware

Transmitter Software

Receiver Software

Summary

Part IV Advanced Topics and Projects

Chapter 12 Hardware and Timer Interrupts

Using Hardware Interrupts

Knowing the Tradeoffs Between Polling and Interrupting

Ease of Implementation (Software)

Ease of Implementation (Hardware)

Multitasking

Acquisition Accuracy

Understanding the Arduino’s Hardware Interrupt Capabilities
Building and Testing a Hardware-Debounced Button Interrupt Circuit 262
Creating a Hardware-Debouncing Circuit 262
Assembling the Complete Test Circuit 267
Writing the Software 267
Using Timer Interrupts 270
Understanding Timer Interrupts 270
Getting the Library 270
Executing Two Tasks Simultaneously(ish) 271
Building an Interrupt-Driven Sound Machine 272
Sound Machine Hardware 272
Sound Machine Software 273
Summary 275

Chapter 13 Data Logging with SD Cards 277

Getting Ready for Data Logging 278
 Formatting Data with CSV Files 279
 Preparing an SD Card for Data Logging 279
Interfacing the Arduino with an SD Card 284
 SD Card Shields 284
 SD Card SPI Interface 288
 Writing to an SD Card 289
 Reading from an SD Card 293
Using a Real-Time Clock 297
 Understanding Real-Time Clocks 298
 Using the DS1307 Real-Time Clock 298
 Using the RTC Arduino Third-Party Library 299
 Using the Real-Time Clock 300
 Installing the RTC and SD Card Modules 300
 Updating the Software 301
Building an Entrance Logger 305
 Logger Hardware 306
 Logger Software 307
 Data Analysis 311
Summary 312

Chapter 14 Connecting Your Arduino to the Internet 313

The Web, the Arduino, and You 314
 Networking Lingo 314
 IP Address 314
 Network Address Translation 315
 MAC Address 316
 HTML 316
 HTTP 316
 GET/POST 316
 DHCP 316
 DNS 317
Contents xvii

Clients and Servers 317
Networking Your Arduino 317
Controlling Your Arduino from the Web 318
Setting Up the I/O Control Hardware 318
Designing a Simple Web Page 318
Writing an Arduino Server Sketch 320
 Connecting to the Network and Retrieving an IP via DHCP 321
 Replying to a Client Response 321
 Putting It Together: Web Server Sketch 322
Controlling Your Arduino via the Network 326
 Controlling Your Arduino over the Local Network 326
 Using Port Forwarding to Control your Arduino from Anywhere 327
Sending Live Data to a Graphing Service 329
 Building a Live Data Feed on Xively 330
 Creating a Xively Account 330
 Creating a Data Feed 330
 Installing the Xively and HttpClient Libraries 331
Wiring Up Your Arduino 332
 Configuring the Xively Sketch and Running the Code 332
Displaying Data on the Web 335
 Adding Feed Components 336
 Adding an Analog Temperature Sensor 336
 Adding Additional Sensor Readings to the Datastream 336
Summary 339

Appendix Deciphering the ATmega Datasheet and Arduino Schematics 341
Reading Datasheets 341
 Breaking Down a Datasheet 341
 Understanding Component Pin-outs 344
Understanding the Arduino Schematic 345

Index 349